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Abstract

Due to the increasing amount of digital music ald#, there is a clear need of a proper
organization and effective retrieval. Automatictinsnent recognition techniques are useful for
satisfying such needs, by labeling music pieceb Wieir instrumentation, but also as support to
the extraction of other semantic information sushtlae genre. Source separation has also
recently been applied to facilitate the analysismifsical data, as well as to other applications
such as karaoke or post production. In contrash Wit huge need for both algorithms, the
results obtained so far show that there is stilcimtwom for improvement.

The main purpose of this thesis is to find synexdietween instrument recognition and
source separation algorithms in two different tadighe separation of a target instrument from
the accompaniment, and 2) the automatic labelingsarigs with the predominant music
instruments. Several combination strategies arsepted, aimed at overcoming some of the
limitations of current state-of-the-art algorithns.the first task, instrument recognition is used
to detect the presence of the target instrumenotrder to apply or bypass the separation
algorithms. In the second task, source separasiarséd to divide the polyphonic audio signal
into several streams, given as input to the instntmecognition models. Promising results were
obtained in the conducted experiments, showingtthsiis a path to be further investigated.
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1 Introduction

1.1 Motivation and goals

During the last 15 years, we have seen how the atmmfumusic we have access to, has been
increasing in a way that it goes far beyond theetime have to listen to it. Due to the amount of
data available both locally and remotely, thera idear need of a proper organization (such as
cataloguing or indexing) and an effective retrievialhe musical data we are interested in.

The instrumentation of musical pieces is a verjulstescriptor which can be successfully
exploited for their retrieval at several levels.u&e case in which this usefulness is obvious
would be when a user is interested in finding sowgh the presence or absence of certain
instruments. Additionally, the retrieval of musitacertain genre can certainly be enhanced by
knowing the instrumentation of a song. A simpleragke would be that the knowledge of the
presence of a banjo in a song makes the piece Iketg to be country or folk than classical
music. Furthermore, the instrumentation in a senglso one of the most important cues for the
perceived similarity between two songs [1]. Thirg abeling of pieces of music with the most
relevant instruments which are present can helpitige the semantic gap. The semantic gap is
due to the misleading connections between low lagslstical descriptors (attributes computed
directly from the raw audio signals), and the higlexvel data which represents the semantic
interpretation of the audio [2]. This is consideedbe the main problem for increasing the
performance of Music Information Research (alsovkm@s Music Information Retrieval, or
simply MIR) algorithms. Due to the semantic gapisitvery hard to go above 75% accuracy
(glass ceiling) in many of the MIR tasks [3]. Thumsusical instrument recognition can help
bridging this gap [4], which would be very relevaotr both research and industry: music
recommenders or automatic taggers of large mugsabdaes would highly benefit from it. The
automatic classification of the instruments preserst musical piece would also be an important
step towards the realization of the semantic wigltesit deals with one if the major bottlenecks:
the manual annotation of data.

Independently, source separation algorithms hawen g@oven to be useful for many
applications [5]. Audio source separation dealshwilie problem of recovering the original

signals from a mixture by computational means. rE#eough the quality of the source
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separation in real world musical signals can $t@l much improved, separating or at least
increasing the presence of a source or a groupwtss in a mixture (e.g. harmonic-percussive
separation) helps to increase the results withifiR NHsks, such as chord detection, melody
extraction [6], genre classification, etc, whichultbalso help bridging the semantic gap. There
are several approaches to source separation degeowlithe number of mixture channels, prior
knowledge about the characteristics of the soumtes, The more knowledge about the sources,
leads to an easier and better source separatigpiidtess is thus enhanced by the identification
of the instruments present in the mixture. On ttheeiohand, the identification of instruments is
easier in monophonic than in polyphonic mixturegréfore, a source separation pre-step should
improve the detection of musical instruments.

The goal of this master thesis is the study of ridation between source separation and
instrument recognition algorithms, and the investmn of the synergies between them. The
main motivation is my interest in both areas anel iflevance of this research question: there
have been previous attempts to combine both s@eparation and instrument recognition, but it
is not a solved question, and there is still mumdnr for improvement. This master thesis aims
thus for the application of source separation algars in order to enhance the recognition of
music instruments in polyphonic mixtures and vieesa. Several source separation methods are
considered, so as to compare different approaches.of the frameworks for source separation
has been developed by the MTG in collaboration Wiimaha, and has been mainly focused on
the separation of the singing voice in polyphonigtores. On the other hand, the instrument
recognition framework considered is based on thekyoesented by Fuhrmann and Herrera in
[4], which deals with the tagging of music excerpith the most relevant instruments that are
present.

This work will hopefully be of relevance to the easch community, contribute to the body
of knowledge and the state-of-the-art in the fiedahd eventually to improvements in the
application of source separation techniques in Mifiv] vice versa. Additionally, it can be useful

for the industry, in terms of the previously intumed applications.



1.2 Structure of the thesis

This document is divided into five different chagtelhe first chapter introduces the reader into
the motivation and goals of this work, and preséimésstructure. The second chapter describes
relevant work for this thesis, including theoretibackground and the state-of-the-art techniques
and algorithms in both musical source separati@hiastrument recognition. The methodology
for the combination of both algorithms is presentecChapter 3, along with the data and the
evaluation measures employed. Chapter 4 detail@xperiments conducted, and presents the
results of the application of instrument recogmitto improve source separation and vice versa.
Finally, Chapter 5 presents the contributions andclusions obtained with this work, and
directions for further research are proposed.



2 State of the art

This chapter presents the theoretical backgroulesdraet for this thesis and a review of relevant
work, mainly dealing with instrument recognitiondasource separation. Finally, it presents
some of the approaches in the literature which haex timbral models to improve source

separation, and approaches which use source sepaaata prior step to instrument recognition.

2.1 Theoretical background

The theoretical background upon which the reshefthesis is built is introduced in this section,
assuming familiarity with basic concepts within re) processing, statistics and musicology.
Timbral features are introduced, along with sonsistical methods. Both of them form the

basis of the automatic instrument recognition, alisd play a crucial role in source separation.

2.1.1 Timbral features

Timbre is the term used to differentiate soundsctvhihave the same pitch, intensity, and
duration. Even though this is probably the mostepted definition of timbre, there have been
many others, due to its difference in meaning wesad contexts. Timbre is thus a vague word,
encompassing many parameters of perception.

Humans use timbre information to discriminate bemvemusical instruments, and a
considerable number of studies have investigatsdathility. Martin [7] provided a review of the
findings of the work of several authors in his Pth@sis, including the instruments which were
more difficult to be identified, or the differenca&f accuracy between musicians and non
musicians. Additionally, he conducted experimeetgihg both the human and the computer’'s
ability to recognize western orchestral instrumerigrrera et al. [8] also provided some
conclusions which can be extracted from the liteggtfirst, the recognition of instruments by
humans is easier if they are presented musicalsphranstead of isolated notes; second, it is
easier to recognize families of instruments (e.pordophones, aerophones, etc.) than
instruments; third, the accuracy in the classiioratiecreases with a higher number of categories
(instruments); and finally, the musical trainindgsein the recognition.



Much work related with timbre has been undertakgsecialists in several disciplines. In
1977, Grey conducted listening tests to create dtidimmensional space, with the most
representative dimensions of the timbre of a musiestrument [9]. A technique called
multidimensional scaling was used to capture thentalerepresentation of the stimuli, by
exploring the perceived similarity between them.r&loecently, Iverson and Krumhansl [10],
and McAdams et al [11] have further worked in theation of timbral spaces, finding low level
acoustic features which correlate with the percaptiimensions. Timbral features refer to
acoustic descriptors computed directly from thei@wgignal, with several possible temporal
scopes. Peeters et al. [12] provide a profoundaggiion and possible applications of the timbre
descriptors standardized in the ISO standard MPEGe¥eral features have been found to
explain the dimensions of the timbre spaces, sugltha spectral centroid, log-attack time,
spectral flux or the attack synchrony. Based orfitiaings by several authors such as Schouten,
Burred [13] considers several factors to be impurtar the perception of the timbre of a
musical instrument: the temporal and spectral eped, the degree of harmonicity of the
partials, noise content and transients. In thiskveotimbre model is presented, which is based on
a compact representation of the spectral envelopi, a detailed characterization of the
temporal evolution.

However, the probably most common features useth&oacterize timbral information are
the well known MFCCs, which were firstly used inesph recognition systems [14]. These
features stands on the source-filter model of dpg®oduction, in which speech signals are
considered to be the convolution of a source sigaaling from the vocal cords, and the impulse
response of the vocal tract. The MFCCs are uswallgputed following the following steps: 1)
Taking the Fourier Transform of a signal (or a parit), 2) Map the power spectrum to a Mel
scale, with triangular overlapping windows, 3) Cédte the logarithm of the powers in each Mel
frequency, 4) Calculate the Discrete Cosine TransfdIFCC values are the result of the
previous calculations, and they represent the ecglrape of the power spectrum of a signal. It is
common to use only the lower n coefficients, thenbar n being dependent on the application:
e.g. 13 coefficients are typically used for theresentation of speech. A smaller amount of them
has been used in some music related applicationet @s genre recognition [15]). Other authors
such as Logan and Salomon [16], and Essid et 3).Have reported the use of a higher amount

of coefficients in other applications such as musmilarity and instrument recognition. The



MFCCs are often used along with their first orderivhtives (e.g. difference of the MFCC
vectors in two consecutive frames), in order tostder the temporal dimension. Other authors
which have used MFCCs in the instrument recognitipplication are Heittola et al. [18]. All
previous approaches report the use of the magngpeetrum as input for the computation of the
MFCC, but it is also possible to consider a modifieersion, in which the features are not
computed on the spectral envelope. Marxer et &)] fbllow this approach for timbre
description, by considering the MFCCs calculatedtl@ Harmonic Spectral Envelope (HSE).
The HSE is obtained by interpolating the valuethefmagnitude spectrum at the positions of the
partials, using the Akima interpolation method [20]

Alluri and Toiviainen [1] recently presented a stush polyphonic timbre in which they
study the correlation of several features with ¢hperceptual dimensions: activity, brightness
and fullness. Their findings suggest that there ipayregularities in the way people perceive
polyphonic timbre, and that there are similaritigth the perception of monophonic timbre. An
unexpected finding was that the MFCCs do not cateetonsiderably with any of the perceptual
dimensions, even though they are so widely used d@dntrasts with the work of many other
authors, such as Terasawa et al. [21] which suggdéstt MFCC are a good perceptual
representation of timbre.

The approach by Marxer et al. [19] corresponds Withframework developed in the MTG
for source separation, which will be used in thaester thesis; therefore, the modified version of
the MFCCs will be considered. The instrument redommnframework used in this master thesis

uses the classical MFCCs and also many other &afaR][4].

