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Abstract 

Due to the increasing amount of digital music available, there is a clear need of a proper 

organization and effective retrieval. Automatic instrument recognition techniques are useful for 

satisfying such needs, by labeling music pieces with their instrumentation, but also as support to 

the extraction of other semantic information such as the genre. Source separation has also 

recently been applied to facilitate the analysis of musical data, as well as to other applications 

such as karaoke or post production. In contrast with the huge need for both algorithms, the 

results obtained so far show that there is still much room for improvement. 

The main purpose of this thesis is to find synergies between instrument recognition and 

source separation algorithms in two different tasks: 1) the separation of a target instrument from 

the accompaniment, and 2) the automatic labeling of songs with the predominant music 

instruments. Several combination strategies are presented, aimed at overcoming some of the 

limitations of current state-of-the-art algorithms. In the first task, instrument recognition is used 

to detect the presence of the target instrument in order to apply or bypass the separation 

algorithms. In the second task, source separation is used to divide the polyphonic audio signal 

into several streams, given as input to the instrument recognition models. Promising results were 

obtained in the conducted experiments, showing that this is a path to be further investigated. 
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1 Introduction 

1.1 Motivation and goals 

During the last 15 years, we have seen how the amount of music we have access to, has been 

increasing in a way that it goes far beyond the time we have to listen to it. Due to the amount of 

data available both locally and remotely, there is a clear need of a proper organization (such as 

cataloguing or indexing) and an effective retrieval of the musical data we are interested in.  

The instrumentation of musical pieces is a very useful descriptor which can be successfully 

exploited for their retrieval at several levels. A use case in which this usefulness is obvious 

would be when a user is interested in finding songs with the presence or absence of certain 

instruments. Additionally, the retrieval of music of a certain genre can certainly be enhanced by 

knowing the instrumentation of a song. A simple example would be that the knowledge of the 

presence of a banjo in a song makes the piece more likely to be country or folk than classical 

music. Furthermore, the instrumentation in a song is also one of the most important cues for the 

perceived similarity between two songs [1]. Thus, the labeling of pieces of music with the most 

relevant instruments which are present can help to bridge the semantic gap. The semantic gap is 

due to the misleading connections between low level acoustical descriptors (attributes computed 

directly from the raw audio signals), and the higher level data which represents the semantic 

interpretation of the audio [2]. This is considered to be the main problem for increasing the 

performance of Music Information Research (also known as Music Information Retrieval, or 

simply MIR) algorithms. Due to the semantic gap, it is very hard to go above 75% accuracy 

(glass ceiling) in many of the MIR tasks [3]. Thus, musical instrument recognition can help 

bridging this gap [4], which would be very relevant for both research and industry: music 

recommenders or automatic taggers of large music databases would highly benefit from it. The 

automatic classification of the instruments present in a musical piece would also be an important 

step towards the realization of the semantic web, since it deals with one if the major bottlenecks: 

the manual annotation of data. 

Independently, source separation algorithms have been proven to be useful for many 

applications [5]. Audio source separation deals with the problem of recovering the original 

signals from a mixture by computational means.  Even though the quality of the source 
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separation in real world musical signals can still be much improved, separating or at least 

increasing the presence of a source or a group of sources in a mixture (e.g. harmonic-percussive 

separation) helps to increase the results within MIR tasks, such as chord detection, melody 

extraction [6], genre classification, etc, which could also help bridging the semantic gap. There 

are several approaches to source separation depending on the number of mixture channels, prior 

knowledge about the characteristics of the sources, etc. The more knowledge about the sources, 

leads to an easier and better source separation. This process is thus enhanced by the identification 

of the instruments present in the mixture. On the other hand, the identification of instruments is 

easier in monophonic than in polyphonic mixtures, therefore, a source separation pre-step should 

improve the detection of musical instruments. 

The goal of this master thesis is the study of the relation between source separation and 

instrument recognition algorithms, and the investigation of the synergies between them. The 

main motivation is my interest in both areas and the relevance of this research question: there 

have been previous attempts to combine both source separation and instrument recognition, but it 

is not a solved question, and there is still much room for improvement. This master thesis aims 

thus for the application of source separation algorithms in order to enhance the recognition of 

music instruments in polyphonic mixtures and vice versa. Several source separation methods are 

considered, so as to compare different approaches. One of the frameworks for source separation 

has been developed by the MTG in collaboration with Yamaha, and has been mainly focused on 

the separation of the singing voice in polyphonic mixtures. On the other hand, the instrument 

recognition framework considered is based on the work presented by Fuhrmann and Herrera in 

[4], which deals with the tagging of music excerpts with the most relevant instruments that are 

present. 

