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Abstract
We prove that the Ginzburg-Landau energy of non-constant travelling
waves of the Gross-Pitaevskii equation has a lower positive bound, de-
pending only on the dimension, in any dimension larger or equal to three.
In particular, we conclude that there are no non-constant travelling waves
with small energy.

Résumé

Non existence pour les ondes progressives d’énergie petite
pour ’équation de Gross-Pitaevskii en dimension N > 3. On
démontre que I’énergie de Ginzburg-Landau des ondes progressives non
constantes de I’équation de Gross-Pitaevskii est bornée inférieurement par
une constante positive qui ne dépend que de la dimension, pour toute
dimension supérieure ou égale a trois. En particulier, on en déduit qu’il
n’existe pas d’onde progressive non constante d’énergie petite.

1 Version francaise abrégée

On s’intéresse aux ondes progressives non constantes d’énergie finie pour ’équation
de Gross-Pitaevskii i0,¥ = AU + ¥(1 — |¥]?) dans RY x R, en dimension
N > 3. Les ondes progressives pour cette équation sont des solutions de la
forme U(z,t) = v(xy — ct,x1), 1 = (z2,...,2n), ou la fonction v vérifie
I’équation
ico1v + Av +v(1 — [v]?) = 0 dans R, (1)

Grace aux résultats de Gravejat [3], on peut supposer que la vitesse ¢ de
I'onde progressive est telle que 0 < ¢ < v/2. Le Hamiltonien associé a (1) est
I’énergie de Ginzburg-Landau donnée par
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Tarquini a montré dans [9] l'existence d’une valeur minimale £(N,¢) pour
I’énergie de Ginzburg-Landau des ondes solitaires, qui ne dépend que de la
dimension N et de la vitesse ¢, ce qui implique que les seules solutions possibles
de (1) de vitesse ¢ avec une énergie plus petite que E(N, c¢) sont les constantes.
Béthuel, Gravejat et Saut [2] ont amélioré ce résultat en dimension trois, en
démontrant qu’il existe une énergie minimale £ indépendante de c¢. Dans cet
article on montre qu’il est possible d’étendre ce dernier résultat pour toute
dimension N > 3. Plus précisément,

Théoréme 1.1 Soit N > 3. Il existe une constante positive E(N), qui ne
dépend que de N, telle que pour toute solution non constante v de (1), on ait
E(v) > E(N). En particulier, il n’existe pas de solution non constante pour (1)
d’énergie petite.

2 Introduction

The Gross-Pitaevskii equation i9;¥ = AW + ¥(1 — [¥|?) on RV x R, whose
Hamiltonian is the Ginzburg-Landau energy given by
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appears as a relevant model in several areas of physics: superfluidity, supercon-
ductivity, nonlinear optics and the Bose-Einstein condensation (see e.g. [4, 5, 6,
8]). In this work, we investigate the energy of travelling waves to this equation,
i.e. solutions of the form ¥(x,t) = v(x1 — ct,zy), 1 = (a2,...,2N). Here,
the parameter ¢ € R corresponds to the speed of the travelling waves. Using
complex conjugation, we may restrict to the case ¢ > 0. The equation for the
profile v is given by

icoyw + Av +v(1 — |[v]?) = 0 on RY. (2)

3 Main result

A result of Tarquini [9] states that there exists a minimal value £(N, ¢) for the
Ginzburg-Landau energy of travelling waves, depending only on N and c. This
lower bound for the energy functional implies that non-constant finite energy
solutions of (2) of sufficiently small energy, with respect to their speed, are
excluded in dimension N > 2. Furthermore £(N,c) — 0 as ¢ — /2. This result
has been recently improved by Béthuel, Gravejat and Saut [2] in dimension
three, proving that there exists some universal positive bound for the energy
functional for non-constant travelling waves.