2.1.2 Statistical classification

In a generic way, classification is related to task of assigning labels to observations. The
labels correspond to classes or categories in wliehbrganize a certain domain, or a part of the
world which is of interest.

A common way to perform such classification is wilxonomies, which organize the
categories in a hierarchical form. A richer and encomplex structure can be obtained with
ontologies, which allow more diverse relations kesw classes. According to Bowker [23], the

ideal classification structure should: 1) have cstest and unique principles to perform the



classification, 2) consider classes which are niiytiexclusive, and 3) be complete, by fully
covering the part of the world it intends to comsid

Statistical classification deals with the automatlassification of new observations by
means of supervised learning, using a model whashbeen trained with previously annotated
data. According to the number of classes involwtassification can be considered as binary or
multiclass. In binary classification, only two cd&s are considered, while more than two classes
are considered in multiclass classification. Muétss classification is commonly avoided, since
most methods work with binary classification. Ire tbase of requiring a classification of more
than two classes, several binary classifiers greajly combined. There are different strategies
for combining the classifiers, such as the oneuseane with pair-wise coupling [24], or the one-
versus-all approach, in which only the presencalsence of a class is considered. In a one
versus one approach, a classifier is trained foh ed the possible combination of classes. For
instance, in instrument classification it would ls&rinet vs. trumpet, clarinet vs. violin, violin
vs. trumpet, and so on, for all possible combinsti@f instruments. In the one-versus-all
approach, the classifier discriminates betweent#nget class, and an artificial class which
contains the rest of classes, e.g: violin vs nolivi Of course, in the latter approach, a smaller
amount of binary classifiers is needed. Finally tutput probabilities of the binary classifiers
are combined to decide the class membership.

An important classification method for this thesssSupport Vector Machines (SVM),
which has been used in the categorization of ingnts both in monophonic and polyphonic
mixtures, based on the acoustic features used ttelntloeir timbre. SVM is a non-probabilistic
linear and binary classifier, which is based on tireation of a hyperplane of a high
dimensionality, to separate between the elementiswvofclasses. It is a supervised learning
method, and thus uses training data, in ordern fine hyperplane with the largest distance to
the points in the training set of any of the twadlved classes. This is supposed to provide the
best classification results, since it lowers theegalisation error of the classifier. Additionaliy,
is relatively fast to train and use a SVM classjfiend provides good accuracy with reduced
over-fitting. SVM can be used for several tasksghsas classification, or regression. The
implementation of the SVM used in this thesis iBEVM [25].



2.1.3 Dimensionality reduction

In order to properly analyze huge amounts of datsyitable representation needs to be found.
Such a representation should make explicit thetateucture of the data, and reduce the number
of dimensions, in order to apply further methods][Z he techniques presented in the following
subsections are very polyvalent, and can potepntilused in very different applications or with

different purposes.
Principal Component Analysis and Independent Compoent Analysis

Principal Component Analysis (PCA) is a very popaenensionality reduction technique,
introduced by Karl Pearson in 1901. The main gedbidecorrelate a set of input variables, by
converting them into a smaller set of uncorrelatadables, while maximizing the variance of
the projected data. The variables in the new spalsieh are named principal components, are a
linear combination of the original variables. Thikole set of principal components has the same
dimensionality as the original set. In order tousslthe dimensionality, a smaller set of principal
components is selected. This produces that soroemation is lost; however, PCA is conceived
to minimize this loss. Applications of PCA includata compression, image processing, and data
visualization. Since it also serves as a signabugosition technique, the relation to source
separation becomes evident.

An extension to PCA is ICA, which searches for reedir transformation of the original
variables in order to minimize the statistical degence between the components of two vectors.
The difference with PCA is that it does not onhabeith a second order independence, and does
not just provide solutions which are orthogonalAlkas been widely used in source separation,
as it will be introduced in the corresponding sulisa.

Non-Negative Matrix Factorisation

Non-Negative Matrix Factorisation (NMF) is an texjue used to decompose a matrix
V € R=%"" into two factors W € R=%"" and H € R=%™"  where r is called the
decomposition factorl is approximated to the product of two matriceshwiton negative
elements¥V ~V = W-H .

Paatero and Taaper presented this technique umel@atne “Positive Matrix Factorisation”

in 1996 [27], and three years later, Lee and Sepmggented further investigations on the



algorithm, using the name NMF [28], which has beeomidely used. In this work, PCA and
NMF were compared in two different tasks, showihgttdifferent results are achieved, partly
due to a difference in constrains.

NMF can be used for dimensionality reduction, amdnhcreasing in popularity due to the
reported good results in several domains, includmgce separation. There are several forms of
NMF, depending on the measure of the divergenosedeet’ andV . In order to find the best
approximation, the distance measubéV’ || V) is to be minimized. Several distances can be
used, such as the simple Frobenius norm (squara)nased by Lee and Seung [28], or the

generalized Kullback-Liebler distance which is atsmmonly used for source separation:

DV || V) = S (Vydog 22—V, +7,) ey
ij Vi

In order to reduce the selected distance measevesa iterative update methods can be
used, such as gradient descent algorithms, or aphedtive update algorithm, as presented by
Lee and Seung [28].

Adding sparseness constrains to the NMF providédiens which are easier to interpret
[26]. Sparseness refers to the fact of having ardynall number of coefficients not equal to zero
in a vector or matrix. The sparseness is maximusnv@lue is 1) when only one component is
not equal to zero and the sparseness is minimugalég 0) when all components are non-zero.

The sparseness can be applied to bBtland H , depending on the application [26].

2.2 Automatic instrument recognition

2.2.1 Overview, principles and applications

The automatic recognition of instruments is basethe previously presented timbre models and
features. The timbre of an instrument can be chenaed with some audio features, such as
MFCCs or MPEG-7 features, and by means of a sé&taofing data, a statistical classifier can
learn how to categorize previously unseen audi@mts into classes, which may correspond to
instruments, or groups of instruments, dependinghenapproach. It is thus very important to
know how the features can be used, how to compwm,t how to properly select the most
relevant ones, and how could they be transformeatder to have a better distribution, which

9



would allow a more robust classification [8]. Dinsganality reduction is also an important step,
which can lead to a better classification.

The automatic recognition of musical instrumentsars important task in MIR, with
applications such as the automatic annotation dbbdses with information about the
orchestration. This can be helpful to bridge theastic gap, since the perceived similarity
between songs is in a high degree dependent om itrumentation. Additionally, the
knowledge of the musical instruments present inregssupports other MIR tasks such as genre
classification, and thus allows moving towards risaization of the semantic web, since it helps

dealing with its major bottleneck: manual annotatio

2.2.2 Isolated musical instrument classification

Most of the work in automatic instrument recogmitibas been focused on isolated musical
instrument classification. An extensive review atls approaches can be found in the work by
Herrera [8], with accuracies that reach 90%, a remmif classes below ten, and several
classification techniques. The classification oolated notes allows the simplification of the
signal processing needed to extract relevant featand has the advantage that there are sound

databases which can easily be used to test thathlgs, such as the RWC database [29].

2.2.3 Polyphonic instrument recognition

More recent works deal with polyphonic instrumestagnition, which is a more demanding and
realistic problem, both with and without source agation. There have been some attempts to
perform instrument recognition in polyphonic mixdarwithout using source separation as a pre-
step. Some early approaches focused on the deteattispecific instruments or voice, such as
Tzanetakis in 2004 [30]. Heittola tried detecting tpresence of several instruments (bowed,
electric guitar, piano, saxophones and vocals) 9IgguMFCCs and their derivativeeMFCCs
and Hidden Markov Model (HMM) classifiers [18]. Theerformance was reported to be
different for each of the instruments, getting thest results for the detection of bowed
instruments and voice. For the rest of instrumetits, results were not much above chance.
Better accuracies were reported in the same warth@®detection of drums. A more recent work
by the same author dealt with the use of sourcaraépn as a pre-step for the instrument

classification, as will be presented in a furthect®n. In 2005, Essid [17] used a taxonomy
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based hierarchical classification approach, trginthe classifiers not on the instruments
themselves, but on a combination of them, suck@sble bass, drums, piano and tenor sax.

In a more recent approach, Fuhrmann [22] approadhedautomatic recognition of
predominant instruments, with SVM classifiers temnwith features extracted from polyphonic

audio. Figure 2.1 shows a schema of the supereissdification system in this work:

¢ i {1

-

extraction ’ .tempcntal ’ selection ’» :>
integration

training prediction

training data

AN
feature processing

classification

Figure 2.1: Supervised approach for predominant insument recognition in polyphonic music[22]

The black arrows in the figure denote the workfii@iowed in the training stage, while the
white arrows are followed in the classificationggawhen unseen excerpts are to be annotated
with the predicted tags.

A different approach is presented by Fuhrmann aedéfia [4], where the focus is not set
on the recognition of the instruments in a framsigebut on the most predominant instruments
in a whole audio excerpt. Several strategies fbellag the music pieces are proposed, which
include exploiting the temporal dimension of musegments in which there is a predominant
instrument are found, and then the labels of eddheosegments are combined to provide the
confidence of each instrument to be present inwthele piece. As in the case of the human
ability of discriminating between musical instrungnautomatic approaches also have more
difficulties with certain kind of sounds. Fuhrmaenal [22] report that the accuracy of detecting
the sax being the predominant instrument in polpphausic is the lowest, around 40%, while
the average classification accuracy for pitchettumsents, with 11 different classes is 63%.

A comparison of the results between the approashest straightforward due to several
reasons. The number of categories used is typichffgrent, which certainly influences the
results. Additionally, the classification task mbg different in each work, e.g.: classification

based on families of instruments instead of insamits, interest on the predominant instruments
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or on all present instruments, the use of real dvarlusical signals or artificially created

mixtures, etc.

2.3 Source Separation

Sound signals are commonly a mixture of severaladgy Sound Source Separation (SSS) deals
with the problem of recovering the original audignals from a mixture by computational
means. A typical example is thmocktail party problem, in which one tries to follow the
conversations held simultaneously in a room, witlsim and other noises. This is a relatively
easy task for humans, which are able to concentinatattention on a specific source within a
mixture of signals which may even have interferamgrgies. However, it is much more difficult
to teach a machine how to do this.

The interest in this problem began in the mid 198@nd the attention of the research
community to source separation increased in th@$9%ith the use of Independent Component
Analysis (ICA) [31], and the Computational AuditoBcene Analysis (CASA). The CASA
approach tries to imitate the mechanisms involvedhuman perception, which allow the
recognition of sources in a mixture. Bregman intiaetl the cognitive process called Auditory
Scene Analysis (ASA) in 1990 [32], proposing fivenpiples used by the brain to group and
isolate sounds: proximity, similarity, good contion, closure and common fate. These
principles, which are similar to the ideas of thes@lt, are applied to both frequency and time
domains of the audio signals. Based on the worlBi®gman, several approaches have been
proposed to deal with the computational modelind8A. Wang and Brown presented in 2006
a detailed literature review in this field [33]. ifhmaster thesis will be based on source
separation methods built on a mathematical basigloging the statistical properties of the
sources and mixtures, instead of using the approp@ASA.