This work will hopefully be of relevance to the research community, contribute to the body 

of knowledge and the state-of-the-art in the field, and eventually to improvements in the 

application of source separation techniques in MIR, and vice versa. Additionally, it can be useful 

for the industry, in terms of the previously introduced applications.  
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1.2 Structure of the thesis 

This document is divided into five different chapters. The first chapter introduces the reader into 

the motivation and goals of this work, and presents the structure. The second chapter describes 

relevant work for this thesis, including theoretical background and the state-of-the-art techniques 

and algorithms in both musical source separation and instrument recognition. The methodology 

for the combination of both algorithms is presented in Chapter 3, along with the data and the 

evaluation measures employed. Chapter 4 details the experiments conducted, and presents the 

results of the application of instrument recognition to improve source separation and vice versa. 

Finally, Chapter 5 presents the contributions and conclusions obtained with this work, and 

directions for further research are proposed. 
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2 State of the art 

This chapter presents the theoretical background relevant for this thesis and a review of relevant 

work, mainly dealing with instrument recognition and source separation. Finally, it presents 

some of the approaches in the literature which have used timbral models to improve source 

separation, and approaches which use source separation as a prior step to instrument recognition. 

2.1 Theoretical background 

The theoretical background upon which the rest of the thesis is built is introduced in this section, 

assuming familiarity with basic concepts within signal processing, statistics and musicology. 

Timbral features are introduced, along with some statistical methods. Both of them form the 

basis of the automatic instrument recognition, and also play a crucial role in source separation. 

2.1.1 Timbral features 

Timbre is the term used to differentiate sounds which have the same pitch, intensity, and 

duration. Even though this is probably the most accepted definition of timbre, there have been 

many others, due to its difference in meaning in several contexts. Timbre is thus a vague word, 

encompassing many parameters of perception. 

Humans use timbre information to discriminate between musical instruments, and a 

considerable number of studies have investigated this ability. Martin [7] provided a review of the 

findings of the work of several authors in his PhD thesis, including the instruments which were 

more difficult to be identified, or the difference of accuracy between musicians and non 

musicians. Additionally, he conducted experiments testing both the human and the computer’s 

ability to recognize western orchestral instruments. Herrera et al. [8] also provided some 

conclusions which can be extracted from the literature; first, the recognition of instruments by 

humans is easier if they are presented musical phrases instead of isolated notes; second, it is 

easier to recognize families of instruments (e.g. chordophones, aerophones, etc.) than 

instruments; third, the accuracy in the classification decreases with a higher number of categories 

(instruments); and finally, the musical training helps in the recognition. 
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Much work related with timbre has been undertaken by specialists in several disciplines. In 

1977, Grey conducted listening tests to create a multidimensional space, with the most 

representative dimensions of the timbre of a musical instrument [9]. A technique called 

multidimensional scaling was used to capture the mental representation of the stimuli, by 

exploring the perceived similarity between them. More recently, Iverson and Krumhansl [10], 

and McAdams et al [11] have further worked in the creation of timbral spaces, finding low level 

acoustic features which correlate with the perceptual dimensions. Timbral features refer to 

acoustic descriptors computed directly from the audio signal, with several possible temporal 

scopes. Peeters et al. [12] provide a profound explanation and possible applications of the timbre 

descriptors standardized in the ISO standard MPEG-7. Several features have been found to 

explain the dimensions of the timbre spaces, such as the spectral centroid, log-attack time, 

spectral flux or the attack synchrony. Based on the findings by several authors such as Schouten, 

Burred [13] considers several factors to be important for the perception of the timbre of a 

musical instrument: the temporal and spectral envelopes, the degree of harmonicity of the 

partials, noise content and transients. In this work a timbre model is presented, which is based on 

a compact representation of the spectral envelope, with a detailed characterization of the 

temporal evolution. 

