Conference paper Open Access

Optimizing QoE and Cost in a 3D Immersive Media Platform: A Reinforcement Learning Approach

Panagiotis Athanasoulis; Emmanouil Christakis; Konstantinos Konstantoudakis; Petros Drakoulis; Stamatia Rizou; Avi Weit; Alexandros Doumanoglou; Nikolaos Zioulis; Dimitrios Zarpalas


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/c8db646c-40c2-4784-b914-da6ebb95c611/Optimizing%20QoE%20and%20Cost%20in%20a%203D%20Immersive%20Media%20Platform%20-%20A%20Reinforcement%20Learning%20Approach%20-%20camera%20ready.pdf"
      }, 
      "checksum": "md5:33f3abda084213aa9f77d028833c215c", 
      "bucket": "c8db646c-40c2-4784-b914-da6ebb95c611", 
      "key": "Optimizing QoE and Cost in a 3D Immersive Media Platform - A Reinforcement Learning Approach - camera ready.pdf", 
      "type": "pdf", 
      "size": 781740
    }
  ], 
  "owners": [
    99153
  ], 
  "doi": "10.5281/zenodo.3761854", 
  "stats": {
    "version_unique_downloads": 44.0, 
    "unique_views": 63.0, 
    "views": 74.0, 
    "version_views": 74.0, 
    "unique_downloads": 44.0, 
    "version_unique_views": 63.0, 
    "volume": 39087000.0, 
    "version_downloads": 50.0, 
    "downloads": 50.0, 
    "version_volume": 39087000.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3761854", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3761853", 
    "bucket": "https://zenodo.org/api/files/c8db646c-40c2-4784-b914-da6ebb95c611", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3761853.svg", 
    "html": "https://zenodo.org/record/3761854", 
    "latest_html": "https://zenodo.org/record/3761854", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3761854.svg", 
    "latest": "https://zenodo.org/api/records/3761854"
  }, 
  "conceptdoi": "10.5281/zenodo.3761853", 
  "created": "2020-04-22T15:53:01.929858+00:00", 
  "updated": "2020-04-23T20:20:20.479258+00:00", 
  "conceptrecid": "3761853", 
  "revision": 4, 
  "id": 3761854, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3761854", 
    "version": "1", 
    "language": "eng", 
    "title": "Optimizing QoE and Cost in a 3D Immersive Media Platform: A Reinforcement Learning Approach", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3761853", 
        "relation": "isVersionOf"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3761853"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3761854"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "761699", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::761699"
        }, 
        "title": "Programmable edge-to-cloud virtualization fabric for the 5G Media industry", 
        "acronym": "5G-MEDIA", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "immersive media", 
      "cognitive network optimizer", 
      "reinforcement learning", 
      "5g", 
      "5g media"
    ], 
    "publication_date": "2020-04-22", 
    "creators": [
      {
        "affiliation": "Singular Logic S.A., Athens, Greece", 
        "name": "Panagiotis Athanasoulis"
      }, 
      {
        "affiliation": "Visual Computing Lab (VCL), Information Technologies Institute (ITI), Centre for Research and Technology - Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Emmanouil Christakis"
      }, 
      {
        "orcid": "0000-0001-5092-8796", 
        "affiliation": "Visual Computing Lab (VCL), Information Technologies Institute (ITI), Centre for Research and Technology - Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Konstantinos Konstantoudakis"
      }, 
      {
        "orcid": "0000-0003-3434-3290", 
        "affiliation": "Visual Computing Lab (VCL), Information Technologies Institute (ITI), Centre for Research and Technology - Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Petros Drakoulis"
      }, 
      {
        "affiliation": "Singular Logic S.A., Athens, Greece", 
        "name": "Stamatia Rizou"
      }, 
      {
        "affiliation": "IBM Research, Haifa, Israel", 
        "name": "Avi Weit"
      }, 
      {
        "orcid": "0000-0002-4337-1720", 
        "affiliation": "Visual Computing Lab (VCL), Information Technologies Institute (ITI), Centre for Research and Technology - Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Alexandros Doumanoglou"
      }, 
      {
        "orcid": "0000-0002-7898-9344", 
        "affiliation": "Visual Computing Lab (VCL), Information Technologies Institute (ITI), Centre for Research and Technology - Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Nikolaos Zioulis"
      }, 
      {
        "affiliation": "Visual Computing Lab (VCL), Information Technologies Institute (ITI), Centre for Research and Technology - Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Dimitrios Zarpalas"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "description": "<p>Recent advances in media-related technologies, including&nbsp;capturing and processing, have facilitated novel forms&nbsp;of 3D media content, increasing the degree of user immersion.&nbsp;In order to ensure these technologies can readily support the&nbsp;rising demand for more captivating entertainment, both the&nbsp;production and delivery mechanisms should be transformed to&nbsp;support the application of media or network-related optimizations&nbsp;and refinements on-the-fly. Network peculiarities deriving&nbsp;from geographic and other factors make it difficult for a greedy&nbsp;or a supervised machine learning algorithm to successfully foresee&nbsp;the need for reconfiguration of the content production or delivery&nbsp;procedures. For these reasons, Reinforcement Learning (RL)&nbsp;approaches have lately gained popularity as partial information&nbsp;on the environment is enough for an algorithm to begin its&nbsp;training and converge to an optimal policy. The contribution&nbsp;of this work is a Cognitive Network Optimizer (CNO) in the&nbsp;form of an RL agent, designed to perform corrective actions on&nbsp;both the production and consumption ends of an immersive 3D&nbsp;media platform, depending on a collection of real-time monitoring&nbsp;parameters, including infrastructure, application-level and quality&nbsp;of experience (QoE) metrics. Our work demonstrates CNO&nbsp;approaches with different foci, i.e., a greedy maximization of&nbsp;the users&rsquo; QoE, a QoE-focused RL approach and a combined&nbsp;QoE-and-Cost RL approach.</p>"
  }
}
74
50
views
downloads
All versions This version
Views 7474
Downloads 5050
Data volume 39.1 MB39.1 MB
Unique views 6363
Unique downloads 4444

Share

Cite as