Journal article Open Access

Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators

Thuruthel, Thomas George; Falotico, Egidio; Renda, Federico; Laschi, Cecilia


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/3759636">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3759636</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/3759636"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Thuruthel, Thomas George</foaf:name>
        <foaf:givenName>Thomas George</foaf:givenName>
        <foaf:familyName>Thuruthel</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Falotico, Egidio</foaf:name>
        <foaf:givenName>Egidio</foaf:givenName>
        <foaf:familyName>Falotico</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Renda, Federico</foaf:name>
        <foaf:givenName>Federico</foaf:givenName>
        <foaf:familyName>Renda</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Mechanical Engineering and the Center for Autonomous Robotics Systems, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Laschi, Cecilia</foaf:name>
        <foaf:givenName>Cecilia</foaf:givenName>
        <foaf:familyName>Laschi</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2018</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2018-11-12</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3759636"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3759636</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1109/TRO.2018.2878318"/>
    <dct:description>&lt;p&gt;Dynamic control of soft robotic manipulators is an open problem yet to be well explored and analyzed. Most of the current applications of soft robotic manipulators utilize static or quasi-dynamic controllers based on kinematic models or linearity in the joint space. However, such approaches are not truly exploiting the rich dynamics of a soft-bodied system. In this paper, we present a model-based policy learning algorithm for closed-loop predictive control of a soft robotic manipulator. The forward dynamic model is represented using a recurrent neural network. The closed-loop policy is derived using trajectory optimization and supervised learning. The approach is verified first on a simulated piecewise constant strain model of a cable driven under-actuated soft manipulator. Furthermore, we experimentally demonstrate on a soft pneumatically actuated manipulator how closed-loop control policies can be derived that can accommodate variable frequency control and unmodeled external loads.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://zenodo.org/record/3759636"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.1109/TRO.2018.2878318</dcat:accessURL>
        <dcat:byteSize>3478695</dcat:byteSize>
        <dcat:downloadURL>https://zenodo.org/record/3759636/files/thuruthel2018model.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
21
127
views
downloads
Views 21
Downloads 127
Data volume 441.8 MB
Unique views 21
Unique downloads 113

Share

Cite as