However, the probably most common features used to characterize timbral information are 

the well known MFCCs, which were firstly used in speech recognition systems [14]. These 

features stands on the source-filter model of speech production, in which speech signals are 

considered to be the convolution of a source signal coming from the vocal cords, and the impulse 

response of the vocal tract. The MFCCs are usually computed following the following steps: 1) 

Taking the Fourier Transform of a signal (or a part of it), 2) Map the power spectrum to a Mel 

scale, with triangular overlapping windows, 3) Calculate the logarithm of the powers in each Mel 

frequency, 4) Calculate the Discrete Cosine Transform. MFCC values are the result of the 

previous calculations, and they represent the coarse shape of the power spectrum of a signal. It is 

common to use only the lower n coefficients, the number n being dependent on the application: 

e.g. 13 coefficients are typically used for the representation of speech. A smaller amount of them 

has been used in some music related applications (such as genre recognition [15]).  Other authors 

such as Logan and Salomon [16], and Essid et al. [17] have reported the use of a higher amount 

of coefficients in other applications such as music similarity and instrument recognition. The 
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MFCCs are often used along with their first order derivatives (e.g. difference of the MFCC 

vectors in two consecutive frames), in order to consider the temporal dimension. Other authors 

which have used MFCCs in the instrument recognition application are Heittola et al. [18]. All 

previous approaches report the use of the magnitude spectrum as input for the computation of the 

MFCC, but it is also possible to consider a modified version, in which the features are not 

computed on the spectral envelope. Marxer et al. [19] follow this approach for timbre 

description, by considering the MFCCs calculated on the Harmonic Spectral Envelope (HSE). 

The HSE is obtained by interpolating the values of the magnitude spectrum at the positions of the 

partials, using the Akima interpolation method [20]. 

Alluri and Toiviainen [1] recently presented a study on polyphonic timbre in which they 

study the correlation of several features with three perceptual dimensions: activity, brightness 

and fullness. Their findings suggest that there may be regularities in the way people perceive 

polyphonic timbre, and that there are similarities with the perception of monophonic timbre. An 

unexpected finding was that the MFCCs do not correlate considerably with any of the perceptual 

dimensions, even though they are so widely used. This contrasts with the work of many other 

authors, such as Terasawa et al. [21] which suggests that MFCC are a good perceptual 

representation of timbre. 

The approach by Marxer et al. [19] corresponds with the framework developed in the MTG 

for source separation, which will be used in this master thesis; therefore, the modified version of 

the MFCCs will be considered. The instrument recognition framework used in this master thesis 

uses the classical MFCCs and also many other features [22][4]. 

2.1.2 Statistical classification 

In a generic way, classification is related to the task of assigning labels to observations. The 

labels correspond to classes or categories in which we organize a certain domain, or a part of the 

world which is of interest. 

A common way to perform such classification is with taxonomies, which organize the 

categories in a hierarchical form. A richer and more complex structure can be obtained with 

ontologies, which allow more diverse relations between classes. According to Bowker [23], the 

ideal classification structure should: 1) have consistent and unique principles to perform the 
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classification, 2) consider classes which are mutually exclusive, and 3) be complete, by fully 

covering the part of the world it intends to consider. 

Statistical classification deals with the automatic classification of new observations by 

means of supervised learning, using a model which has been trained with previously annotated 

data. According to the number of classes involved, classification can be considered as binary or 

multiclass. In binary classification, only two classes are considered, while more than two classes 

are considered in multiclass classification.  Multiclass classification is commonly avoided, since 

most methods work with binary classification. In the case of requiring a classification of more 

than two classes, several binary classifiers are typically combined. There are different strategies 

for combining the classifiers, such as the one versus one with pair-wise coupling [24], or the one-

versus-all approach, in which only the presence or absence of a class is considered.  In a one 

versus one approach, a classifier is trained for each of the possible combination of classes. For 

instance, in instrument classification it would be: clarinet vs. trumpet, clarinet vs. violin, violin 

vs. trumpet, and so on, for all possible combinations of instruments.  In the one-versus-all 

approach, the classifier discriminates between the target class, and an artificial class which 

contains the rest of classes, e.g: violin vs not violin. Of course, in the latter approach, a smaller 

amount of binary classifiers is needed. Finally, the output probabilities of the binary classifiers 

are combined to decide the class membership.  

An important classification method for this thesis is Support Vector Machines (SVM), 

which has been used in the categorization of instruments both in monophonic and polyphonic 

mixtures, based on the acoustic features used to model their timbre. SVM is a non-probabilistic 

linear and binary classifier, which is based on the creation of a hyperplane of a high 

dimensionality, to separate between the elements of two classes. It is a supervised learning 

method, and thus uses training data, in order to find the hyperplane with the largest distance to 

the points in the training set of any of the two involved classes. This is supposed to provide the 

best classification results, since it lowers the generalisation error of the classifier. Additionally, it 

is relatively fast to train and use a SVM classifier, and provides good accuracy with reduced 

over-fitting. SVM can be used for several tasks, such as classification, or regression. The 

implementation of the SVM used in this thesis is LIBSVM [25]. 
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2.1.3 Dimensionality reduction 

In order to properly analyze huge amounts of data, a suitable representation needs to be found. 

