There is a newer version of this record available.

Dataset Open Access

A large-scale COVID-19 Twitter chatter dataset for open scientific research - an international collaboration

Banda, Juan M.; Tekumalla, Ramya; Wang, Guanyu; Yu, Jingyuan; Liu, Tuo; Ding, Yuning; Chowell, Gerardo


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p><strong>Due to the relevance of the COVID-19 global pandemic, we are releasing our dataset of tweets acquired from the Twitter Stream related to COVID-19 chatter. Since our first release we have received additional data from our new collaborators, allowing this resource to grow to its current size. Dedicated data gathering started from March 11th yielding over 4 million tweets a day. We have added additional data provided by our new collaborators from January 27th to March 27th, to provide extra longitudinal coverage.</strong></p>\n\n<p><strong>The data collected from the stream captures all languages, but the higher prevalence are:&nbsp; English, Spanish, and French. We release all tweets and retweets on the full_dataset.tsv file (205,409,413&nbsp;unique tweets), and a cleaned version with no retweets on the full_dataset-clean.tsv file (44,726,568</strong><strong>&nbsp;unique tweets). There are several practical reasons for us to leave the retweets, tracing important tweets and their dissemination is one of them. For NLP tasks we provide the top 1000 frequent terms in frequent_terms.csv, the top 1000 bigrams in frequent_bigrams.csv, and the top 1000 trigrams in frequent_trigrams.csv. Some general statistics per day are included for both datasets in the statistics-full_dataset.tsv and statistics-full_dataset-clean.tsv files.&nbsp;</strong></p>\n\n<p><strong>More details can be found (and will be updated faster at: <a href=\"https://github.com/thepanacealab/covid19_twitter\">https://github.com/thepanacealab/covid19_twitter</a>) and our pre-print about the dataset (<a href=\"https://arxiv.org/abs/2004.03688\">https://arxiv.org/abs/2004.03688</a>)&nbsp;</strong></p>\n\n<p><strong>As always, the tweets distributed here are only tweet identifiers (with date and time added) due to the terms and conditions of Twitter to re-distribute Twitter data ONLY for research purposes. The need to be hydrated to be used. </strong></p>", 
  "license": "", 
  "creator": [
    {
      "affiliation": "Georgia State University", 
      "@id": "https://orcid.org/0000-0001-8499-824X", 
      "@type": "Person", 
      "name": "Banda, Juan M."
    }, 
    {
      "affiliation": "Georgia State University", 
      "@id": "https://orcid.org/0000-0002-1606-4856", 
      "@type": "Person", 
      "name": "Tekumalla, Ramya"
    }, 
    {
      "affiliation": "University of Missouri", 
      "@type": "Person", 
      "name": "Wang, Guanyu"
    }, 
    {
      "affiliation": "Universitat Aut\u00f2noma de Barcelona", 
      "@type": "Person", 
      "name": "Yu, Jingyuan"
    }, 
    {
      "affiliation": "Carl von Ossietzky Universit\u00e4t Oldenburg", 
      "@type": "Person", 
      "name": "Liu, Tuo"
    }, 
    {
      "affiliation": "Universit\u00e4t Duisburg-Essen", 
      "@type": "Person", 
      "name": "Ding, Yuning"
    }, 
    {
      "affiliation": "Georgia State University", 
      "@id": "https://orcid.org/0000-0003-2194-2251", 
      "@type": "Person", 
      "name": "Chowell, Gerardo"
    }
  ], 
  "url": "https://zenodo.org/record/3757272", 
  "datePublished": "2020-04-19", 
  "version": "6.0", 
  "keywords": [
    "social media", 
    "twitter", 
    "nlp", 
    "covid-19", 
    "covid19"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/5119088e-e0e7-419a-824e-e5df6e38a719/frequent_bigrams.csv", 
      "encodingFormat": "csv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5119088e-e0e7-419a-824e-e5df6e38a719/frequent_terms.csv", 
      "encodingFormat": "csv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5119088e-e0e7-419a-824e-e5df6e38a719/frequent_trigrams.csv", 
      "encodingFormat": "csv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5119088e-e0e7-419a-824e-e5df6e38a719/full_dataset-clean-statistics.tsv", 
      "encodingFormat": "tsv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5119088e-e0e7-419a-824e-e5df6e38a719/full_dataset-clean.tsv.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5119088e-e0e7-419a-824e-e5df6e38a719/full_dataset-statistics.tsv", 
      "encodingFormat": "tsv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5119088e-e0e7-419a-824e-e5df6e38a719/full_dataset.tsv.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.3757272", 
  "@id": "https://doi.org/10.5281/zenodo.3757272", 
  "@type": "Dataset", 
  "name": "A large-scale COVID-19 Twitter chatter dataset for open scientific research - an international collaboration"
}
35,760
29,724
views
downloads
All versions This version
Views 35,7601,212
Downloads 29,7245,156
Data volume 24.0 TB4.4 TB
Unique views 27,4661,007
Unique downloads 10,645507

Share

Cite as