Journal article Open Access

Open Access and Altmetrics in the pandemic age: Forescast analysis on COVID-19 related literature

Daniel Torres Salinas; Nicolás Robinson; Pedro A. Castillo Valdivieso


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Daniel Torres Salinas</dc:creator>
  <dc:creator>Nicolás Robinson</dc:creator>
  <dc:creator>Pedro  A. Castillo Valdivieso</dc:creator>
  <dc:date>2020-04-23</dc:date>
  <dc:description>We present an analysis on the uptake of open access on COVID-819 related literature as well as the social media attention they gather when9compared with non OA papers. We use a dataset of publications curated by10Dimensions  and  analyze  articles  and  preprints.  Our  sample  includes  11,68611publications of which 67.5% are openly accessible. OA publications tend to receive the largest share of social media attention as measured by the Altmetric13Attention Score. 37.6% of OA publications are bronze, which means toll journals are providing free access. MedRxiv contributes to 36.3% of documents inrepositories but papers in BiorXiv exhibit on average higher AAS. We predict the growth of COVID-19 literature in the following 30 days estimating ARIMA models for the overall publications set, OA vs. non OA and by location of the document (repository vs. journal). We estimate that COVID-19 publications will double in the next 20 days, but non OA publications will grow at a higher rate than OA publications. We conclude by discussing the implications of such findings on the dissemination and communication of research findings to mitigate the coronavirus outbreak</dc:description>
  <dc:identifier>https://zenodo.org/record/3763140</dc:identifier>
  <dc:identifier>10.5281/zenodo.3763140</dc:identifier>
  <dc:identifier>oai:zenodo.org:3763140</dc:identifier>
  <dc:relation>info:eu-repo/semantics/altIdentifier/handle/10481/61521</dc:relation>
  <dc:relation>info:eu-repo/semantics/altIdentifier/doi/10.1101/2020.04.23.057307</dc:relation>
  <dc:relation>doi:10.5281/zenodo.3763139</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/covid-19</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>altmetrics</dc:subject>
  <dc:subject>scientometrics</dc:subject>
  <dc:subject>coronavirus</dc:subject>
  <dc:subject>COVID-19</dc:subject>
  <dc:subject>open access</dc:subject>
  <dc:subject>repositories</dc:subject>
  <dc:subject>open science</dc:subject>
  <dc:subject>bibliometrics</dc:subject>
  <dc:subject>pandemic</dc:subject>
  <dc:subject>forecast analysis</dc:subject>
  <dc:title>Open Access and Altmetrics in the pandemic age: Forescast analysis on COVID-19 related literature</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
278
95
views
downloads
All versions This version
Views 278278
Downloads 9595
Data volume 157.9 MB157.9 MB
Unique views 249249
Unique downloads 8484

Share

Cite as