An overview of Source separation methods can bedan the work by Vincent et al. [34],
Siamantas et al. [35], and more recently by Buffe]. In this work, Burred divides source
separation methods according to the assumptiong madhe statistical nature of the models of
the sources. If little or no assumptions are maldey are said to bBlind Source Separation
(BSS) methods, which include ICA, and time-frequentasking methods. If more advanced
models of the sources are used, they are classaiegbmi-Blind Source Separation (SBSS)
methods. Examples of SBSS include sinusoidal moaeld supervised methods in which a
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database of sounds is used for training the SSiedges. Finally,non-blind source separation
methods make use of other information than theungtsuch as the musical score.

Vincent et al. proposed in 2003 a topology for ¢lessification of the applications of source
separation, dividing them into two groups [38udio Quality Oriented (AQOQO) applications and
Sgnificance Oriented (SO) applications. The former (AQO) applicationsad with a full
separation of the sources, with the best possiblitg, and include: unmixing, remixing,
hearing aids or postproduction. The latter (SO)less demanding, and are more feasible with
the current state-of-the-art techniques. SO appbics deal for instance with several tasks within
MIR, and therefore, could help to bridge the semagdp. Some tasks that can benefit from the
use of source separation include: instrument retogn chord detection, melody extraction,
audio genre classification, etc. Burred [13] compdats the previous classification, devising
four different paradigmdJnderstanding without separation, in which the mixture itself is used
to gain knowledge about the constituent sourceassg®eparation for understanding, which
corresponds to the SO scenargparation without understanding, which deals with Blind
Source Separation (BSS), and finallynderstanding for separation, which deals with

supervised source separation, based on a traiaitadpase.

2.3.1 Overview and principles

This subsection provides an overview and the nmopbrtant principles of the source separation

problem.
Mixing models

Several mixing models can be applied to combin@rsd\sources into a mixture. Each of
the models corresponds to a real world situatidre most basic is thienear mixing model, in
which the mixture is a combination of the origisalurces, with a possible amplitude scaling.

The mathematical formulation is:
z,(t) = Z%'Sj(t) i=1,..,P (2.2)

T

In the previous equationg(t) = [z,(¢),---,zp(t)]" is the vector of observed mixtures,

s(t) = [s,(t),+, sy ()" is the vector of the original sources, addcorresponds to the mixing
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matrix, which is used to transform from the sigspace to mixture spac®, is the number of
sensors or mixtures, and the number of sources. The mixing matrix has a sfzZvV x P, and
its elements are the coefficients.

In a linear model, sound source separation deatswlith solving the systelX = AS':
= : .| (2.3)

In this system,X is known, S is unknown, andA is in most of the approaches also
unknown. Depending o (the number of sensors or mixtures) axd(the number of sources),
the system is overdeterminedRf> N , determined ifP = N, or underdetermined iP <N . The
most challenging task is solving underdeterminexiesys.

In adelayed model, each of the sources needs some time to arrieadh sensor, and thus
the mixture is a combination of the original sogreath different delays. The formulation is as

follows:
Zaw St —t) i=1...,P (2.4)

In a convolutive mixing model, there is a filtering process between the souacessensors,
such in the case of a reverberant room, whereatess can follow several paths to arrive to the

Sensors.

N +o0

ZZ%/«S - /Jk 1= 15'-'5P (25)

j=1k=0

The contribution of the sourcg to a sensoi can be modeled with the impulse response of

afilter a;;(t), wherex is the convolutional product:

z,(t) = Z%'(t) * 5,(t) i=1...,P (2.6)
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It can also be expressed in a matrix notation as:
X = AS (2.7)

In musical source separation, which is the scopéhisf thesis, most of the mixtures are
underdetermined, since we typically deal with ometvao observations, for mono and stereo
respectively P =1 or P=2), and more than two sources (instruments) prasetiite mixture.
This makes necessary the simplification of the |enoh by taking some assumptions on the

statistical nature of the sources, or use modeishwihcrease the feasibility of the separation.
Signal models

In digital signal processing, it is common to assuhmat the signals can be decomposed into
a weighted sum of expansion functions, and thecehof a function depends on the context or
application [13]. Some common models which make ok& fixed basis function for the
representation of a signal in the frequency doraagnthe Discrete Fourier Transform (DFT) and
the Discrete Cosine Transform (DCT). In order tmsider the time along with the frequency
domain, the Short- Time Fourier Transform (STFTgasnmonly used. Increasing the resolution
in one of the domains decreases the resolutiorhenother domain, which is related to the
uncertainty principle in signal analysis.

The previously introduced PCA and ICA are alsoec#x case of a signal model, in which
the expansion functions are extracted from the adigtself, and thus they are data-driven
functions.

It is important to note that signal decompositisrvery related to source separation. In fact,
some of the approaches used for source separatich, as ICA, have also been successfully

applied to signal decomposition.
Solving the system

The main problem in source separation is solving fireviously introduced system
X = AS, in which typically bothA and S are unknown. This system can be solved in two
ways: by firstly estimating the mixing matrix angeh the sources in a staged manner, or in a
joint manner. The mixing matrix estimation dealshwiinding the coefficients of the matrix ,
or similarly, the mixing directions (the columns thie mixing matrix). A possible manner of

estimating the mixing matrix is with the use of ICAs it has been previously introduced, there
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is a need for sparsity, meaning that the coeffisien some domain are zero or close to zero.
Sparsity is related to a peaked probability disiiitn in any domain, and to the coefficients
(values of the signal in a certain domain, suchirae sample or the time-frequency bin) being
concentrated around the mixing directions, whidbved an easier estimation of the coefficients
of the matrix.

A commonly used method for the estimation of sosirisethe time frequency masking.
Yilmaz and Rickard [37] used this approach forgbparation of speech mixtures, and it has also
been used in the musical domain in several coritabs, such as Vinyes et al. [38], which
additionally exploit the spatial information (pang) for improving the results. This approach
deals with the use of the STFT to transform a gifpoan the time domain to the time-frequency
domain. In this domain, a mask can be used to tselely certain coefficients which are
supposed to correspond to the source of interdst. Jelection of the coefficients can be
performed in a simple form with a binary mask, whsets to 0 the coefficients which are not of
interest. This approach relies on the fact thatetle reduced overlap between several sources in
the time frequency domain [37]. The sound is thgmtlesized by estimating the signal in the
time domain from the filtered spectrum, with thevdrse Discrete Time Fourier Transform
(IDTFT). One of the drawbacks of binary time fregqag masking is that it produces “artifacts”
known as musical noise.

However, time frequency masking will be considemredhis master thesis, as a relatively
simple method, which provides fast results in conspa with NMF based source separation,
and can even be used for online source separa®ir the approach recently presented by
Marxer [19].

2.3.2 Fundamental frequency estimation

A melody can be defined as an organized sequenoetet and rests, where each of the notes
has a pitch, an onset time, and an offset time. nibkdy followed by an instrument is a very
important cue for many of the source separatiomagghes.

The knowledge of the melody of the instrument teséparated could come from the (MIDI)
score of the music piece, but most usually, theddummental frequency is estimated by
computational means. The transcription of a melsdgommonly performed by estimating the
trajectory of the fundamental frequency (f0). Maalgorithms have been proposed on the
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literature for melody extraction, such as Dres§d®, or the multipitch estimation by Klapuri
[40]. Marxer et al. [19] recently presented a mdthor low latency pitch estimation, and a
technique for the detection and tracking of a g@ttinstrument.

The previously introduced time-frequency maskindghuds make use of the fO trajectory to
create the appropriate masks for the selectiohetitne-frequency bins where the mask is to be
applied. In the case of the NMF approaches thatthie source-filter model, the information
about the estimated fO trajectories is used toalide the parameters of the source part of the
model, since the information about the pitch iated to this part. In the case of the approach by
Durrieu [41], the interest is on the separatiorth@& main instrument; thus, the fO estimation is
only for the predominant instrument. In the casdHeittola [18], the interest is not just on the
main instrument, but on all present instrumentsl, #werefore, a multipitch estimation approach
is necessary, in this case Klapuri's. More detait®ut this work will be presented in the

following section, dealing with instrument classé#tion based on source separation.

2.3.3 A Flexible Audio Source Separation Framework (FASST

FASST is a framework for source separation receptgsented by Ozerov et al. [42], which
aims to generalizing several existing source se¢jparanethods, and allows creating new ones.
It is based on structured source models, whichwattee introduction of constrains according to
the available prior knowledge about the separgtioblem.

The framework can be used for many different usegasuch as speech separation, or for
professionally produced music recordings. This fruork has been considered for the thesis
since the (MATLAB) source code is available, andlibws to perform the separation of audio
excerpts into four different sources: drums, basslody (either singing voice or a leading
melodic instrument), and the remaining sounds. firsestep of this separation is performed by
computing the time-frequency transform of the inpwith the STFT or with the auditory
motivated Equivalent Rectangular Bandwidth (ERB)efi, the model parameters are estimated
e.g. with a Expectation Maximization algorithm, afidally the spectral components are
separated, with the aid of spectral patterns fgr leass, drums. The interest in such separation

strategy is introduced in the methodology.
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2.4 Source separation based on timbral models

Timbral models based on descriptors such as MFMBPEG7, or more advanced descriptors
[13] have been widely used in source separatiooriiigns, since such models typically provide
better results in musical source separation agpmits, as they can deal better with the
separation of signals with overlapping spectrums.

Source separation systems can be classified ag bepervised or unsupervised: supervised
methods rely on a previous training step to estentlaé models from a training database, while
unsupervised systems do not need a training stgger@ised methods typically provide a better
separation quality, and are able to cope with nderanding situations, but are less generic than
unsupervised methods. Two unsupervised methodshwiaee been used for source separation
are the previously introduced ICA and NMF. With lbatethods, the magnitude spectrogram of
the mixture is approximated with a weighted sunbasis functions (also named components)
with a fixed spectrum. Typically, a clustering pess is required to group the basis functions
according to each of the sources, since each saitgpically the sum of a set of basis. One of
the drawbacks of ICA is that the number of sensaust be the same as the number of sources,
thus not allowing solving the most demanding, Bsb anore common tasks in which the system
is underdetermined. Independent Subspace AnalySi) (can deal with this limitation, by
performing the analysis in a transformed domairchsas the magnitude or power spectrum.
NMF can also cope with underdetermined systemssapchs to provide better results than ISA
[43].

