Hardware-in-the-loop Testbed for Autopilot Development
using Flight Simulation and Parallel Kinematics

Stephan Schulz, Hagen Hasberg and René Biischer

Faculty of Engineering and Computer Science, Hamburg University of Applied Sciences,
Berliner Tor 7, D-20099 Hamburg, Germany
{stephan.schulz, hagen.hasberg, rene.buescher} @haw-hamburg.de

Keywords:

Abstract:

HIL Simulation, Flight Simulation, Unmanned Aerial Vehicles, Robotics, Inertial Sensors

This paper presents a testbed for Hardware-in-the-loop stimulation of flight controllers and their sensors in a

real-time simulation environment. The framework is especially designed for the development of flight control
systems for small unmanned aerial vehicles. The testbed integrates the real-time stimulation of motion sensors
by a Stewart platform using the attitude of the simulated aircraft from a real-time flight simulation. Compared
to an isolated HIL simulation of a flight controller, this methodology allows simultaneous closed-loop testing
of an embedded system with sensors and a flight controller. The robustness of the testbed with a self-developed
flight control system for different sensors will be demonstrated in this work. The testbed of a flight simulator
with a remotely controlled motion platform will be characterized regarding timing considerations. The appli-
cability for autonomous virtual flight testing using waypoint navigation with a real-time flight controller will

be demonstrated.

1 INTRODUCTION

Within the last decade, unmanned aerial systems
(UAS) were introduced in a broad range of industrial
and civil applications. Besides military applications,
numerous civil use cases were developed. The UAS,
as a mobile sensor platform, is mainly driven by re-
mote sensing and monitoring capabilities of the ver-
satile payloads. Multispectral detection and imaging
combined with georeference data were used in inter-
disciplinary tasks in the fields of agriculture, archae-
ology, and photogrammetry. Especially for critical
environmental tasks as pollution or fire monitoring,
UAS has been adopted. Flight operations by drones
transporting medical supplies in sparsely populated
areas show a vital contribution to public health ser-
vices. Future industrial applications require a stronger
focus on the reliability and the safety of UAS (Kum-
mer et al., 2014). The upcoming autonomous oper-
ations of small unmanned aerial vehicles (SUAV) in
urban areas, such as delivery drones, is a demanding
task that requires a stronger focus on safety-critical
systems.

The model-based design approach enables an en-
hanced quality of testing by using hardware-in-the-
loop (HIL) simulations as a development step (Sam-
paio et al., 2014), (Guo et al., 2020), (Cai et al., 2009).

The reproducible stimulation of an isolated system
component, i.e., an inertial sensor unit, interacting in
the higher-level function chain, is fundamental for the
operational system. In case of a failure, the integra-
tion of redundant sensors supports the reliability of
systems operation. Additionally, the complexity of
flight electronics is scaled up due to enhanced mis-
sion requirements. Ensuring the safety and security
of more complex autonomous systems should be real-
ized by extended verification and validation in virtual
environments on a broader scale. Such virtual envi-
ronments allow HIL tests of critical electronic com-
ponents (Bittar et al., 2014), (Pizetta et al., 2016).

In general, HIL verification and validation of
flight control algorithms and sensors with a focus
on reliability and safety result in a significant re-
duction of development time and cost (Lepej et al.,
2017), (Kang et al., 2019). Despite the substan-
tial costs, HIL testing of flight electronics is an es-
tablished and mandatory process in the development
of safety-critical systems in larger aircraft (Pradipta
etal., 2015), (Pradipta et al., 2013), (Yoo et al., 2010).
The recent adaption of SUAV in safety-related tasks,
like the operation in urban areas, requires HIL test
infrastructures for SUAV embedded systems and sen-
sors.

In actual HIL environments, mostly an isolated

flight control unit (FCU) is probed as a main com-
ponent. HIL testing of the FCU for attitude control
is realized for different scopes: In a static test case,
HIL tests for a SUAV stimulate the FCU to optimize
parameter tuning of attitude control algorithms (Paw
and Balas, 2011), (Nguyen and Ha, 2018). Dynamic
HIL testing of the FCU is realized by the stimulation
of real-time sensor input and monitoring the output
for the flight actuators (Khaligh et al., 2014). The in-
tegration of a self-developed FCU based on a FPGA
in a HIL flight simulator environment was demon-
strated but is not shown. In addition to that, HIL real-
time attitude testing of an UAV combining the FCU
with flight actuators shows the applicability for flight
conversion from helicopter and airplane mode (Yoo
etal., 2010). Obviously, HIL testing of FCU has been
established in UAV development over the last decade.

In our work, we extend the HIL testing of an iso-
lated FCU using a 6-DOF Stewart platform (Stewart,
1965) to stimulate the inertial sensor for attitude con-
trol of the SUAV in a flight simulation. The kine-
matic platform mimics the SUAV attitude from the
flight simulator in real-time. The inertial sensor de-
tects the orientation of the platform and generates a
sensor input for the FCU. The FCU stimulates the
control surfaces of the simulated SUAV, which con-
trols its attitude. The demonstrated HIL testbed is
validated with several sensors and simulated flights
defined by waypoint navigation. The flight trajec-
tory will be compared to an isolated HIL testing of
the FCU. In the following sections, simulations in-
corporating the Stewart platform are called extended
hardware-in-the-loop (HIL). In test cases without the
platform, the term processor-in-the-loop (PIL) simu-
lation is used.

2 SIMULATION ARCHITECTURE

The simulation architecture is composed of 4 main
system components and is designed for real-time op-
eration. In terms of timing, the pace of the simulation
run is driven by the flight simulator. The other compo-
nents are the Stewart-Gough kinematic platform, the
inertial sensor (IMU), and the embedded flight and
mission controller. The simulation architecture ar-
ranged as a control loop is shown in Fig. 1 with a
color-coded (blue) device under test (DUT).

