Conference paper Open Access
M.Papakostas; T. Giannakopoulos; F. Makedon; V. Karkaletsis
This paper proposes a deep learning classification method for frame-wise recognition of human activities, using raw color (RGB) information. In particular, we present a Convolutional Neural Network (CNN) classification approach for recognising three basic motion activity classes, that cover the vast majority of human activities in the context of a home monitoring environment, namely: sitting, walking and standing up. A real-world fully annotated dataset has been compiled, in the context of an assisted living home environment. Through extensive experimentation we have highlighted the benefits of deep learning architectures against traditional shallow classifiers functioning on hand-crafted features, on the task of activity recognition. Our approach proves the robustness and the quality of CNN classifiers that lies on learning highly invariant features. Our ultimate goal is to tackle the challenging task of activity recognition in environments that are characterized with high levels of inherent noise.
Name | Size | |
---|---|---|
SITIS_MIRA_2016.pdf
md5:04f985a6b7deee6ec6b131671261beb7 |
1.6 MB | Download |
All versions | This version | |
---|---|---|
Views | 184 | 184 |
Downloads | 246 | 246 |
Data volume | 391.0 MB | 391.0 MB |
Unique views | 164 | 164 |
Unique downloads | 241 | 241 |