As it was previously introduced, NMF introduces noegativity constrains which are
appropriate when working with amplitude or poweedpograms. The algorithms proposed by
Lee and Seung [28] do the decomposition by miningzihe distance betweeX and
X = A-S. One of the drawbacks of this basic spectrogracom@osition is that the basis
functions used for each instrument are dependeth@pitch of the note being played, and thus
the amount of basis functions to be employed elaand the estimation less reliable. In order to
deal with this shortcoming, Virtanen and Klapur#[groposed the use of a source filter model
with NMF for the analysis of polyphonic audio. Imig work, the spectrogram is modeled as a
sum of basis functions with varying gains, as ie tiormal NMF. Furthermore, each basis

function is decomposed into a source and a filiéle source refers to a vibrating object and
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changes with the pitch. On the other hand, therfilefers to the “resonance structure” which is
constant for each instrument, thus reducing tharpaters to estimate. Important for this master
thesis will be the approach by Durrieu [41], in eniNMF is combined with a source filter
model for the separation of the singing voice fritm@ accompaniment. In order to have an idea
of the possible pitches which each instrument acevas playing, some kind of fundamental
frequency estimation algorithm is typically empldyelimbral models are also employed by
Marxer [19] to identify the spectral envelopes loé target instruments, in order to improve the
tracking of their pitch. This pitch is then usedgenerate a time frequency mask to perform the
source separation. The features used are the MFR€acted from the Harmonic Spectral

Envelope (HSE), as previously introduced.

2.5 Instrument classification based on source separatm

In previous sections, the state of the art in umsgnt recognition and source separation has been
introduced. This section presents some of the agbes found in the literature which have used
source separation as a prior step to the classificaf the instruments present in polyphonic
mixtures.

Heittola et al. [18] presented an approach to imsémt classification based on the use of
NMF with a source filter model, based on the praslg introduced work by Virtanen and
Klapuri [44]. An overview of the system is illusted in Figure 2.2.

Aud‘io signal

Multipitch
estimation

Streaming
(optional)

Source separation
(NMF for source
filter model) ¢--------------------

A

Feature extraction ‘
(MFCC,AMFCC)

I
[ Clssiter )

Figure 2.2: Musical instrument recognition with a ®urce filter model for source separation by Heittch [18]
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Klapuri’'s multipitch estimation is used to help $eparate the sources, with the aid of an
optional streaming algorithm which organizes indual notes into sound sources, using the
Viterbi algorithm to find the most likely sequenaienotes.

The instrument classification is performed by usigCC (with a 40 channel filter bank),
with their first time derivatives and a polynomi#gl GMM are used to model the instrument
conditional densities of the features, and the rpatars are estimated using the Expectation
Maximizations (EM) algorithm from the training matd. A Maximum Likelihood classifier is
used for the classification. The reported F1-measeaches 59.1% with a database of artificially
created mixtures (using the RWC), and six note ggodyry. The number of classes selected for
the experiments was 19, including only pitchedrinmsients.

Burred [13] also presents an instrument classiioaapproach with a stereo Blind Source
Separation pre-step, reaching 86.7% accuracy, Baugsian likelihood as a timbre similarity
measure, with a polyphony of 2 instruments, andaSses. The results are significantly better
than in the case of monaural separation, with anracy of 79.8%.

Source separation is thus a useful pre-step to aweprthe instrument recognition in
polyphonic mixtures. However, there are some proBléhat source separation algorithms could
pose for the automatic instrument recognition: ythsually add some artifacts such as musical
noise, or they even alter the timbre of the insenta. These facts will be investigated in the

course of this master thesis, and some solutiansogsed, as detailed in the methodology.
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3 Methodology

The hypothesis of this work is that after underdiiag and acknowledging the limitations of
current state-of-the-art algorithms in source saf@m and automatic instrument recognition, it is
possible to effectively combine them in order tdamce their results. Such synergies will be
investigated following the methodology presentethia chapter.

As previously introduced, instrument recognitiogaalthms usually generate a set of tags
corresponding with the (most predominant) instruteém an audio excerpt. On the other hand,
source separation algorithms can provide severalskof outputs, depending on the intended
application: some estimate the contributions of@heh of the instruments to the input mix, or
the harmonic+percussive components, or for instanttee predominant instrument+

accompaniment. The usual application of both tygfedgorithms is presented in Figure 3.1.

Instrument }_. Instrument tags
Recognition

polyphonic
audio Estimations:
Source > Instruments,
: —* Harmonic+Percussive,
Separation —

Lead+Accompaniment

Figure 3.1: Instrument Recognition and Source Sepation application

The first section in this chapter deals with thehndology proposed to enhance the source
separation with a previous instrument recognitiveps and the second section details the
methodology proposed to enhance the instrumengréiton with a previous source separation
step. It is important to note that the main interssthe application of the algorithms to
professionally produced western music recordings, opposed to audio data created by
artificially mixing several instrument with no muaal relation between them, as used in [18].
This fact adds more complexity to the source sejmaraalgorithms, due to several reasons.
Firstly, if there is a high melodic and harmonitate®n between the instruments, their spectral
components usually share same frequencies, whisle pooblems to the source separation
algorithms. Additionally, in professionally prodect music recordings, the typically applied

effects such as reverbs, delays, etc. make theaepamuch more difficult. On the other hand,
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such scenario allows source separation and instrureeognition algorithms to make use of the

panning information, which typically allows achiagia better separation quality.

3.1 Instrument recognition for source separation

The problem of interest in this section is the safpa@n of a music recording into the instrument
of interest and the accompaniment. Many separadigorithms produce errors due to an
imperfect matching of the spectral components ® itistrument to be removed, causing the
removal of other instruments, instead of the onmtafrest. A similar problem is that, even when
the instrument of interest is not present, othstriments are removed. The hypothesis is that
the integration of an instrument recognition alton prior to the source separation can enhance
the quality of the separation, by avoiding the safian to take place in the parts of the audio in

which the instrument of interest is not presente phoposed way for the integration is presented

in Figure 3.2.
. R
Instrument n — _
> Recognition J -—\\MIXII‘"IQ functlan)
h an| [1-a
[ "\_Sep. lead F est. lead
polyphonic Source " .
audio Separation sep. accomp s
N J -Q—fﬁ;:[}it._accomp

Figure 3.2: Schema of the integration of instrumentrecognition into the source separation algorithm.The
instrument recognition module gives as output the mbabilities of presence of the n classes used ihet
classifier. These probabilities are then used to egpute the mixing weights to be applied to the outpuof the
source separation algorithm.

The instrument recognition module is based on ystesn by Fuhrmann [4], [22], depicted
in Figure 2.1. The input of this system is polypicoaudio, and the output is the probabilities of
presence Rt) of n=11 different instruments (cello, clarinétite, acoustic guitar, electric guitar,
hammond organ, piano, saxophone, trumpet, viohd,\&ice). The original system uses one vs.
one SVM classifiers and Pair Wise Coupling to cambthe probabilities. However, in this
scenario the focus should be set in detecting thsepce of the instrument of interest in the
polyphonic mixture. Therefore, it was decided tihatould also be appropriate to train a binary
classifier with n = 2 classes: the instrument aéiliest, and a second artificial class, containing
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the rest of instruments. Since the voice is typyce#the most important element of a music
recording, and there are applications which wowddfit of the voice removal, such as karaoke,
it was decided to initially focus on it. The procee followed for the training of the SVM
classifier of the instrument recognition algoritisydetailed in the next subsection.

Several source separation algorithms have beendssad with the following output: lead
instrument + accompaniment. In order to reduce ¢ners produced by the separation
algorithms, the probabilities of presence are uBedemix the separated components, by
computing the weight a(t) with a mixing function.héh the probability of presence of the
instrument of interest is high, the weight tend4 tavhile with a low probability of presence, the
weight tends to 0. The mixing function can be githi@ary or non binary. In the first case, the
mixing coefficients are {0,1}, and in the secondseaintermediate values are allowed, in the
range [0,1]. The binary mixing logic is presentadhe following equations:

P

voice

(t) >= P.(t),Vi = voice = a(t) = 1 (3.1)

P

voice

(t) < P(t),Vi = voice = a(t) = 0 (3.2)

P ..(t) represents the probability of the voice being @nésin the excerpt, and
P.(t)represents the probability of presence each otldmses considered. If a binary classifier
is used, the classes considered are: voice or ame-{n = 2), while in the original non binary
classifier, the number of classes correspondsdb eathe considered instruments (n = 11). Note
that it is possible to use a binary classifier witin binary mixing.

As previously mentioned, the non-binary mixing altohaving values between 0 and 1, and
thus the effect is more subtle. This kind of miximguld be appropriate when the probability of
presence of the instrument of interest is not \agh, or when the results of the instrument
recognition algorithm cannot be fully trusted.

The final estimation of the voice provided by tidegrated systenegt. lead) tends to the
estimation produced by the separation algoritbep. (ead) if the P

v

()i(:e(t) is hlgh! and tends to

zero if the P

voice

(t) is low. On the other hand, the final estimationtted accompanimentg.
accomp) tends to the estimation produced by the separagilgorithm éep. lead) if the

probability of presence is high, and tends to tiput mix if the probability of presence is low.
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Note that in the case of a perfect recognitiorhefpresence of the instrument of interest (in our
case, the voice), the quality of the separatedcaigliperfect in the parts of the input audio
excerpt in which no voice is present. However hi@ parts with a voice the quality is limited by

the quality of the separation algorithm.

3.1.1 Data

Two different sets of data have been used foritrgiand testing. Firstly the SVM classifier of
the instrument recognition algorithm has been &diwith a large set of data, and secondly, the
combination of both modules has been evaluated awduced set of multitrack data.

The original training data of the instrument redtign module was a large set of features
extracted from short excerpts of audio from différevestern music genres (pop, rock, jazz,
classical), which included the annotation with gredominant instrument, as described in [4].
This set of features includes typical featureshi@ description of timbre, such as the MFCCs,
along with other features, such as HPCP (HarmonahClass Profiles), LPC, inharmonicity,
spectral moments, crest, rolloff, and RMS energtures, and their time derivatives [22]. As
described before, the focus was set on the vormkaa additional binary classifier was trained to
classify audio excerpts into: voice and non-voiCEhe training process began thus with the
division of the training instances into these tvasses. Since the non-voice training data had a
larger number of instances in the original datasetpared to the voice, a sub-sampling of the
original collection of non-voice data was performedorder to even up their sizes. Additionally,
care was taken to select a similar number of sasngiieeach of the instruments in the original
collection, so as to have a quite uniform distiidmit Finally, the number of training instances
was around 800 for each of both classes.