The flight simulator simulates the physical model
of the fixed-wing SUAV, broadcasts the motion and
the pose estimation, and receives the control values
of the control surfaces from the embedded autopi-
lot. The Stewart-Gough platform converts in real-time
the virtual attitude into a real attitude. This attitude

a b| Flight and Mission | | Flight d
—>0—> > >
A Controller Simulator v

e
_h Inertial g| Stewart f
Measurement Unit Platform

Figure 1: Simulation architecture control loop: (a) mission
waypoints, (b) flight path based on current pose information
(mission controller), (c) autopilot controls, (d) aircraft state,
(e) aircraft state w/o roll and pitch, (f) roll and pitch stimuli,
(g) kinematic motion stimulus, (h) measured roll and pitch
by inertial sensor.

is measured by an inertial sensor, which is mounted
close to the center on the kinematic platform. The
embedded flight and mission controller reads the at-
titude from the inertial sensor in Fig. 1 (solid line).
Other pose information like positions, accelerations,
and velocities are received from the flight simulator in
Fig. 1 (dashed line). The embedded system calculates
the control values for mission navigation and sends
the control values to the flight simulator. The setpoint
of the control loop is represented by the external pa-
rameters, mission information, and waypoints. There-
fore, the simulation is driven by the flight simulator,
but the inputs are provided by the mission controller.

The simulation architecture is suited for rapid pro-
totyping and testing of the flight system components
under development. With this HIL testbed, the val-
idation of these components can be demonstrated
through measurements in the lab. Besides inertial sen-
sors, the motion platform is capable of being used as
a stabilizing platform for different DUT of various
kinds, i.e., various payload configurations or gimbals.
Since the simulation operates in real-time, testing can
be performed with real flight dynamics. In contrast to
flight tests with limited duration, the HIL test shows
its substantial advantage of reproducibility and accu-
racy without constraints as limited flight time or posi-
tional limits. The simulation architecture can also be
used to test or validate different algorithms for flight
control. Through the nature of real sensors, it is capa-
ble of providing a testbed for the DUT with noise and
jitter. The motion stimulation of the DUT is repro-
ducible for different test cases, so real flight attitude
and inertial flight states are simulated in the labora-
tory setup.

Even more complex popular flight controllers
in the field of SUAV are designed as embedded

systems with monolithic architectures (Navio2™,
Pixhawk™), combining the flight control hardware
with various sensors for the estimation of position and
orientation. The integrated sensors are tightly coupled
to the flight controller logic providing a fixed spatial
reference. Therefore, individual and isolated tests are
prevented, and the system design forces them to per-
form measurements and experiments in conjunction
only. The simulation architecture presented here is
capable of testing these hardware components in iso-
lation. This allows real-time system tests with real
noise effects from the dynamics and the environment.
Filter optimization for initial configuration is inte-
grated into the development phase of the DUT with
the advantage of high reproducibility because of the
HIL setup. In Processor-in-the-loop (PIL) mode with-
out including the motion platform, the possibilities for
test cases that do not need real attitude mapping are
equally vast. The simulation architecture allows the
testing of avionics that are interconnected with a bus
system, redundant components, and reconfiguring the
authorities with that system in real-time or comparing
different architectural approaches in general.

3 EMBEDDED FLIGHT AND
MISSION CONTROLLER

The embedded system (Fig. 2), which is used in this
setup, consists of a flight controller, a mission con-
troller, and also a communication module which in-
teracts with the simulation environment (see Section
5). The flight controller represents the autopilot and
is responsible for attitude, speed, heading, and al-
titude control of the fixed-wing SUAV. In the con-
trol cascade, the mission controller prevails over the
flight controller for navigating the fixed-wing SUAV
through a series of waypoints. The setpoints calcu-
lated by the mission controller are processed by the
flight controller loop. This represents a common di-
vide and conquer scheme for UAV control strategies
(Elkaim et al., 2015).

The embedded flight control system is an in-
house development. With the help of the simula-
tion infrastructure, the system performance is vali-
dated and verified. Furthermore, a self-developed
flight control system ensures maximum flexibility for
parameterization to reach a comprehensible and re-
producible stimulation of the simulation environment.
The flight controller of the embedded system is orig-
inated from a mathematical model which is based on
a PID controller cascade. To implement the mathe-
matical model Mathworks Simulink™ is used. With
Simulink the functionality of the model using model-

Mission
Controller
Altitude .
Heading Aircraft
Speed State
v v
Flight
Pitch Controller Aircraft
Roll Autopilot State
Controls
Sensor Workstation
Interface Interface

Figure 2: Embedded Flight and Mission Controller: The
system components in the HIL setup and the directional sig-
nal flow with different data structures are color-coded.

Lateral
Motion Controller

Heading with Roll

Flight Envelope

Longitudinal '
Protection

Motion Controller

Altitude above MSL |——()—>] 1;'[(1}11
A (o)

Autopilot
Controls

Speed
Controller

Throttle

Figure 3: Flight Controller Design: The subsystem compo-
nents supply the superior moduls for flight envelope protec-
tion, pitch, and roll with preprocessed data for the autopilot.

in-the-loop (MIL) simulation was proven. The model
was translated into platform-independent and certified
C code by Mathworks Embedded Coder™. The gen-
erated code was implemented successfully on differ-
ent hardware platforms, like STM32 or AVR proces-
sors. The mission controller was programmed in C
and is not a part of the Simulink model. Both mod-
ules, the flight and mission controller, were integrated
into the embedded system and optimized in higher-
level test cases.

