Journal article Open Access
Thuruthel, Thomas George; Falotico, Egidio; Renda, Federico; Laschi, Cecilia
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3759636</identifier> <creators> <creator> <creatorName>Thuruthel, Thomas George</creatorName> <givenName>Thomas George</givenName> <familyName>Thuruthel</familyName> <affiliation>BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy</affiliation> </creator> <creator> <creatorName>Falotico, Egidio</creatorName> <givenName>Egidio</givenName> <familyName>Falotico</familyName> <affiliation>BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy</affiliation> </creator> <creator> <creatorName>Renda, Federico</creatorName> <givenName>Federico</givenName> <familyName>Renda</familyName> <affiliation>Department of Mechanical Engineering and the Center for Autonomous Robotics Systems, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates</affiliation> </creator> <creator> <creatorName>Laschi, Cecilia</creatorName> <givenName>Cecilia</givenName> <familyName>Laschi</familyName> <affiliation>BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy</affiliation> </creator> </creators> <titles> <title>Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <dates> <date dateType="Issued">2018-11-12</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3759636</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TRO.2018.2878318</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Dynamic control of soft robotic manipulators is an open problem yet to be well explored and analyzed. Most of the current applications of soft robotic manipulators utilize static or quasi-dynamic controllers based on kinematic models or linearity in the joint space. However, such approaches are not truly exploiting the rich dynamics of a soft-bodied system. In this paper, we present a model-based policy learning algorithm for closed-loop predictive control of a soft robotic manipulator. The forward dynamic model is represented using a recurrent neural network. The closed-loop policy is derived using trajectory optimization and supervised learning. The approach is verified first on a simulated piecewise constant strain model of a cable driven under-actuated soft manipulator. Furthermore, we experimentally demonstrate on a soft pneumatically actuated manipulator how closed-loop control policies can be derived that can accommodate variable frequency control and unmodeled external loads.</p></description> </descriptions> </resource>
Views | 22 |
Downloads | 129 |
Data volume | 448.8 MB |
Unique views | 22 |
Unique downloads | 115 |