Our aim is to extend the result of Béthuel, Gravejat and Saut [2] in any
dimension larger than three, and therefore also to improve the non-existence
theorem of Tarquini [9]. More precisely, our main result is



Theorem 3.1 Let N > 3. There exists some positive constant E(N), depending
only on N, such that any non-constant finite energy solution v of (2) satisfies
E(v) > E(N). In particular, there are no non-constant solutions of (2) with
small energy.

4 Proof of main result

In dimension N > 3, it follows from [3] that the speed of non-constant finite
energy solutions of (2) satisfy 0 < ¢ < /2. From Lemma 3 in [9], we deduce
that |1 — [v]?|| poo(rr) < K(N)E(U)Z<N1+1>, where K(N) is a positive constant,
depending only on N. Therefore, choosing a possibly smaller constant £(N),
we may assume that v satisfies

inf{|v(z)|,z € RN} > % (3)

We recall that v is a smooth function (see e.g. [1]), and then in view of (3),
v may be expressed as v = pe’?, where p and ¢ are scalar functions, and ¢ is
defined modulo a multiple of 27. Defining also the quantity n = 1 — p?, we have

A2y —2An + 207 = —2A(|Vv]? + 1 — endip) — 2¢0; div(nVe).  (4)

Applying the Fourier transform to (4), we obtain

(&) = L()F(€), (5)

where
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I ©)

N
- - &
F(&) =2Ro(§) — 2y _ 5 |§| £) +2c Z
j=2
Ry = |V’U|2 +772, Rj = naj(p, j € {1,...,N}, and
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Now we recall two results of Béthuel, Gravejat and Saut. The first one
corresponds to Lemma 2.9 in [2], and the second one is an immediate extension
to RV of some part of the argument used in Lemma 2.15 (see inequality (2.65)
in [2]).

Le(§) = (7)

Lemma 4.1 Let v be a non-constant finite energy solution to (2) satisfying (3).
Then,
E(v) < 70|72y

Lemma 4.2 For any 1 < ¢ < oo, there exists a positive constant K(N,q),
depending only on N and q, such that

[E Nl La@ry < K (N, q)E(v)7.



We denote L. the operator given by E/C(f\) = ch, Vf € S(RY). Werecall that in
the case that there exists a constant K such that ||L.(f)||Le@yy < K| fl|Le@ny,
L. is called a Fourier multiplier from LP to LY. We notice that identity (5)
implies that 7 is the value of the multiplier operator associated to L., evaluated
in the function F' given by (6), that is

L(F)=n. (8)

In order to complete the proof of Theorem 3.1, we need the following lemma,
whose proof we postpone to the next section.

Lemma 4.3 Let c € (O,\/i]. For any % <a< % and ﬁ < q < o0,
L. given by (7) is a Fourier multiplier from L? to L9, with % = i + «. More
precisely, there exists a positive constant K(N,«,q), depending only on N, «

and q, such that

ILe()pagay < K (N, a, )| fll oy, Vf € LP(RY). (9)

In view of (8), applying Lemma 4.3, with @ = 72— and ¢ = 2, we deduce
that there exists a positive constant K (N), depending only on N, such that

Illaaem < KODIPY agys (10)
Combining Lemma 4.1, Lemma 4.2 and (10), we conclude that
E(v) < 7 |n|22en, < TEK(N)E(v) 31, (11)

1-2N

Since ¢ € (0,/2], inequality (11) implies that E(v) > (14K(N)) 4 , which
finishes the proof of Theorem 3.1.

5 Proof of Lemma 4.3

Here we use the standard multi-index notation, i.e. if k¥ = (ky,...,ky) € NV,
€=(&,...,6x) €RN then D¥ = 9f* - 9f N |k| = 2V kjand €% = [TV €.