3.1 Mission Controller Characteristics

The mission controller is configured with the mission
data, which is provided as a list of waypoints. Further-
more, the controller is responsible for the navigation

between these waypoints. The mission data is an ex-
ternal input for the controller, which processes step by
step as target points. Therefore the mission controller
calculates the required directions based on the pose
information to navigate to each waypoint. The mis-
sion controller decides whether a waypoint has been
reached to complete this individual mission task. A
waypoint is considered as reached when a projected
radius limit calculated from the current to its specific
target position is achieved. The input parameters are
the pose information from the flight simulator, a list
of waypoints, and the data from the attitude sensors,
which is checked by the HIL simulation environment
to override the inertial flight states from the flight sim-
ulator. The output parameters are heading, speed, and
altitude, which are the input parameters for the flight
controller.

3.2 Flight Controller Characteristics

The flight controller (Fig. 3) uses the setpoints pro-
vided by the mission controller and calculates generic
control outputs for attitude control of the SUAV in
each step. These outputs are scaled control values in
the range [—1, 1], which are mapped to the control sur-
faces of a specific aircraft by the flight simulator. The
value range of the attitude can be limited by config-
uration, so that a certain flight envelope for roll and
pitch cannot be exceeded. The flight controller cal-
culates the generic control output on the basis of six
concurrent controllers. These controllers operate con-
currently and follow a single-responsibility paradigm.
These responsibilities are lateral motion control, lon-
gitudinal motion control, speed control, pilot input,
aircraft damping, and flight envelope protection.

Each module has different operation modes. For
example, the module for controlling the longitudinal
motion is allowed to alter pitch angle, climb rate, or
altitude as setpoints to steer the SUAV. In this par-
ticular case we use a small subset of the available
functions only. The lateral motion controller con-
trols the heading of the SUAV and the longitudinal
motion controller the altitude. The airspeed is deter-
mined by the speed controller. Figure 3 shows the
modules with their respective setpoints used in our
experiments. The mission controller calculates the re-
quired altitude, direction, and airspeed to reach the
next waypoint. These values will be transferred from
the mission controller to the flight controller, which
calculates the required control values for the control
surfaces and engines to carry out the mission.

Figure 4: Stewart-Gough Platform

4 KINEMATIC PLATFORM
DESIGN

The aircraft’s attitude is calculated by the flight sim-
ulator and provides the real-time data for the ma-
nipulation of the motion platform. A parallel kine-
matic platform with 6 degree-of-freedom (6-DOF) in
a hexapod configuration is used for independent trans-
lational and rotational motion in each direction. Be-
cause the parallel kinematic platform represents the
flight attitude of the SUAV in real-time, the HIL sim-
ulation allows joint tests of the flight controller to-
gether with sensors for inertial navigation. An inertial
measurement unit (IMU) is positioned on the motion
platform for the measurement of the real-time flight
attitude and is transferring the data to the flight con-
troller.

A Stewart-Gough platform design (see figure 4)
is used because of its rigidity, precision, and quick
response in all directions, whether an independent
or combined linear or angular movement is required
(Furgan et al., 2017). The motion constraints are
defined by the geometry of the platform. The con-
trol software of the 6-DOF platform allows individual
mapping of the data provided by the flight simulator
to arbitrary linear combinations of the platforms mo-
tional axes.

4.1 Operation

The algorithm for calculating the servo angles
was developed in Matlab and translated with
Matlab™Coder into platform independend C code.
The control software is based on an algebraic deriva-
tion of the required angular positions of the servo
motors with an exact solution. All specific mechan-
ical variables are taken into account to obtain the
corresponding motor positions for each required po-
sition of the platform head. The platform is based
on a mechatronic design with rotary drives (Stewart,

4] ABSLink StewartPlatiorn_ -

|
| —
| — Stewart Platform
| —- Control & Simulation
A Hamburg
X « > 2
|
Y « » 2 I
< I —)
2 — g w0 |
Roll [] | 200
N
Pitch « 5 o 100 n
Yaw « >) o

Al units are in [mm] and [-100

Motion Sequences

Surge Sway Circle
Roll Pitch Yaw [__Pivot |
5S4,

HAW Hamburg, WS1 bsstian Lau and Sven Gompers

Figure 5: GUI for controlling and simulating the platforms
motions.

1965) in order to achieve a small volume of the over-
all mechatronic system with the required position-
ing speed of the cost-effective drives and an optimal
workspace coverage (Majid et al., 2000). A graphical
user interface for manually controlling and simulating
the platform is shown in figure 5.

The platform is controlled by a low cost embed-
ded system (embedded Motor Control Unit, eMCU)
which is located within the base of the platform. The
motion is generated by COTS model-grade servos
controlled using PWM. The connection between the
host PC and the embedded Motor Control Unit is real-
ized via UART. The eMCU accepts two different sets
of parameters. First, the raw servo angles can be sent.
This is useful, when the Matlab based control soft-
ware shall be used on the host PC. The second option
is to send the three rotational and translational control
values. In this case, the servo values are calculated
within the eMCU by the generated code.

The platform was assembled by hand. This re-
sults in rather inaccurate screw and strut placements.
Hence, a static offset calibration without dynamic mo-
tion has to be performed. This was done by adjusting
the neutral points of each servo in a levelled position.
The calibration was done relative to the gravitational
field of the earth measured by the inertial sensor. This
can result in a systematic error, since the calibrating
was not done in respect to the platforms base. In the
case of an inclined base, a constant offset error with
the magnitude of the inclination could decrease the
long term performance significantly.