The testing data were extracted from 6 multitragkordings of professionally produced
music. The excerpts in the created testing datseet a lead instrument (in this case, vocals)
which is present in a segment of the excerpt, argkrat in another part of the excerpt. As
explained in the following subsection, it is ne@gshat the testing dataset includes the original
separated tracks, or at least the vocals + accampat, since the evaluation is based in

comparing the output of the separation algorithgerest this ground truth.
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3.1.2 Evaluation method

For the evaluation of the quality of the sourceasapon, the SISEC evaluation campaign
measures have been used. This campaign deals péibcls and music datasets, synthetic
mixtures, microphone recordings and professionadtumés and divides the source separation
problem into four tasks: source counting, mixingtsyn estimation (mixing gains), source signal
estimation (mono source signals), and source 3$patiage estimation (contribution of each
source to the two mixture channels). The objectivaluation measures proposed deal with the
comparison of the estimates of the spatial imaddiseosource j in the channeﬁgng, against the
true source imagesl;”g . The first step deals with the decompositiorﬁ;ﬁf into the target source
and distortion:

§ijg — Szmg + espat + elnterf + eartlf (33)

Three kind of distortions are considereg*’, ¢/ and ¢/ which correspond to the
spatial (or filtering) distortion, the interferenand artlfacts respectively. This decomposition is
motivated by the distinction in the auditory systbetween the sound from the target source:
s + ¢, the sounds from other sourcegﬁte’f, and the gurgling or musical noisa%”“f as
presented by Vincent [45]. Three energy ratios gegved from this decomposition: Source
Image to Spatial distortion Ratio (ISR), which cdess the sounds from the target source,
Source to Interference Ratio (SIR), which considgsnds from other sources and Sources to
Artifacts Ratio (SAR), related to the “gurgling sef or other artifacts due to the separation. The

ratios are defined by the following equations:

Zl 12 7mgt
ZI lz espm‘t

ISRJ. = 10log,,

(3.4)

Zl 12 /mg + 6§_[)(Lt(t)>2
ZI lz 1nt€7f

SIR, = 10log, (3.5)
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Do D ) + e 1) + egw))z
ZZ 12 eartzf

SAR; = 10logy, (3.6)

Additionally, the Source to Distortion Ratio (SDR)a compound of all previous measures:

> o

SDR, = 10log,, —— (3.7)
27 12 spm‘ ‘I’ elntmf(t) + ezlhf(t))

The results of the previously presented energpsadre in decibels (dB). A higher value
means that the quality of the separation is belftéine values are negative, it means that there is
more distortion than source components. Usualljyesarange between 0 and 20 dB, but this
depends on the algorithm, the data, and the ematiyy as presented in the experiments section.

As previously mentioned, in order to compute themasures, it is necessary to have the
original data with the vocals and accompanimergkBgwhich serve as a reference). A dataset
of excerpts of 6 songs has been created, with tiginal set of audio excerpts (vocals,
accompaniment, mix), and the annotation of thegires of the lead instrument. Additionally a
ground truth annotation of the instrument recognitialgorithm output has been manually
created for each of the files, in order to be ableneasure the upper limit in separation quality
that the combination of both algorithms would halvehe instrument recognition was perfect,
the separation would be improved in the segmentyavthere is no lead instrument, and would
remain the same in the segments of the excerptenhkrad instrument is present.

A further possibility was to use the Perceptual IEaton methods for Audio Source
Separation (PEASS) toolkit as proposed by Emiyaalet[46]. This software allows the
calculation of objective measures to assess theeped quality of estimated source signals,
based on perceptual similarity measures obtaingd the PEMO-Q auditory model [47]. The
PEASS toolkit is distributed under the terms of @&U Public License version 3, but a fee is
required for the use of PEMO-Q, so this option fuaally not considered.

3.2 Source Separation for instrument recognition

The interest in this part of the thesis is to inyardhe recognition of pitched instruments in

polyphonic audio. The algorithm used by Fuhrmann4his considered as the instrument
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recognition method to be enhanced. This algoritlsnconceived to output a set of labels
corresponding with the most predominant instrumémtan excerpt of polyphonic music. The
interest is focused on the following pitched instants: cello, clarinet, flute, acoustic guitar
(acguitar), electric guitar (eguitar), organ, piaeaxophone, trumpet, violin, and also the voice.
A problem found in this system is that it too ofteisses some of the instruments in the case that
the piece has more than one predominant instrument.

The hypothesis is that in order to enhance itsoperdnce, a previous step could be
performed, in which the input audio data is segaranto several streams. These streams would
then be processed by the instrument recognitiooridiign separately, which would output
several labels.

Several separation processes can be considerallags different strategies for the label
combination, and also several models used in tsieument recognition. The schema in Figure

3.3 illustrates the combination of a separatiorcess followed by the instrument recognition:

Separated Sets of multiple
streams lables

Instrument Recognition

Separation 4>(lnstrument Recognition binati
process —»(lnstrument Recognition % combination

{Instrument Recognition

polyphonic
audio

Output
labels

Figure 3.3: Generic schema of the application of soce separation as a previous step to the instrumén
recognition.

In this work, the previously introduced FASST algon is used to separate the input
polyphonic audio into “drums”, “bass”, “melody”, dn“other’” streams. This separation
algorithm was selected, because of the charactsrief the instrument recognition algorithm
which is used in combination with it, as it doest monsider the bass or drums for the
classification. In the case of the ideal sourceasson, the “melody” stream would contain the
main instrument to be recognized, and the “othdréasn would contain the rest of the
instruments, with no presence of bass and peragssiruments. The recognition of instruments
in these streams of audio, with no presence of dranbass should be easier than in the case of
the polyphonic mixture.

However, a common limitation found in most sourepagation algorithm is that they
produce artifacts and errors in the separationdysimg some leakage of instruments in
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estimations where they should not be present. Tdakage may affect the recognition of
instruments due to the changes in timbre it prosluce

It is thus interesting to investigate in the couwséhis work if a classifier could learn how a
source separation algorithm behaves, by trainingetsoon the separated audio estimations. In
this case, what the models would learn could beesged in simple words as: these are the
features of the estimated {“drums”, “bass”, “melddjother”} stream, when the predominant
instrument of the audio is a {cello, clarinet, 8utacoustic guitar, electric guitar, organ, piano,
saxophone, trumpet, violin, or voice}. The use dfedent models for each of the separated
streams would allow the usage of a different sefaatomatically selected) features, as well as
different parameters for training the classifiaas,further detailed in Chapter 4. The following

subsection details the data used for training andelting the proposed system.

3.2.1 Data

Two different datasets have been created, basedh®ndatabase originally compiled by
Fuhrmann in [4], [22]. Firstly, the training datasentains annotated short excerpts of 3 seconds
duration in which only one instrument is predomindrhere is a total amount of around 6700
excerpts, with a minimum number of excerpts comesing to each of the instruments of 388,
and a maximum of 778. Secondly, the testing set wasted, with around 6500 excerpts
annotated with one to three predominant instrumenitss set was created by dividing the
original music pieces of Fuhrmann’s database iatpreents with the following properties:

* The predominant instruments are the same througfibilite excerpt

* The excerpts are between 5 and 20 seconds longteBlsegments are discarded, and

longer segments are divided into segments witmgtlein this range

* The excerpts are in stereo

The first property deals with the fact that thedam@inance of instruments in a music piece
typically changes amongst or even within sectioftss property allows not considering the
segmentation of the songs into the evaluation @firtstrument recognition. The second property
deals with two different issues. Firstly, the 2@8@® limitation is due to the memory limitations
in Matlab. Since some of the algorithms used haenbmplemented in Matlab, it was necessary
to divide the longer segments into smaller segm&usondly, the 5 second limitation is in order

to ensure that the instrument labeling processhasgh information to output the labels with a
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certain confidence. The third and last propertyegponds to the use case of interest, which in

this case are professionally produced music rengsjiin stereo format.

3.2.2 Evaluation method

The evaluation method compares the labels outpyetthe algorithm against the ground truth
in the annotation files, and computes the confusiatrix (as in the traditional information
retrieval evaluation), by calculating the true piess (tp), true negatives (tn), false positivgs (f
and false negatives (fn) for each of the instrumédlabels). We considel. the closed set of
labels L = {I.}, with i =1...N, where N is the number of instruments, and the dataset
X = {z,}, with i = 1...M , where M is the number of excerpts. We defille= {,}, with

i = 1...M as the set of ground truth labels, and= {y,}, with i = 1...M , andy, C L, the set

of predicted labels assigned to each instanderecision and recall are defined for each of the
labels! in Las:

M
Z yl,z‘@u

t -
S R— ,and R, =
tp, + fpl

M
Z Yi
i—1

M
Z yl,z‘@m
_ =l
M
>0
i=1

i (3.8)

where, y,.and ¢, . are boolean variables referring to the specifstance:, which indicate
the presence of the labélin the set of predicted labels, or in the set afugd truth labels
respectively. Additionally, we define the F1-mea&suas the harmonic mean between precision
and recall:
E _ 2PZRZ

= 3.9
=FiE (3.9)

Furthermore, macro and micro averages of the pusvioetrics are defined, in order to
obtain more general performance metrics, which idensall labels. The macro is here
understood as an unweighted average of the pracmigecall taken separately for each label
(average over labels).
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On the other hand, the micro average is an averageinstances, and thus, labels with a

higher number of instances have more weight irctimeputation of the average measures.
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The macro and micro F1-measures are defined akatmonic mean of respectively, the

macro and micro averages.

2P R 2P . R

_ macro”_“macro _ Micro” “Mmicro (3 13)
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macro 'macro micro micro

The following chapter details the experiments exsdubased on the presented
methodology.
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4 Experiments and results

After the implementation of the algorithms introddcdn the methodology, several experiments
have been designed and conducted. Firstly, theriexgets dealing with instrument recognition
for source separation are presented, and secohdlyexperiments focused on the source

separation for instrument recognition are introdlice

4.1 Instrument recognition for source separation

Several experiments have been conducted, basdiemschema of Figure 3.2. First, the source
separation algorithms have been evaluated withwutritegration of the instrument recognition.
In the case of Marxer’s algorithm [19] introducedsiection 2.3, two different experiments have
been conducted in order to test the benefit of gugtan-Frequency filtering, which allows
restricting the range in the stereo field and thectrum in which the fundamental frequency of
the voice is searched for. Another test has beeforpeed to evaluate how useful the internal
voice models of Marxer’s approach are. With inééwoice models it is meant the SVM model
trained with the MFCC'’s of the spectrum envelopehaf voice, as introduced in section 2.1.1.
When the voice models are not used, the algorithways performs separation of the most
predominant instrument, independently of which bne

Then, the FASST algorithm introduced in section.2.& employed to estimate the
melody+accompaniment, where the accompaniment ioentahe bass+drums+other
components. Finally, the algorithm based on sofiltee/ separation by Durrieu [41] is also
evaluated. The experiments conducted without ttegyration of the instrument recognition are:

* Marxer_noPF: No Pan-Frequency filtering, with internal voicedels

* Marxer_PF: With Pan-Frequency filtering, with internal voiceodels

* Marxer_NoVoiceModel: With Pan-Frequency filtering, no internal voicedels

 FASST

* Durrieu

All following experiments with Marxer's approach ags Pan-Frequency filtering, and

internal voice models, since they provided the besults.
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Secondly, the upper limit of the combination of timstrument recognition and source
separation has been investigated, by using thendrtruth instrument recognition:

e |R Marxer GT

IR FASST GT

* IR Durrieu GT

Then several experiments have been conducted tadiffsrent implementations of the
combination of the instrument recognition with Mars separation approach. Four
combinations were tested, depending on the useafybclassification or not, and depending on
the use of binary mixing or not:

* IR Marxer_hinClassif_binMix

* IR _Marxer_notbinClassif_notbinMix

* IR Marxer_binClassif _notbinMix

* IR Marxer_notbhinClassif binMix

The integration was also tested on other staté@fart separation algorithms, in order to
investigate the improvement in the quality of tlesults. Since the best combination found for
the integration was the use of a binary classificaiind a not binary mixing strategy, only these
results are reported here:

* |R_FASST binClassif_notbinMix

* |R Durrieu_binClassif_notbinMix

At last, in theNo Separation experiment, the output estimated vocals is equdié original
mix with 24dB attenuation, and the estimated acammpent was the original mix. Thus no
separation has taken place. This experiment wasetwad to test the adequacy of the evaluation
measures used. Table £dntains the results of the previously introducegegiments.