Lemma 5.1 Let ¢ € (0,v/2]. For any k = (ki,...,ky) € {0,131V, m = |k|,
1<m <N, L. is a smooth function on RN\{0} and

k

DFL.(¢) = (12)
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where Py, . is a two-variable polynomial of degree m + 1. More precisely, for
z,y € R,

Poe(m,y) = 1@ 4+ Y as(0)a’y, (13)
1<i+j<m



where {’Ym,i,j}%zl and ., are polynomial functions of the wvariable c. Fur-
thermore, in the case k1 = 1, setting am = Ym.1,0, Bm = Ym,0,1 ond Ap(c) =

70‘m(62)f€m(c), we have
am(c) = (=1)mT122m =1 (1, — 1)1c?, (14)
Bm(c) = (=122 2 (m — 1)Ic? (¢*(n — 1) — 2n), (15)
A () = (=1)™ 122 =2 (1 — 1)(m — 1), (16)

In particular, A, is a well defined and bounded function on (0, V2).

proof 1 The differentiability of L. is immediate. The case m = 1 is checked
explicitly, since we have

28;
(J€]* + 2[¢] — c2€7)?

We fix now m, with 1 < m < N. Let us suppose that (12) and (13) are
valid for some 1 < n < m. We take any r = (r1,...,rn) € {0,1}" such that
|r] = n+1 and define j* = max{l < j < N | r; = 1}. Then j* > 1, and we
consider ¥ = (71,...,7n) € {0, 1} given by 7 = r;(1—8; j+), i,5 € {1,...,N}.
Therefore, |F| = n and we have,

HL(€) = (-l =€ + onalel).  am)

r T1 qT2 TN £T
DL.(§) = 0. (071052 .. .0 Le) (€) = L 7025%)n+2pn+1,c(|§|2,§$),
where
Pn+1,6(|§|2a£%) = QGIPn,C(|§|2af%)(|§|4+2|€|2_02€%)_(n+1)(4|£|2+4)Pn70(|§|2af%)-

(18)
Using this inductive argument, we conclude the first part of the lemma, that
is, identities (12) and (13). In order to deduce, in the case ki = 1, that the
coefficients of lower terms are explicitly given by (14) and (15), we use the
same inductive argument but we replace the polynomial expression (18) by the
following one

n+1
Porre(@,y) = (@24 Y Any(@)a'y’ —Anan(e)r— (2 an () +4(n+1)5,(c))y,
2sz’ij+:j%n
for some {ﬁn,i7j}ﬁj:1, Fn, polynomial functions of the variable c. The formulas
(14) and (15) allow us to finish the induction. Finally we notice that identity
(16) is an immediate consequence of (14) and (15).

An important property that follows from identities (14)-(16) is that for small
values of £, we may compute an explicit bound for P,, ., that is



Lemma 5.2 For any c € [0,v/2] and 0 < |¢| <1, k= (1, ks, ..., kn), m = |K|,
we have | P, o(|€12,€3)] < K(N)(|€]* + 2|¢? — ¢?¢2), where K(N) is a positive
constant depending only on N.

proof 2 The only delicate terms of Py, . to estimate are the ones associated to
|€2 and €2, this is cm(¢)|€|> + B (c)€2. Indeed, the other terms of P, o(|€|%, %)
are easily bounded by K (N)||*, for some constant K(N) depending only on N.
For example,

[ 1.1 (O)ETIEN < 517,111l o, v3 (E1HIEN) < K(N)IE]T < K(N)(€*+21€° ~c*€7),

DN =

where we used that the L -norm in [0, \/5] of the functions v, ; ; only depends
on the dimension. Next we derive the bound for c,(c)|€]? + Bm(c)€2. Denoting
E=ro, where 0 <r <1 and o = (01,0, ) € SN7L, this is equivalent to prove
that

3K > 0,Yc € [0,V2], Yo € [0,1], Vr € (0,1], |am(c)+0%Bm(c)| < K(r?+2—c%0?).
(19)
Using the continuity of au, and B, inequality (19) automatically follows from

3K >0, Ve e [0,v2), Vp € [0,1], |am(c) + pBm(c)| < K(2 —c?p). (20)