4.2 Delay Measurements and Rotational
Dynamics

For the initial characterization of the kinematic plat-
form’s dynamical performance, its step response was
measured. The process was controlled by an embed-

0 1 2
time /s

Figure 6: Time-dependent step response of the kinematic
platform for a tilt of 5° in a specific direction: The com-
mand is shown in blue, the response in red. The small de-
viation in the shape of the response curve at the end of the
movement is due to timing considerations.

ded system explicitly implemented for this task. Us-
ing a dedicated embedded system ensures that this
measurement is done as close as possible to the plat-
form, and no other timing delays like communica-
tion to a PC-based host system distort the measure-
ments. This embedded system held the platform in
a leveled position to ensure a steady-state. After a
couple of seconds, a step function of 5° in the roll
axis results in a moving platform with a time delay of
about 80ms (Fig. 6). The final position is reached af-
ter roughly 280ms. The steepest slope determines the
maximum rotational velocity of the platform of about
65°/s. This measurement estimates the suitability of
the platform for HIL flight simulation.

Because of the parallel kinematics design, a spe-
cific platform tilt in a direction with different heading
requires a new set of trajectories for the manipulators.
In the measurement, a small deviation in the shape of
the curve occurs, shortly before the maximum rota-
tion is reached. This deviation from the ideal move-
ment is caused by non-synchronized servo control.
The control software computes the servo output val-
ues with an asynchronous point-to-point motion, due
to the sequential data transmission and the constant
rotational speed of the servos, there are minor devia-
tions in the time each servo arrives at the target posi-
tion. This behavior results in motions, where rotation
in a single motional axis is shifted to another for a
short time. Without synchronous compensation in the
motion planner algorithm, this behavior is inevitable.
Further consideration shows only a small impact.

S HIL TESTBED SETUP

The simulation framework consists mainly of the
flight simulator and a software bus. The flight simula-

tor calculates the motion and pose information of the
simulated SUAV. The distribution of this information
represents the central clock of the testbed. Therefore,
the simulation rate is bound to the framerate of the
flight simulator. The communication backbone of the
simulation framework is the self-developed AESLink
software bus (Airborne Embedded Systems Link).
All messaging between the different modules of the
simulation is realized using this communication bus.

5.1 AESLink Software Bus
Characteristics

The AESLink software bus was specifically designed
for distributed messaging between integrated or spa-
tially separated modules in a distributed flight system
(Hasberg, 2014). The software bus defines the mes-
sages and their formats. On the host side, it’s based
on an UDP-multicast network, enabling simulation
runs on distributed workstations. The unified message
format allows arbitrary embedded systems to partici-
pate in the simulation. This is done through several
proxy applications, which convert the UDP messages
to and from the physical interfaces supported by the
embedded systems, like UART, CAN, or SPI. Since
standard PCs usually don’t support these interfaces,
COTS USB converters can be used. AESLink speci-
fies several message types with its main ones:

o Aircraft-State: Calculated by the flight simulator.
Contains pose information like position, attitude,
acceleration, velocity, etc.

e Autopilot-Controls: Calculated by the autopilot.
Contains control values for the aircraft, i.e., roll,
pitch, throttle, or yaw control.

The messages define their content, but they are
not fixed to any specific application. The sources and
sinks of the messages can have any arrangement in
the overall setup.

The simulation framework consists of several ad-
ditional applications and functions. These are for ex-
ample a SIL-Autopilot that implements a flight con-
troller in a desktop application, a logging application,
a replay application, or a packet simulator. These
applications support a rapid prototyping development
process because of its debugging and reproducibility
features. As stated above, the component instantia-
tions are not constrained to particular systems. The
functionalities can be placed in arbitrary locations
within the network, host, or in an embedded system.

Nonetheless, there is a typical flow of information,
where the flight simulator is the source of aircraft-
state messages and a sink for autopilot-control mes-
sages. In the current state of development, X-Plane,

Flight f Platform k Motor
Simulator Controller Control Unit
€.]
Y !
C Data Recorder | 1 1
—> . . |
and Visualizer |
1
| : Rotary
UART Workstation | Actuators
Proxy Embedded E Stewart
ol |e System 1 Platform i
¥ | 1
Flight and Mission ! Inertial
Controller h | Sensors

Figure 7: Testbed Architecture: The modules are assigned
to the systems Stewart platform, embedded system and
workstation. The platform controller and the UART-proxy
are used for data distribution and translation. The interfaces
for data transfer ¢y, ¢p, €4, €p, f, k, m, n, and h connect the
modules of th real-time system.

AeroSimRC, and the packet simulator can be used as
a flight simulator. An interface for Simulink based
flight dynamic models is implemented. Autopilot-
controls messages are typically generated and sent
by components, which implement flight controller
functionalities. These are a real-time version of the
flight controller presented in section 3.2 running in
Simulink (MIL), the SIL autopilot host application,
or several embedded systems interfaced by the de-
scribed proxy applications. This shows the flexibility
of the framework since an autopilot can be instanti-
ated in Simulink (MIL), as a workstation application
(Software-in-the-loop, SIL) or in an embedded sys-
tem (PIL, HIL), which are based on an FPGA or on
microcontrollers like STM32- or AVR-based types.
Other utility applications that were developed include
real-time logging, plotting, replay, and a display ap-
plications. These tools greatly enhance the flexibility
and capabilities of the software bus.

5.2 AeroSimRC Flight Simulator

In principle, everything that calculates the dynamic
model of a SUAV can be denoted as a flight simu-
lator, whether it is a workstation application, a real-
time Simulink model, or an external full-scale flight
simulator. For the AESLink software bus, X-Plane,
AeroSimRC, and Simulink real-time models are sup-
ported.

In this work, the commercial PC flight simulator
AeroSimRC was used. This simulator is specifically
designed to simulate model aircraft. These compare
better to SUAVs than full-sized aircraft. The low iner-
tia and high agility of model aircraft suit the require-

ments for the experiments. For this reason, we de-
cided to use AeroSimRC over X-Plane for calculating
the dynamic model of the SUAV. The flight simulator
was extended via a plugin. This plugin connects the
simulator to the software bus and lets it participate in
the AESLink simulation framework.