Additionally, the figures in the Annex A show thetdiled SDR per song, for each of the
experiments performed. In the first figure, thewgrd truth is the accompaniment, and in the
second the vocals. Some of the songs are cleanlg difficult for the algorithms to separate. For
instance, the first song corresponds to an Alarosiddette song excerpt in which the vocals are
very soft, which certainly poses problems to bolle tsource separation and instrument
recognition algorithms. Figure 4.1 and Figure 4lbve the output probabilities in this

challenging excerpt, for both the multiclass andaby classifier, showing the benefits of the
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binary classifier. The voice, only present in tlee@d half of the excerpt is better identified
when a binary classifier is used.

Some conclusions can be obtained by analyzindnalbata in Table 4.1. A first conclusion
is that filtering the input mix in pan and frequgncwith Marxer's approach, some quality
improvement can be achieved, as seedanxer PF experiment. A second conclusion is that the
results obtained by both Durrieu and FASST appreselte better than Marxer’s. The difference
in quality is mostly due to the Signal to Artifad®atio, which is worse in Marxer’s approach.
This is reasonable since this is approach is basetime frequency masking, which usually
produces more artifacts than other approachesas®MF, but the advantage is that it is much
faster, which is the main interest of Marxer's agmh. Additionally, the online approach
estimates the fundamental frequency in each framtgad of using the information of the whole
excerpt to calculate the fundamental frequencyettayy, what makes the process faster, but

typically less reliable.

Table 4.1: SISEC quality measures for different exgriments in the own database of multitrack data. Tk
following abbreviations have been used: PF — use Ban-Frequency filtering, IR — combination of the surce
separation with Instrument Recognition, GT - combiration of the source separation with a Ground Truth
instrument recognition, binClassif: use of binary tassification, binMix: use of binary mixing.

Experiment Lead (vocals) Accompaniment

SDR | SIR ISR | SAR SDR SIR ISR SAR
Marxer_noPF 0.37 | 3.99 | 12.02 | 1.77 7.41 17.58 | 13.27 7.95
Marxer_PF 089 | 584 | 9.48 | 0.78 7.93 15.32 | 16.29 9.11
Marxer_NoVoiceModel 0.05 | 4.31 | 10.54 | 0.63 6.47 17.31 | 13.04 6.84
FASST 217 | 281 | 6.32 | 538 9.16 12.36 | 14.79 14.48
Durrieu 3.00 | 690 | 9.12 | 4.25 10.00 | 15.45 | 16.96 12.80
IR_Marxer_GT 253 | 1097 | 9.47 | 1.43 9.56 15.95 | 21.36 11.24
IR_FASST_GT 294 | 6.09 | 6.32 | 4.34 9.97 12.78 | 18.12 14.84
IR_Durrieu_GT 5.02 | 14.10 | 9.60 | 5.61 12.01 | 16.32 | 23.49 14.74
IR_Marxer_binClassif_binMix 179 | 994 | 6.66 | -0.13 8.82 13.19 | 22.13 11.57
IR_Marxer_notbinClassif_nothinMix | 1.19 | 9.01 | 3.36 | -2.97 8.22 10.12 | 27.79 16.01
IR_Marxer_hinClassif _nothinMix 219 | 9.03 | 6.16 | 0.52 9.23 12.63 | 21.64 12.45
IR_Marxer_notbinClassif_binMix 1.10 | 7.11 | 433 | -2.90 8.14 10.96 | 24.64 13.38
IR_FASST_binClassif_notbinMix 272 | 473 | 536 | 3.94 9.75 11.84 | 19.04 | 16.30
IR_Durrieu_binClassif _notbinMix 3.71 | 11.44 | 6.04 | 3.78 10.72 | 12.74 | 23.53 15.64
No Separation 0.46 | 0.56 | -6.96 | 49.06 7.03 36.28 | 7.04 218.57
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Alanis Morissette - you_oughta_know_236_253.wav
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Figure 4.1: Probability of presence of the elevemstruments (including voi — the voice), given as d¢put of the
non binary classifier. A flute is detected at the ed of the excerpt where a voice should be detected.

Alanis Morissette - you_oughta_know_236_253.wav
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time

Figure 4.2: Probability of the two classes of theibary classifier: voice, and non-voice. The binarglassifier
provides more accurate recognition results.
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The third conclusion is that the combination of tinsent recognition with source
separation provides an improvement in quality. e tase of a perfect recognition of the
presence of the lead instrument (by using the mbna@eated ground truth), the tables show a
clear increase in the performance of the sourcaragpn algorithms, as it can be seen in
experiments containing GT. In fact, if Marxer's alijnm is combined with the instrument
recognition, it can potentially achieve similar agggion quality levels thabDurrieu or FASST, as
shown in the experimernR _Marxer_GT. As it can be observed in Table 4.1, the quakty i
increased by 2.6dB in the case of vocals, and brertian 1.5 dB for the accompaniment, with
respect tdMarxerPF. The experiments with the different combinatiofis@urce separation with
the instrument recognition provide different resulfhe best results are obtained with a non
binary mixing, and binary classification, achieviagDR only 0.3dB lower than the upper limit,
obtained the ground truth instrument recognitios,itacan be observed when comparing the
results of the experimentd? Marxer_binClassif_notbinMix andIR_Marxer_GT.

If the instrument recognition is applied to oth@paration algorithms, their separation
guality is also potentially enhanced with the gruruth instrument recognition, but also with
the real algorithmlR_FASST _binClassif_notbinMix andIR_Durrieu_binClassif_notbinMix).

The No Separation experiment seems to provide evidence that it dm¢smake sense to
consider the SDR as a unique measure to evaluatgudlity of the source separation. Even
though no separation at all has taken place, thR D both vocals and accompaniment is very
similar to the one obtained with Marxer. This isedio the fact that in thé&lo Separation
experiment; the SAR is excellent, since by defimitthe original mix has no artifacts. However,
the SIR is very bad, especially for the vocalsg¢sithe rest of the mix is acting as interference.
And also in the accompaniment, the complete preserfiche vocals reduces the SIR to its

minimum possible value.

4.2 Source separation for instrument recognition

Four different experiments have been conductedestigate the benefits of the separation of
the audio signal into different streams prior t@ thpplication of an instrument recognition
algorithm. Firstly, the original algorithm proposby Fuhrmann in [4] was used to identify the
instrument present in polyphonic audio (Experimé&nt Secondly, the same system was then

applied to the recognition of the instruments pmése four different streams of audio,
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corresponding to the estimations of the bass, drumetody and other sources by the previously
introduced FASST separation algorithm (ExperimentThen, four SVM models were trained
on the separated audio outputted by FASST, andubed for the labeling (Experiment 3). Then,
a simple separation of the polyphonic audio infty kght, mid and side (LRMS) streams was
used as input to the instrument recognition alparitvith the original model.

Initially, the strategy for combining the labelstime four first experiments (in the case of
using more than one model) was a simple union efptiedicted labels. The SVM models were
initially trained with the same parameters in toerfexperiments: the ones from the original
recognition system, which optimized the performamc&xperiment 1. The model used was a
polynomial kernel, of degree 4, and a cost parame@l.

Then, an additional set of experiments were designdry to optimize the performance, by
using different label combination strategies, audirtg the SVM parameters for each of the

models (Experiment 5).

4.2.1 Experiment 1: original algorithm

The first conducted experiment (Experiment 1) wag\valuate the original algorithm by itself,

without any previous separation step as showngarei4.3:

polyphonic . Output
audio " Original model }m labels

Figure 4.3: Original instrument recognition algorithm without previous separation.

The labels obtained in this experiment are namédrtm: “no separation”. The results are
included in Table 4.2.

4.2.2 Experiment 2: FASST separation + original models

In this experiment, the FASST (bass, drums, meblody other) separation is used, along with the

original models for the instrument recognitionsaswn in Figure 4.4:
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Figure 4.4: FASST separation into the drum, bass, elody and other streams, combined with the instrumst
recognition using the original models.

Different combinations of the labels have beendtria order to investigate which

combination produces the better recognition reselty: dbmo means that the measures have

been computed with the output labels which areatgregation of the labels outputted in: d

(drums) + b (bass) + m (melody) + o (other). Tah2shows the results for the micro and macro

averages of the precision, recall and F1-measutasrexperiment.

