Dataset Open Access

Constructing a Human Atrial Fibre Atlas, Roney et al.

Roney, Caroline


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/a0f91064-3a63-4b45-99e9-47308ae49b1f/Fibre_Files.zip"
      }, 
      "checksum": "md5:99f030666882ce3469835309577949a2", 
      "bucket": "a0f91064-3a63-4b45-99e9-47308ae49b1f", 
      "key": "Fibre_Files.zip", 
      "type": "zip", 
      "size": 379623796
    }
  ], 
  "owners": [
    97071
  ], 
  "doi": "10.5281/zenodo.3764917", 
  "stats": {
    "version_unique_downloads": 35.0, 
    "unique_views": 342.0, 
    "views": 414.0, 
    "version_views": 414.0, 
    "unique_downloads": 35.0, 
    "version_unique_views": 342.0, 
    "volume": 13666456656.0, 
    "version_downloads": 36.0, 
    "downloads": 36.0, 
    "version_volume": 13666456656.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3764917", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3764916", 
    "bucket": "https://zenodo.org/api/files/a0f91064-3a63-4b45-99e9-47308ae49b1f", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3764916.svg", 
    "html": "https://zenodo.org/record/3764917", 
    "latest_html": "https://zenodo.org/record/3764917", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3764917.svg", 
    "latest": "https://zenodo.org/api/records/3764917"
  }, 
  "conceptdoi": "10.5281/zenodo.3764916", 
  "created": "2020-04-24T13:17:39.925524+00:00", 
  "updated": "2020-04-24T20:20:19.839802+00:00", 
  "conceptrecid": "3764916", 
  "revision": 4, 
  "id": 3764917, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3764917", 
    "description": "<p><strong>Background:</strong>&nbsp;Atrial anisotropy affects electrical propagation patterns, anchor locations of atrial reentrant drivers, and atrial mechanics. However, patient-specific atrial fibre fields and anisotropy measurements are not currently available, and consequently assigning fibre fields to atrial models is challenging. We aimed to construct an atrial fibre atlas from a high-resolution DTMRI dataset that optimally reproduces electrophysiology simulation predictions corresponding to patient-specific fibre fields, and to develop a methodology for automatically assigning fibres to patient-specific anatomies.</p>\n\n<p>&nbsp;</p>\n\n<p><strong>Dataset Description:</strong>&nbsp;We include&nbsp;endocardial and epicardial left and right atrial surfaces for each of the 7 anatomies included in our study (Constructing a Human Atrial Fibre Atlas, ABME, 2020),&nbsp;together with their fibre fields. We also include&nbsp;the average fibre field for each of the atrial surfaces displayed on anatomy number 6 (named *_A).&nbsp;</p>\n\n<p>For each of the surfaces, we also include universal atrial coordinate fields alpha and beta, which are a lateral-septal coordinate and posterior-anterior coordinate for the LA (IVC-SVC coordinate for the RA). More details on the coordinate construction are given in our manuscript and&nbsp;<a href=\"https://www.ncbi.nlm.nih.gov/pubmed/31026761\">https://www.ncbi.nlm.nih.gov/pubmed/31026761</a>. These coordinates can be used for registering datasets.&nbsp;</p>\n\n<p>These meshes are in vtk format, consisting of the nodes, triangular elements, the atrial coordinate fields defined on the nodes, and the fibre field defined on the elements.&nbsp;</p>\n\n<p>We have also included mesh files for the Cardiac Arrhythmia Research Package simulator. These are a list of nodal coordinates (.pts file), a list of triangular elements (.elem file), and a fibre file (.lon). More details on this file format and the carpentry simulator are available at:&nbsp;<a href=\"https://carpentry.medunigraz.at/carputils/index.html\">https://carpentry.medunigraz.at/carputils/index.html</a>.&nbsp;</p>", 
    "contributors": [
      {
        "affiliation": "King's College London", 
        "type": "Researcher", 
        "name": "Bendikas, Rokas"
      }, 
      {
        "affiliation": "Beth Israel Deaconess Medical Center and Harvard Medical School", 
        "type": "Researcher", 
        "name": "Pashakhanloo, Farhad"
      }, 
      {
        "affiliation": "King's College London", 
        "type": "Researcher", 
        "name": "Corrado, Cesare"
      }, 
      {
        "affiliation": "LIRYC Electrophysiology and Heart Modeling Institute", 
        "type": "Researcher", 
        "name": "Vigmond, Edward"
      }, 
      {
        "affiliation": "UC San Diego School of Engineering", 
        "type": "Researcher", 
        "name": "McVeigh, Elliot"
      }, 
      {
        "affiliation": "Johns Hopkins University", 
        "type": "Researcher", 
        "name": "Trayanova, Natalia"
      }, 
      {
        "orcid": "0000-0002-4612-6982", 
        "affiliation": "King's College London", 
        "type": "Researcher", 
        "name": "Niederer, Steven"
      }
    ], 
    "title": "Constructing a Human Atrial Fibre Atlas, Roney et al.", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3764916"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3764917"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "MR/S015086/1", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000690::MR/S015086/1"
        }, 
        "title": "Predicting Atrial Fibrillation Mechanisms Through Deep Learning", 
        "acronym": "", 
        "program": "MRC", 
        "funder": {
          "doi": "10.13039/501100000690", 
          "acronyms": [], 
          "name": "Research Councils UK", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000690"
          }
        }
      }, 
      {
        "code": "EP/M012492/1", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000690::EP/M012492/1"
        }, 
        "title": "Personalised Model Based Optimal Lead Guidance in Cardiac Resynchronisation Therapy", 
        "acronym": "", 
        "program": "EPSRC", 
        "funder": {
          "doi": "10.13039/501100000690", 
          "acronyms": [], 
          "name": "Research Councils UK", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000690"
          }
        }
      }, 
      {
        "code": "NS/A000049/1", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000690::NS/A000049/1"
        }, 
        "title": "Wellcome EPSRC Centre for Medical Engineering", 
        "acronym": "", 
        "program": "EPSRC", 
        "funder": {
          "doi": "10.13039/501100000690", 
          "acronyms": [], 
          "name": "Research Councils UK", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000690"
          }
        }
      }, 
      {
        "code": "EP/P01268X/1", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000690::EP/P01268X/1"
        }, 
        "title": "Uncertainty Quantification in Prospective and Predictive Patient Specific Cardiac Models", 
        "acronym": "", 
        "program": "EPSRC", 
        "funder": {
          "doi": "10.13039/501100000690", 
          "acronyms": [], 
          "name": "Research Councils UK", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000690"
          }
        }
      }
    ], 
    "keywords": [
      "Atrial Fibrillation, Atrial Fibres, Mesh, Finite Elements, Electrophysiology, Computational Models"
    ], 
    "publication_date": "2020-04-24", 
    "creators": [
      {
        "orcid": "0000-0001-6809-0928", 
        "affiliation": "King's College London", 
        "name": "Roney, Caroline"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3764916", 
        "relation": "isVersionOf"
      }
    ]
  }
}
414
36
views
downloads
All versions This version
Views 414414
Downloads 3636
Data volume 13.7 GB13.7 GB
Unique views 342342
Unique downloads 3535

Share

Cite as