In every frame-cycle, an aircraft-state message
containing the motion and pose information is broad-
casted, and an autopilot-controls message containing
the control values for the control surfaces is received.
The simulator uses the received controls instead of the
inputs from the keyboard or joystick for its calcula-
tion of the next frame-cycle. The plugin allows the
framerate of the simulator, and therefore of the sim-
ulation overall, to be adjusted at runtime. The HIL
experiments were realized at 60 frames per second.

5.3 Testbed Architecture

The system architecture of the testbed (Fig. 7) al-
lows different types of simulation. Here, PIL and
HIL simulations were realized. The infrastructure can
be divided into the three areas Stewart platform for
dynamic stimulation, Embedded System representing
the flight system, and Workstation for the simulation
regarding the interaction of the SUAV with the envi-
ronment.

In a PIL simulation, the flight simulator is the
central component: It simulates the behavior of
the SUAV interacting with the environment, period-
ically broadcasts its state (e,) and receives autopilot-
controls. The flight simulator allows manual inputs
with the keyboard, but this option was omitted dur-
ing the simulation runs. The UART-Proxy application
converts the UDP messages sent by the flight simula-
tor into a serial stream of bytes and sends the data to
the embedded flight and mission controller (ep). The
embedded system receives the data and runs its al-
gorithms. The mission controller does the navigation
and path planning. The flight controller calculates the
required control values to follow the calculated path
flight. The calculated control variables are encapsu-
lated in an autopilot-controls messages and are sent to
the UART-Proxy (cp). From there on, the data is con-
verted to an UDP message and sent to the flight sim-
ulator (c,). The flight simulator receives the data and
uses them for the next simulation step, which closes
the control loop. For debugging and reproduction pur-
poses, the simulation is being recorded and plotted in
real-time.

The HIL simulation extends the pure virtual elec-
tronic loop. Here, the roll and pitch angles are no
longer provided by the flight simulator directly. In-
stead, they are read from the IMU, which is mechan-

J) AESLink StewartPlatform — =RE X

-

COM Port Simulation
[coms ~| Pot [115200 | Baudete

Show Simulation
| Discornect and Reset | | Connect and Start |
AESLink / Flightsimulater Communication
Mods [X.Y,Z=0; Roll =Roll. Pich=Pich: Yaw=0 -
Framerate |50 = /| Listen for AESLink Messages
Servo Angles [] Desired Attitude fmm] and [7]
50 « r 94 X « v| 13
51] v 60 Y] ol =
52 [l r 87 Z [l r -12
53] v 107 Roll <« ol 7
54 [l r 162 Pitch « K2
55 ‘ o124 Yaw ¢ ol =

Figure 8: Platform control desktop application: The self-
developed allows direct positioning of the servo angles for
system checks, and direct attitute control for simulation pur-
poses. Different modes were implemented for a config-
urable allocation of phase-space variables.

ically mounted on the platform. Since the software
bus works in a multicast fashion, multiple applica-
tions can receive the broadcasted messages. For ef-
ficient control of the kinematic platform with the data
from the software bus, a desktop application was de-
veloped (Fig. 8). This platform controller takes the
pose information (f) and maps them to the axis of
the Stewart platform. The mapping is not static and
can be adapted in any way, e.g., acceleration, veloci-
ties, and magnetic fields can be mapped to any rota-
tional or translational axis. For our tests, the roll and
pitch angles from the simulated SUAV where directly
mapped to the roll and pitch axis of the platform.

The axis values are sent via a serial connection (k)
to the motor control unit (MCU), which is embedded
in the base of the platform. The embedded MCU cal-
culates the servo rotation angles, which are needed to
positioning the platform and, e.g., to mimic the atti-
tude of the simulated SUAV. The servos are fed with
the values via standard pulse width modulation ().
The resulting motion of the platform takes effect on
the inertial sensor (7). The values for roll and pitch
(h) are read by the flight and mission controller and
used for its calculation. The remaining motion and
pose information is still received from the flight sim-
ulator (ep), only the roll and pitch values are replaced.
Similar to the PIL simulation, the calculated control
values of the autopilot are sent back to the flight sim-
ulator closing the control loop.

5.4 Testbed Latencies

The latencies in a complete system cycle are essen-
tial parameters for the applicability of the HIL testbed

Table 1: Delay measurement of the autopilot response
times: Dependent on the simulation mode, reaction times
of the system were measured. The signal path shows the
data flow (Fig. 7).

Mode Signal path | Reaction time
SIL €aCa <1ms

PIL €2€bChCa ~22ms
HIL/SP | fkmnhcyc, | “121ms

using virtual flight testing. For the latency estima-
tion, time delays for a closed cycle from a command
sent to the reaction detected by the FCU were mea-
sured. Therefore, the time to respond and react to a
step function in the pose information is analyzed. The
analysis of the response times of the testbed in Table 1
shows increasing values for SIL, PIL, and HIL config-
urations as expected.

The SIL mode demonstrates that the host-only
UDP-based software bus does not introduce any sig-
nificant latency to the framework. In PIL mode at a
baud rate of 250kBaud, the predominant portion of
the 22ms latency is introduced by the transmission
over the serial connection. If we assume the signals
at k and e;, as well as e and ¢ need the same amount
of time (Fig. 7), the connections m, n and A introduce
roughly 100ms of latency. The signals at m, n, and h
span the calculation of the servo angles and the con-
trol of the servos, the generation of momentum, and
the movement of the platform as well as the stimula-
tion and sampling of the IMU. This time is roughly
equivalent to the step response of the kinematic plat-
form (Fig. 6). Both results show a response time in
the order of 80ms to 100ms. The results show that the
time behavior of the HIL simulation is not adversely
affected by additional individual components.