Table 4.2: Results of the combination of source saption with instrument recognition, with the original
models. The combinations of 3 labels have been oteid in this table, since they were not significant

MacPrec | MacRec | MicPrec | MicRec | MacF1 | MicF1

dbmon | 0.336 0.455 0.373 0.492 | 0.387 | 0.424
dbmo 0.310 0.370 0.330 0.385 | 0.337 | 0.355
dbmn | 0.363 0.438 0.405 0.474 | 0.397 | 0.437
dbon 0.341 0.406 0.391 0.461 | 0.371 | 0.423
dmon | 0.385 0.403 0.391 0.409 | 0.394 | 0.399
bmon | 0.356 0.419 0.389 0.432 | 0.385 | 0.409
db | 0.294 0.199 0.371 0.273 | 0.238 | 0.315
dm 0.412 0.263 0.369 0.256 | 0.321 | 0.302
do| 0.354 0.223 0.336 0.231 | 0.274 | 0.274
dn 0.483 0.333 0.510 0.352 | 0.394 | 0.417
bm 0.365 0.268 0.360 0.253 | 0.309 | 0.297
bo| 0.301 0.231 0.328 0.233 | 0.261 | 0.273
bn 0.530 0.330 0.513 0.362 | 0.407 | 0.424
mo | 0.364 0.241 0.320 0.186 | 0.290 | 0.236
mn | 0.447 0.336 0.502 0.308 | 0.383 | 0.382

d 0.359 0.123 0.395 0.164 | 0.183 | 0.232

b 0.269 0.098 0.360 0.138 | 0.144 | 0.200

m 0.308 0.184 0.381 0.133 | 0.230 | 0.197

0 0.335 0.151 0.321 0.116 | 0.209 | 0.170

n 0.578 0.249 0.708 0.258 | 0.349 | 0.378
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The results show that the original algorithm with@ource separation (labeled with n)
provides better results than any of the combinatwithe dbmo labels, obtained by means of the
separation into streams. This decrease in the qpeafoce probably occurs due to the fact that the
separation is not perfect, there is some energgstfuments in streams where there should not
be, and their timbre is modified. With the sepatatadio, the best results of the F1-measure, not
using the original labels (n) are obtained with tbembination of all separated tracks:
(drums+bass+melody+other) d+b+m+o. In this case,réitall is better than with the original

algorithm (n), but the precision is quite worsefts® F1-measure is lower.

4.2.3 Experiment 3: FASST separation + models trained wit separated audio

The schema of the conducted experiment is showmeifiollowing figure:

Separated Sets of multiple
streams lables

b—»(Separated bass model b
Ft;AC\jSST o/ Separated drums model |~ binati Output
mo —ma(Separated melody model m—» O ination labels
separation
—o{Separated other model o

Figure 4.5: FASST separation into the drum, bass, elody and other streams, combined with the instrumst
recognition using models trained on the separatedugio.

polyphonic
audio

In this case, the models used for the classificatiahe instrument recognition module have
been trained with the separated audio, as descib&hapter 3. Four different models have
been created, one for each of the output streartteedfFASST bdmo separation algorithm. Each
of the models makes use of a different set of featuselected automatically during the training
process. Table 4.3 shows the results for this éxgert. Note that the Experiment 1 results is
also included in the table, in row: n (no separgtifor an easier comparison. Since it would also
be possible to add the “n” label to the “bdmo” sefslabels, these combinations are also
included in Table 4.3.
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Table 4.3: Experiment 3 results, showing that usinghe models trained on separated data provides beit
results than using the original models. The combirtaons of 3 labels have been omitted in this table.

already improves the results, obtaining a Microeglal to 0.411. The best micro F1-measure
obtained without the “n” labels is 0.446, by combgthe labels outputted by the four different

models: dbmo. If the “n” labels are also combirnbeé, F1-measure increases to 0.480.

(precision, recall and F1) obtained for each ofitigtrument in this experiment, with the dbmo

MacPrec | MacRec | MicPrec | MicRec | MacF1 | MicF1
dbmon 0.475 0.373 0.593 0.403 0.418 | 0.480
dbmo 0.490 0.306 0.625 0.347 0.377 | 0.446
dbmn 0.493 0.343 0.614 0.371 0.405 | 0.462
dbon 0.492 0.336 0.613 0.363 0.399 | 0.456
dmon 0.491 0.366 0.612 0.395 0.419 | 0.480
bmon 0.493 0.357 0.614 0.382 0.414 | 0.471
dm 0.544 0.252 0.692 0.287 0.345 | 0.406
do 0.518 0.210 0.680 0.254 0.299 | 0.370
dn 0.543 0.287 0.670 0.308 0.375 | 0.422
bm 0.550 0.218 0.690 0.241 0.312 | 0.357
bo 0.503 0.172 0.662 0.202 0.256 | 0.310
bn 0.546 0.269 0.671 0.282 0.360 | 0.397
mo 0.547 0.267 0.684 0.294 0.359 | 0.411
mn 0.539 0.312 0.666 0.331 0.395 | 0.442
d 0.554 0.131 0.740 0.166 0.212 | 0.271
b 0.482 0.058 0.641 0.067 0.103 | 0.122
m 0.594 0.199 0.740 0.219 0.299 | 0.338
0 0.551 0.148 0.707 0.172 0.233 | 0.276
n 0.578 0.249 0.708 0.258 0.349 | 0.378

(drums+bass+melody+other) configuration are shaowhable 4.4:

The “n” labels provide a Micro F1 of 0.378. The dmmation of the “m” and “0” labels

The true positives, true negatives, false positif@se negatives, and the derived measures

Table 4.4: Performance per instrument in bdmo withthe models trained on the separated data of eachreaim

cello | clarinet | flute | acguitar | eguitar | organ | piano | saxophone | trumpet | violin | voice
tp 36 6 36 139 268 78 241 107 51 56 568
tn 2418 | 2547 | 2425 | 2060 1687 | 2180 | 1683 2245 2426 | 2384 | 1586
fp 128 48 96 98 79 126 49 108 69 87 64
fn 69 50 94 354 617 267 678 191 105 124 433
prec | 0.22 0.11 | 0.27 0.59 0.77 ]0.382 | 0.831 0.498 0.425 | 0.392 | 0.899
rec | 034 | 011 | 0.28 0.28 0.3 0.226 | 0.262 0.359 0.327 |0.311 | 0.567
F1 0.27 0.11 | 0.27 0.38 0.44 |0.284 | 0.399 0.417 0.370 | 0.347 | 0.696

Figure 4.6 illustrates visually the recognitionfpemance per instrument, when the models

used for the recognition have been trained withstiygarated data.
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Figure 4.6: Recognition performance for each of théstruments with a previous FASST bass, drums metty
and other separation, and with the models createdogcifically for the separated data in Experiment 3

The best results are obtained with the voice, aafgea 0.90 precision, 0.57 recall and 0.70
F1-measure. The clarinet seems to be the mostedigatly instrument to be recognized, with a
F1-measure of about 0.11. A further observatiorthet the performance of the instrument
recognition depends on the stream and the modeinBtance, the recognition in the bass stream
was better for those sounds with low frequency eantsuch as the excerpts containing a cello,

while they were not so well recognized in the adghe streams.

4.2.4 Experiment 4: Left-Right, Mid-Side (LRMS) separation + original models

In this experiment, the audio was separated into treams in a very simple manner, with | =
Left, r = Right, n = Left+Right (the Mid), and sl=eft-Right (the Side), and the original model

was used.
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Figure 4.7: Left-Right-Mid-Side separation into Irns streams, used as input of the original instrument
recognition models (with no training on this specit separation method)

As it can be observed in Table 4.5, the obtainedlte show that there is not a considerable
difference in the performance with this simple sapan, with a maximum Micro F1 = 0.451,
compared to the case of using the time consumin§34Asource separation with the original

labels (n), achieving a maximum F1 = 0.480.

Table 4.5: L-R+M-S separation results, which are oly slightly worse than with more complex and time
consuming separation algorithms.

MacPrec | MacRec | MicPrec | MicRec | MacF1 | MicF1
n 0.578 0.249 0.708 0.258 | 0.349 | 0.378
S 0.538 0.193 0.586 0.214 | 0.284 | 0.313
ns 0.501 0.306 0.595 0.334 | 0.379 | 0.427
I 0.578 0.249 0.708 0.258 | 0.349 | 0.378
r 0.590 0.249 0.720 0.258 | 0.350 | 0.380
Ir 0.544 0.301 0.672 0.314 | 0.388 | 0.428
nslr 0.485 0.338 0.582 0.367 0.398 | 0.451

4.2.5 Experiment 5: Optimizing the performance of the FAST separation + models
trained with separated audio

This experiment aimed at improving the results ioleh in Experiment 3, with: FASST
separation + models trained with separated audnezeSlifferent models are used for each of the
4 streams of separated audio, it is possible ttoparan optimization of the parameters for each
of them. Furthermore, the initial strategy for tkhembination of labels in the previous
experiments was very simple: the output labels wkesunion of the predicted labels by all
models. In this experiment, different combinati@re explored based on the requirement of a
degree of overlap N between the outputs of the msodéhis means that the output labels
correspond to the ones present in more than Neo$ebs of labels predicted by the models.

After running the experiments, it was found (as extpd) that if the value of N was
increased, the precision increased as well, aexipense of a lower recall. With N = 0, which

means that no overlap is required, the obtainedarid is equal to 0.446. If N = 1, which is
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equivalent to outputting only the labels which hiaglen predicted by at least two of the

classifiers, the micro precision is increased atrtaximum level from all experiments: 0.733,

but the recall is considerably reduced, and thus Rfh decreases to 0.354. The effect that
increasing the degree of overlap has in the pedon® of the integration can be observed in
Figure 4.8.

MacPrec MacRec MicPrec MicRec MacFl MicF1

Figure 4.8: Effect of increasing the minimum degre®f overlap N in the labels outputted by the clasBers,
with dbmo streams. The precision is increased, buhe recall and F1-measure decreased.

The use of such strategy would only be useful & tequirement was to have a better
precision. However, the Fl-measure decreased, lamsl the overall performance could be
considered worse.

On the other hand, the use of a different confiiomafor the training of each of the four
models led to some improvements in the results.cbméiguration which allowed improving the
performance the most was found to be the use ofvarldegree in the polynomial kernel of the
SVM classifiers. More specifically, the followingpmbination was found to provide the best
results: a second degree polynomial kernel forbides, melody and other models, and a third
degree polynomial kernel for the drums model, imbmation with a cost parameter of C=0.1 in

all of them.
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Figure 4.9 shows an overview of the results of élkperiments, in which the minimum
degree of overlap between labels was set to N=@hnytrovided the best results in terms of the

F1-measure. The output labels were thus the urfiall abels predicted by each of the models.

07l B cpln |
: I Exp2: dbmo
[ 1Exp3: domo
= [ Exps: dbmo

I Exp5: dbmonsir ||

MacPrec  MacRec MicPrec MicRec MacF1 MicF1

Figure 4.9: Comparison of the instrument recognitio performance obtained with several configurationsof

the experiments. “Expl: n” corresponds to the resu$ obtained with the n label, with no separation as pre-

step. “Exp2: dbmo” corresponds to the results obtaied, with the FASST drum +bass +melody+other
separation, without a training of the models on tk separated audio. “Exp3: dbmo” corresponds to theame
combination of labels, but using models trained wit separated audio. “Exp5: dbmo” corresponds to the
experiment which used different model parameters fo each of the four streams. “Exp5: dbmonslir’

corresponds to the combination of the labels from Exp5: dbmo” and the labels which were obtained in
Experiment 4, with the LRMS separation.