We shall prove (20) arguing by contradiction. If (20) were false, there would
exist sequences

K, — o0, ¢, € [07 \/5); Cp > CE [07 \/ﬁ]ﬂ Pn —> P E [07 1]7 (21)

such that
| (en) + pnBm(cn)| > Kn(2 = cipa) > 0. (22)

In particular,
2 —cppn

W32 Tarm (o)  paBon(en)
From the continuity of a,,, and B,,, the denominator in (23) is bounded, so that
(23) implies &p = 2, and hence ¢ = /2 and p = 1. Setting e, = 1 — p, and
Sp = ;—Zg’ we write

~0. (23)

2—c2p, B 1+ 8,2 (24)
|l (en) + pnBm(cn)| [Am(cn) = snBm(cn)|

Passing possibly to a subsequence, s, — 3, with 5 € [0,00]. We note from
Lemma 5.1 that B, and A\, are bounded functions of c. If § € [0,00), we take
the limit in (24), so that in view of (23), we deduce that 5 = —3, which is
a contradiction. We may handle the case § = oo in a similar way, with the
difference that we first divide the numerator and the denominator of the r.h.s.
of (24) by s,. Then passing to the limit, we deduce that ¢ = 0, which gives us

again a contradiction.




Now we are able to deduce an uniform bound (with respect to the speed)
for L..

Proposition 5.1 Let ¢ € (0,v2] and k = (ki,ka,...,ky) € {0,1}, with
|k| < N. Then for any |£| > 1,

K(N)

|IDFL.(¢)] < Wv

(25)

and for any 0 < [£| < 1,

KN
(€17 + 2IeP — 2D

[DFLe(6)] < (1= kIl + ka(le* + 21€P - ¢%€D))

(26)
where K(N) is a constant depending only on N.

proof 3 From (12) and (13), with m = |k|, we conclude that for any |¢| > 1,
| DELe(€)] < K(N)IE[ =~ P (€], €1)] < K (N) |7 e,

which proves (25). To derive (26), we note that in view of (12), it is enough to
prove that for any 0 < [§| < 1,

[P c(1€1%,6D)] < K(N)((1 = k)IE]7 + k(|6 + 21¢)° = 2€5)). (27)

If k1 = 0, inequality (27) is trivial. In the case ki = 1, this bound corresponds
ezactly to Lemma 5.2.

proof 4 (Proof of Lemma 4.3) Firstly, we notice that the condition N > 3
implies 0 < a < 1, so that the set of valid pairs p > 1 and q > 1 is not empty.
From Proposition 5.1 we conclude that, for any |§| > 1, k = (k1,...,ky) €
{0,137, [k < N,

a K(N)

[T1gi1°4% | D Le(e)] < e Na < K(N), (28)

j=1
provided that o < %, for some constant K(N) depending only on N. On the
other hand, if 0 < |§] < 1, we set & = ro, with r > 0 and ¢ = (01,0,) €
SN=1. Then we have that |£;| < r|oL|, for any j € {2,...,N}, and also that
€)1+ 2[€]2 — 2¢2 > 12 (r? 4+ 202), for any c € (0,V/2]. From (26), we conclude
that

p2(IEl=ki 1) +aN |5 | [a(N=1)+2( k| =k1)

r2(F=ki+1) (42 4 202 )K=k +1

N
[T1&1°+ [P Le(€)] < K(N)

j=1
< K(N)max{r, o [}*CN=D=2 < K(N), (29)



for any k = (ky1,...,kn) € {0,1}V, |k| < N, on condition that o > —2NQ_1.

Finally, from (28) and (29) we have that for every ﬁ <a< %,

sup{|&f' T - e TODRL(E)], € e RV\{0}, k€ {0,1}Y,[k] < N} < K(N),

and therefore Lemma 4.3 is now an immediate consequence of Lizorkin’s multi-
plier theorem (see e.g. [7]).
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