6 SIMULATION RESULTS

The applicability of the HIL simulation using the
presented testbed architecture is analyzed with simu-
lated flight operation of a SUAV. The real-time capa-
bilities and the accuracy of the extended HIL simula-
tion using the Stewart platform are validated against
the PIL simulation without any stimulation of the in-
ertial sensor system based on the integrated FCU.
The direct comparison of the flight path based on
the extended HIL and PIL configuration for a prede-
fined list of waypoints is a full-scale test case for the
testbed. All noise and propagation delays are adding
up in time to an upper bound representing a deviation
caused by the motion stimulation.

Initially, internal and external calibration proce-
dures for the kinematic platform itself and the iner-

tial sensor mounted on the kinematic platform are re-
quired. At first, a static calibration of the servos com-
pensates the mechanical deviations of the platform to
minimize position and attitude error (section 4.1). A
fixed position and orientation of the inertial sensor on
the platform is not required due to the second cali-
bration step. In the dynamic calibration, the orien-
tation of the internal coordinate system of the sensor
is detected and virtually aligned to the motion axes
of the kinematic platform to minimize stimulation er-
rors. A delay measurement of the platform was re-
alized to get an estimation of the platform’s dynamic
response. The results are shown in sections 4.2 and
5.4 and indicate that the system meets the required
timing constraints. To validate the capabilities of the
testbed for the task of carrying out an SUAV mission,
we compared the performance of the extended HIL
simulation to the PIL mode. The results are presented
in section 6.2.

6.1 Dynamic Calibration

Stimulating the sensor by the Stewart platform re-
quires precise knowledge of the mechanical deviation
of the rotational motion axis. A deviation in the ori-
entation between coordinate systems of the platform
and the IMU results in an increasing error over time.
The measured state diverges from the proposed state
of the simulated SUAYV, and this error accumulates
over time. To minimize the error, the roll and pitch
axis systems have to be aligned by a rotation matrix,
which is determined by a dynamic calibration algo-
rithm. The calibration process maps roll, pitch, and
yaw axes of the inertial sensor to the axes of the Stew-
art platform. Because of the motion characteristics of
the parallel kinematic platform, any orientation of the
coordinate system can be used as a zero position. The
calibration process is generalized for this method, but
individual in terms of the offset values for each iner-
tial sensor. The sensor can be mounted in any orien-
tation. The calibration process defines the mapping
between the orientation of the inertial sensor and the
axis of the platform. The process also compensates
for possible misalignments in the mounting.

A detailed explanation of the calibration process
follows. The initial orientation of the inertial sen-
sor is arbitrary. As stated above, we assume that the
platform is calibrated in regards to the servo control
inputs. In other words, the axis of the platform are
aligned to the axis system of the flight simulator. For
the calibration of the mounted sensor, we define a
cartesian coordinate system. One of the axes (here
roll) gets stimulated with a sinusoidal motion. If the
axis of the sensor and the platform are not collinear,

0 time / seconds 50

Figure 9: Example of external calibration signals: The plat-
form is stimulated on the roll axes (A), and the roll angle
(B) are measured with the pitch angle (C). The pitch angle
is used as an error signal, which vanishes once the orienta-
tion of the platform and the inertial sensor is aligned.

other axis get stimulated as well. Figure 9 shows this
behavior. Through misalignments of the sensor, not
only the roll axes (red) is stimulated, the pitch axes
(green) is affected as well. To compensate for this
misaligned we can mathematically rotate the axis sys-
tem of the sensor until the measured stimuli of the
other axis are minimized. After the virtual rotation,
only the desired axes gets stimulated. This ensures
that the outputs of the inertial sensor is aligned to
the axis system of the flight simulator. This is nec-
essary for long time stability of the system, since oth-
erwise the errors in the simulated and measured pose
information would drift and produce a large differ-
ence between the PIL and the extended HIL simu-
lation. This calibration procedure can be automated
and completes when the error reaches it’s minimum
value. It results in a high precision, since the cal-
ibration is done over a long time period and the fit
is calculated from a significant amount of measured
data points. This calibration process correlates to an
offset calibration for inertial measurement systems in
aircraft systems (Magnussen et al., 2012).

Virtually rotating the sensor axis system results
in creating collinearity with the platforms axis sys-
tem. To find the rotation parameters, the roll axis was
stimulated with a sinusoidal motion with a magnitude
of 20 degrees around the leveled position. The sys-
tem was stimulated with 10 periods in a total time of
25sec.

The calibration process was successfully realized
with several sensors like a VectorNav VN-200, a
Bosch BNOO0S55 and a MicroStrain 3DM-GX2. Fig-
ure 9 shows the uncalibrated signals of the roll (red)
and pitch (green) axis from the VectorNav VN-200.
The pitch axis shows a severe misalignment, since it
gets stimulated as well. The residual error in the ro-
tation offsets were determined using the least square
optimization. The pitch axis was rotated in discrete
steps. The steps had a magnitude of 10 degree around

zero and a step size of 0.01 degree, which is suffi-
cient within the mechanical accuracy of the platform.
In every iteration, the error was calculated using the
squared norm. Plotting the error results in a parable.
The polynomial nadir represents the angle that pitch
has to be rotated around. This results in the smallest
stimulation of the pitch axis, when actually only roll
shall move.

The calibration process described above was done
for the pitch and the yaw rotational axis. For all sen-
sors we found that there is a delay induced by the
sensors, probably through their internal filters and dy-
namic behaviors. The calibration process produced
reproducible results for all sensors. For the VN-200
which we used in our experiments, the pitch offset
yielded in -0.52 degrees with an error of <0.17%, the
yaw offset in -0.44 degrees with an error of <0.08%.
The measured accuracy of the motion platform is suf-
ficient for the sensors used in the simulations.