The first column of each of the evaluation measurdsigure 4.9 corresponds to the results
from Experiment 1. As a reminder, these are theltesbtained with the instrument recognition
algorithm by itself, which are to be improved by ttombination with the source separation. It
can be observed that “Expl: n” represent the m@stige results, at the expense of having a low
recall, which provides a medium Fl-measure. Expanin2 makes use of the FASST dbmo
separation as a pre step to the instrument redognhiut the precision drops, and the results can
be considered as worse, since the F1-measure &.Idle worse results were considered to be

due to the errors and artifacts produced by thersgipn, and therefore, Experiment 3 was
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designed to acknowledge these problems, by usirdelmmf the instruments trained on source
separated data. As it can be observed in FiguretdeQresults obtained in “Exp 3: dbmo” are
considerably better than with “Exp 2: domo”, andoatExpl: n”, in terms of F1-measure. The
results from “Exp5: dbmo” show that it is possibibefurther improve the instrument recognition
by tuning the parameters of each of the dbmo moé&slly “Exp5: dbmonsir” corresponds to
the best results obtained in any of the automaisgtrument recognition experiments, by
combining “dbmo” labels with the tuned models ahd tnslr” labels obtained with the Left-
Right-Mid-Side separation from Experiment 4. Theéaded results for all possible combination
of labels can be found in Annex B, as well as ariigwith the evaluation measures for each of
the instruments to be recognized. The best micknBasure obtained goes above 50%, thanks
to the recall gained by the combination of all lab&he initial micro F1-measure, obtained with
no separation was 37.8%, so we were able to impeVE2.2% in absolute terms, which

represents a 32.3% relative to the initial value.
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5 Conclusions and Future Work

The present work has focused on the study of tlaioa between instrument recognition and

source separation. The main motivation was to $yiergies between both kinds of algorithms,

in order to improve their quality, since currenpegaches still present many limitations in the

context of professionally produced music recordin@s/ercoming the limitations of the

algorithms would be of much importance for both thsearch community and the industry as

there are many areas of application. The positegilts obtained in this work show that the

followed methodology is promising, with many podgiles for further research, as well as

potential applications.

5.1 Contributions

The following list contains the main contributionisthis work:

The analysis of the limitations of the state-of-#re instrument recognition and source
separation algorithms, and the proposal and imphkatien of effective methods for their
integration.

The improvement of the results of all the considestate-of-the-art source separation
algorithms, by using a prior instrument recognitssep.

The innovative use of source separated data to the classifiers used for automatic
instrument recognition, which allowed to considéyalmproving the quality of the
results.

The proposal and use of a simple separation meshiotl as the Left-Right-Mid-Side
(LRMS), which is a fast but effective alternative slower separation algorithms, when
used for the integration with an instrument rectignialgorithm.

The relative improvement of the performance ofabomatic instrument recognition by

around 32% (in terms of micro F1-measure).
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5.2 Conclusions

In relation to the contributions, some conclusiaas also be derived. The most important
conclusion is that we have been able to find syeergetween instrument recognition and source
separation, validating the main hypothesis of wask.

Firstly, it is possible to improve the quality oéveral state-of-the-art source separation
algorithms by the combination with an instrumergognition algorithm, as presented in section
4.1. The amount of quality gained depends on tleeiBp manner in which the combination is
executed, but it also depends on the databasefoisdte evaluation. As previously introduced,
the proposed method is mostly effective in songeratihere are sections in which the target
instrument (in this case the voice) is not present.

Secondly, the recognition of instruments has alsenbimproved by around 32% of the
original performance in terms of the F1-measuréh aiprevious separation step, as described in
section 4.2. However, the way in which the combarats made is very important to be able to
improve the results of the algorithms: in sectioB.2 it was found that the application of a
source separation pre-step may not provide a betteignition of the instruments if the models
do not consider the limitations and errors of thpasation algorithms. Training the SVM models
used for classification with the separated audis been found to be an effective manner of
acknowledging the typical source separation erdeeling to a better performance, which can
be further enhanced by tuning the parameters ofi edicthe different models used in the
instrument recognition.

The main drawback of the use of source separasiomat it is typically slow, except for the
online approaches, which generally perform worse.chse that the execution time is an
important issue, it was concluded that it is alssgible to substantially increase the quality of

the instrument recognition with a simple and faRMS separation.

5.3 Future work

Some positive results have been obtained, and giysehave been found, in a fairly similar
degree in both directions. However, there is stibm for improvement, and thus much work
could still be done to obtain more accurate res@ltiglitionally, further applications are devised.
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5.3.1 Improving source separation with instrument recogniion

One of the drawbacks of the algorithm used forrument recognition is that the best
recognition is obtained with audio excerpts of a3 seconds. In the proposed configuration,
the best results would be obtained if we had infdram about the presence or absence of the
target instruments with the best temporal resatuéie possible. Further work could deal with the
investigation of other approaches to instrumenbgadion that rely on smaller segments of
audio.

Anyhow, the presented combination method is onlgfulsfor avoiding the separation to
take place in the segments of the input audio @tcer which the target instrument is not
present. However, if the target instrument is prestie combination is limited by the quality of
the separation algorithm used. Possible furtheearh would be the improvement of the
instrument recognition methods which are internalbgd in the separation algorithms for the
estimation of the fundamental frequency trajectody additional possibility would be the
combination of musicological knowledge to restritie possible candidate pitches of the
instruments, by exploiting the musical context.

Other extensions of this thesis would be the camaiibn of other instruments apart from
the voice, the use of MIDI information to assise thundamental frequency estimation in
combination with the instrument recognition, or #nealuation of the quality of the separation

with the use of perceptual measures, such as e artained with PEASS.

5.3.2 Improving instrument recognition with source separdion

A possible extension of this thesis would be tdher investigate how to improve the instrument
recognition, with a more complex consideration bk tprobabilities of presence in the
combination of the predicted labels in each of slhreams after the separation. Also, a deeper
analysis of the characteristics of each of the is¢pd streams and the instrument recognition
performance, could allow a tailored implementatainthe models: instead of considering 11
instruments to be recognized by each of the modeatsuld be possible to focus each model in
some of the instruments only, according to the attaristics of the separated stream. Some
other possibilities for further work could be theciease of the amount of instruments to be

recognized.
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5.3.3 Improving other MIR tasks

The positive results obtained in this work and othentributions which employed
harmonic+percussive separation to improve chorcediien, melody extraction or genre
classification, suggest that musical audio sepamaltielps in the semantic analysis of musical
data. Many additional tasks within MIR would thuksaa benefit of the combination with
instrument recognition and source separation, tbasuring many possibilities for further

research. Some of these tasks could be the comgridentification or the tempo estimation.

5.3.4 Applications

Some potential applications which could be endesaain relation to this thesis are:

* Musical hearing aids based on timbral information: Listeners with hearing loss
benefit of processes such as gain, compressionegundlisation when dealing with
musical audio. Combined with research about theqgmtion of timbre by hearing-
impaired listeners, it could be possible to devedopearing aid system which analyses
the musical audio content and adapts it to the agpfate input for the user, by
considering the instruments present in the pigceodld also be possible for the user to
adjust the parameters of the hearing aid in ordehdve the most pleasant musical
experience as possible.

» Graphical User Interface (GUI) assisted source sepation and remixing based on
Pan-Frequency (PF) filtering: This application would allow a user to select $ipec
regions of the PF space with a GUI and have imntediaditory feedback of the audio
content within the selected regions, thanks tolalaecomputational cost of PF filtering.
The application would then identify and display tmest present instruments in these
regions. The user could then chose the ones hiyshierested to separate, or could also

adjust their volumes, panning and equalisatiorréate a new mix.
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Annex B

Best instrument recognition results, obtained inpdétkment 5 with the combination of:
drum+bass+melody+other tuned models (dbmo labehs) Left-Right-Mid-Side (Irns labels).

The evaluation measures are provided for eacheottimsidered instruments. The voice is the
easiest to be recognized, while the clarinet istost difficult.
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Macro and micro averages of the evaluation meagaresach of the possible label combinations
in Experiment 5. The best result is obtained wlig ¢combination of all labels (“dbmolrns”), with

a micro F-measure of 0.503, compared to 0.378 wttkource separation (“n”)

MacPrec | MacRec | MicPrec | MicRec | MacF1 | MicF1
dbmolrns 0.410 0.455 0.504 0.501 0,432 | 0,503
dbmon 0.440 0.415 0.549 0.455 0.427 | 0.497
dmon 0.454 0.399 0.566 0.435 0.425 | 0.492
bmon 0.459 0.391 0.569 0.429 0.422 | 0.489
dbmn 0.459 0.393 0.571 0.428 0.423 | 0.489
mon 0.482 0.373 0.596 0.405 0.420 | 0.482
nsiro 0.458 0.383 0.555 0.422 0.417 | 0.479
dmn 0.477 0.372 0.595 0.401 0.418 | 0.479
dbon 0.455 0.369 0.570 0.412 0.408 | 0.478
dbmo 0.450 0.367 0.563 0.410 0.405 | 0.475
bmn 0.482 0.363 0.597 0.394 0.414 | 0.474
don 0.475 0.349 0.595 0.387 0.402 | 0.469
dmo 0.468 0.348 0.586 0.388 0.399 | 0.467
dbn 0.485 0.337 0.603 0.372 0.398 | 0.460
dbm 0.472 0.336 0.589 0.374 0.393 | 0.458
mn 0.513 0.334 0.637 0.356 0.404 | 0.457
nsir 0.485 0.338 0.582 0.367 0.398 | 0.451
bmo 0.471 0.325 0.583 0.363 0.385 | 0.448
dm 0.495 0.307 0.623 0.341 0.379 | 0.441
dn 0.515 0.306 0.640 0.333 0.384 | 0.438
mo 0.503 0.298 0.617 0.330 0.374 | 0.430
Ir 0.544 0.301 0.672 0.314 0.388 | 0.428
bn 0.518 0.296 0.637 0.322 0.377 | 0.428
dbo 0.450 0.287 0.581 0.338 0.350 | 0.428
ns 0.501 0.306 0.595 0.334 0.379 | 0.427
bm 0.500 0.281 0.616 0.313 0.360 | 0.415
do 0.472 0.259 0.615 0.305 0.334 | 0.408
db 0.481 0.230 0.620 0.277 0.312 | 0.383
r 0.590 0.249 0.720 0.258 0.350 | 0.380
I 0.578 0.249 0.708 0.258 0.349 | 0.378
n 0.578 0.249 0.708 0.258 0.349 | 0.378
m 0.546 0.231 0.673 0.254 0.324 | 0.368
bo 0.451 0.219 0.591 0.261 0.295 | 0.362
d 0.517 0.181 0.680 0.218 0.269 | 0.330
s 0.538 0.193 0.586 0.214 0.284 | 0.313
o} 0.503 0.173 0.642 0.200 0.257 | 0.305
b 0.470 0.121 0.621 0.151 0.193 | 0.244
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