6.2 Flight Path Measurements

The flight path measurements are the central element
to present the qualification of the extended HIL simu-
lation in comparison to the PIL mode. The flight sim-
ulator is used to generate the stimuli for the motion
platform. It is controlled by the mission and flight
controller to generate reproducible flight paths. In
this setup, the system can also be used for the devel-
opment and test of stabilized components, like gim-
bals. The flight path of the extended HIL simulation is
compared to the flight path of the PIL simulation. The
differences in the simulation results are discussed in
this chapter. The flight measurements were performed
with different inertial sensors. The presented results
of the extended HIL flights were recorded with a Vec-
torNAV VN-200. The whole flight data was obtained
from the flight simulator while the attitude was sent to
the motion platform. The platform stimulates the in-
ertial sensor, whose values will be read and processed
by the mission and flight controller.

The simulations were executed with the flight sim-
ulator AeroSimRC with an update rate of 60 Hz and a
Trainer 40 fixed-wing model aircraft. The flight path
is predefined as a list of waypoints. These points are
used by the mission controller to navigate the simu-
lated SUAV. The calculated values from the mission
controller are used by the flight controller to steer
the SUAV. Since the entire function chain, exclud-
ing the flight simulator, is an in-house development,
a high level of reproducibility is given. A waypoint
is reached when a minimum distance, based on the
lateral plane, is approached by the mission controller.
Each waypoint consists of a longitude, latitude and al-

a 9

2 200 S \
600

0 400 800 1200 1600
y/m

b. — PIL

— HIL
120

110

z/m

100

90

X/ m

400 oo 1600
800

y/m

400

speed / m/s

roll / ©

2

10 e
L

pitch /°
(==}

-10 =
200

yaw / °©
(=}

-200

20.4

20.0

19.6

0 100 200 300 400 500
time / s

Figure 10: Flight Data: (a) 8-Figure in 2D Space, (b) 8-Figure in 3D Space, (c) Pose Information

titude. The airspeed of the UAV is controlled by the
flight controller to keep the value constant.

The trajectory presented here is an inclined 8. It
is defined through six waypoints with different alti-
tudes. In 3D space, the eight was flattened in the x-
and y-plane. The starting point is outside of the trajec-
tory and the SUAV starts its flight immediately with
the defined target speed. The motion and pose infor-
mation of the flight is recorded during the full simu-
lation. The simulation is limited to ten minutes flight
time, in order to be able to identify accumulated dif-
ferences over time. The stewart platform has a limited
workspace, which defines the limits of the flight en-
velope. The roll and pitch angles were limited to 10
degrees. The climb rate to 0.33m/s. A waypoint is
reached when the horizontal distance is smaller than
200m. The geometrical dimensions of the curve is
about 600m in x-, 200m in y-axis and 20m in height.
A constant speed of 20m/s was set as target speed.

The flight tests were executed in PIL and extended
HIL mode. Based on the flown trajectory and the
telemetry data, the total flight phase can be evaluated.
Figure 10 shows the trajectory in 2D (a) and 3D (b)
space. The results show that the 10-minute simulation
flight shows a good match. Locally there are small
differences between the PIL and extended HIL trajec-
tory, but there is no global drift. During the 12 km
long flight only minor deviations occur, smaller than

/_\

s
<
o
&
= .]
5

0.988 0.992 099 1000

Figure 11: Correlation Coefficient between the two setups

12 metres. Roll, pitch, yaw and speed (see figure 10,
(c)) from both modes are almost identical. Over the
total flight time of 500s the comparison of PIL and
extended HIL results to very good consistency in the
measured data.

The similarity of the signal patterns of roll, pitch,
yaw, and speed concludes that the control loop of both
setups are almost unchanged. Further analysis of the
signal shapes show a small linear drift over time of
the extended HIL compared to the PIL mode. This
probably corresponds to the small time delays in the
control of the motion platform and its inertia (see ta-
ble 1). When the SUAV e.g. rolls, the time until the
change in attitude is propagated to the flight controller
is higher in the extended HIL mode. This results in a
slightly larger turn radius, which, although the speeds
match, results to the HIL mode SUAV being slightly

7 O N J =
R/
2
10
3 I
5 0 L o — L p— LA—-—A-
2 iy *
-10
200
z 0 \
-
200
g 20.4 \
3 \
8 200 o pAad W N
5 20011y i Il
19.6
0 100 200 300 400 500
time /s

Figure 12: Time Corrected Pose Information

positioned behind the PIL mode SUAV at any given
after the first roll maneuver. This error in position ac-
cumulates over time. This can be seen in figure 10
(c), where the paths match, but the extended HIL ma-
neuvers are performed a few seconds later. At a flight
time of 500s, the time delay is about 8s, or 1.6%. Af-
ter correction of the linear drift (see figure 11), the
signal shapes are in an excellent match (see figure 12).
Locally, the deviation has a maximum of about 2.6%.
The evaluation shows the delays induced by the soft-
ware control and inertia of the motion platform. At
the same time, the attitudes of the extended HIL and
PIL simulations match very good. A second figure
(square) was simulated as supplement. The evalua-
tion and quality was identical.

7 CONCLUSION

This paper shows that an extended HIL framework
with a stewart platform is suitable for scenarios,
where real flight attitudes are needed. The analysis
of the simulation results shows that the delays in the
software control loop and the mechanical inertia don’t
induce a significant impairment. The delays of the
stewart platform accumulate to roughly 100ms. This
results in a linear temporal drift over time of only
1.6% compared to the PIL scenario, where the con-
trol loop is comprised of only electrical signals and
no mechanical signal transfer exists. The stewart plat-

form and in general the presented simulation frame-
work therefore is ideally suited for the reproducible
development, integration and testing of sensors and
stabilization systems under the influence of real flight
attitudes in the laboratory. In order to verify the re-
sults in a real use case and to have full control over
the parameters, we have developed a flight and mis-
sion controller based on an FPGA. The system has
first controlled a simulated SUAV on the stewart plat-
form in the laboratory and later successfully flown a
DORNIER DO-27 model aircraft.

The system can now already be used for different
in-house projects, including comparing different iner-
tial sensor systems, the development of camera gim-
bal control systems or as presented, developing and
improve flight control algorithms. Future work may
include replacing the simple point-to-point control al-
gorithm of the platform by a continuous path control
algorithm, to reduce the discontinuities of the plat-
forms motions.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial
support of the German Federal Ministry of Economics
and Energy (BMWi) for this project under the ZIM
program.

REFERENCES

Bittar, A., Figuereido, H. V., Guimaraes, P. A., and
Mendes, A. C. (2014). Guidance software-in-
the-loop simulation using x-plane and simulink
for UAVs. 2014 International Conference on
Unmanned Aircraft Systems, ICUAS 2014 - Con-
ference Proceedings, pages 993—1002.

Cai, G., Chen, B. M., Lee, T. H., and Dong,
M. (2009). Design and implementation of
a hardware-in-the-loop simulation system for
small-scale UAV helicopters. Mechatronics,
19(7):1057-1066.

Elkaim, G. H., Pradipta Lie, F. A., and Gebre-
Egziabher, D. (2015). Principles of Guidance,
Navigation and Control of UAVs. Handbook of
Unmanned Aerial Vehicles, pages 347-380.

Furgan, M., Suhaib, M., and Ahmad, N. (2017). Stud-
ies on Stewart platform manipulator: A review.
Journal of Mechanical Science and Technology,
31(9):4459-4470.

Guo, A., Zhou, Z., Zhu, X., Zhao, X., and Ding, Y.
(2020). Automatic control and model verifica-

tion for a small aileron-less hand-launched solar-
powered unmanned aerial vehicle. Electronics
(Switzerland), 9(2):26.

Hasberg, H. (2014). A test concept for flight con-
trollers. Bachelorthesis, Hamburg University of
Applied Sciences.

Kang, D., Kim, S. H., and Jung, D. (2019). Real-
time Validation of Formation Control for Fixed-
wing UAVs using Multi Hardware-in-the-Loop
Simulation. IEEE International Conference on
Control and Automation, ICCA, 2019-July:590—
595.

Khaligh, S. P., Martinez, A., Fahimi, F., and Koch,
C. R. (2014). A HIL testbed for initial con-
troller gain tuning of a small unmanned heli-
copter. Journal of Intelligent and Robotic Sys-
tems: Theory and Applications, 73(1-4):289—
308.

Kummer, N., Jee, C., Garbowski, J., and Nowak, E.
(2014). Design and Development of the Hard-
ware for a Vision-based UAV Autopilot. Pro-
ceedings of The Canadian Society for Mechan-
ical Engineering International Congress 2014,
pages 1-6.

Lepej, P, Santamaria-Navarro, A., and Sola, J.
(2017). A flexible hardware-in-the-loop archi-
tecture for UAVs. 2017 International Confer-
ence on Unmanned Aircraft Systems, ICUAS
2017, pages 1751-1756.

Magnussen, @., Ottestad, M., and Hovland, G.
(2012). Calibration Procedure for an Iner-
tial Measurement Unit Using a 6-Degree-of-
Freedom Hexapod. International Conference on
Unmanned Aircraft Systems (ICUAS).

Majid, M. Z., Huang, Z., and Yao, Y. L. (2000).
Workspace analysis of a six-degrees of free-
dom, three-prismatic-prismatic-spheric-revolute
parallel manipulator. International Jour-
nal of Advanced Manufacturing Technology,
16(6):441-449.

Nguyen, K. D. and Ha, C. (2018). Development
of Hardware-in-the-Loop Simulation Based on
Gazebo and Pixhawk for Unmanned Aerial Ve-

hicles. International Journal of Aeronautical
and Space Sciences, 19(1):238-249.

Paw, Y. C. and Balas, G. J. (2011). Development and
application of an integrated framework for small
UAV flight control development. Mechatronics,
21(5):789-802.

Pizetta, 1. H. B., Branddo, A. S., and Sarcinelli-
Filho, M. (2016). A Hardware-in-the-Loop Plat-
form for Rotary-Wing Unmanned Aerial Vehi-

cles. Journal of Intelligent and Robotic Systems:
Theory and Applications, 84(1-4):725-743.

Pradipta, J., Klunder, M., Weickgenannt, M., and
Sawodny, O. (2013). Development of a pneu-
matically driven flight simulator Stewart plat-
form using motion and force control. 2013
IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics: Mechatronics
for Human Wellbeing, AIM 2013, pages 158—
163.

Pradipta, J., Knierim, K. L., and Sawodny, O. (2015).
Force trajectory generation for the redundant ac-
tuator in a pneumatically actuated Stewart plat-
form. ICARA 2015 - Proceedings of the 2015
6th International Conference on Automation,
Robotics and Applications, pages 525-530.

Sampaio, R. C. B., Cazarini, E., Hernandes, A. C.,
Becker, M., Magalhaes, D. V., and Siqueira,
A. A. (2014). HiL evaluation of an on-chip-
based optimal H-Infinity controller on the sta-
bility of a MAV in flight simulation. I[EEE
Aerospace Conference Proceedings.

Stewart, D. (1965). A Platform with Six Degrees of
Freedom. Proceedings of the Institution of Me-
chanical Engineers, 180(1):371-386.

Yoo, C. S., Kang, Y. S., and Park, B. J. (2010).
Hardware-in-the-loop simulation test for actua-
tor control system of smart UAV. ICCAS 2010
- International Conference on Control, Automa-
tion and Systems, pages 1729—-1732.