Such a representation should make explicit the latent structure of the data, and reduce the number 

of dimensions, in order to apply further methods [26]. The techniques presented in the following 

subsections are very polyvalent, and can potentially be used in very different applications or with 

different purposes.  

Principal Component Analysis and Independent Component Analysis 

Principal Component Analysis (PCA) is a very popular dimensionality reduction technique, 

introduced by Karl Pearson in 1901. The main goal is to decorrelate a set of input variables, by 

converting them into a smaller set of uncorrelated variables, while maximizing the variance of 

the projected data. The variables in the new space, which are named principal components, are a 

linear combination of the original variables. The whole set of principal components has the same 

dimensionality as the original set. In order to reduce the dimensionality, a smaller set of principal 

components is selected. This produces that some information is lost; however, PCA is conceived 

to minimize this loss. Applications of PCA include data compression, image processing, and data 

visualization. Since it also serves as a signal decomposition technique, the relation to source 

separation becomes evident. 

An extension to PCA is ICA, which searches for a linear transformation of the original 

variables in order to minimize the statistical dependence between the components of two vectors. 

The difference with PCA is that it does not only deal with a second order independence, and does 

not just provide solutions which are orthogonal. ICA has been widely used in source separation, 

as it will be introduced in the corresponding subsection. 

Non-Negative Matrix Factorisation 

Non-Negative Matrix Factorisation (NMF) is an technique used to decompose a matrix 

0,n mV ≥ ×∈ ℝ  into two factors 0,n rW ≥ ×∈ ℝ  and 0,r mH ≥ ×∈ ℝ , where r  is called the 

decomposition factor. V  is approximated to the product of two matrices with non negative 

elements: ˆ ·V V W H≈ = . 

Paatero and Taaper presented this technique under the name “Positive Matrix Factorisation” 

in 1996 [27], and three years later, Lee and Seung presented further investigations on the 
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algorithm, using the name NMF [28], which has become widely used. In this work, PCA and 

NMF were compared in two different tasks, showing that different results are achieved, partly 

due to a difference in constrains. 

NMF can be used for dimensionality reduction, and is increasing in popularity due to the 

reported good results in several domains, including source separation.  There are several forms of 

NMF, depending on the measure of the divergence between V  and V̂ . In order to find the best 

approximation, the distance measure ˆ( || )DV V  is to be minimized. Several distances can be 

used, such as the simple Frobenius norm (square norm) used by Lee and Seung [28], or the 

generalized Kullback-Liebler distance which is also commonly used for source separation:  

 �

�ˆ( || ) ( · )
ij

ij ij ij
ij ij

V
DV V V log V V

V
= − +∑  (2.1) 

In order to reduce the selected distance measure, several iterative update methods can be 

used, such as gradient descent algorithms, or a multiplicative update algorithm, as presented by 

Lee and Seung [28]. 

Adding sparseness constrains to the NMF provides solutions which are easier to interpret 

[26]. Sparseness refers to the fact of having only a small number of coefficients not equal to zero 

in a vector or matrix. The sparseness is maximum (its value is 1) when only one component is 

not equal to zero and the sparseness is minimum (equal to 0) when all components are non-zero. 

The sparseness can be applied to both W  and H , depending on the application [26]. 

2.2 Automatic instrument recognition 

2.2.1 Overview, principles and applications 

The automatic recognition of instruments is based on the previously presented timbre models and 

features. The timbre of an instrument can be characterized with some audio features, such as 

MFCCs or MPEG-7 features, and by means of a set of training data, a statistical classifier can 

learn how to categorize previously unseen audio excerpts into classes, which may correspond to 

instruments, or groups of instruments, depending on the approach. It is thus very important to 

know how the features can be used, how to compute them, how to properly select the most 

relevant ones, and how could they be transformed in order to have a better distribution, which 
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would allow a more robust classification [8]. Dimensionality reduction is also an important step, 

which can lead to a better classification. 

The automatic recognition of musical instruments is an important task in MIR, with 

applications such as the automatic annotation of databases with information about the 

orchestration. This can be helpful to bridge the semantic gap, since the perceived similarity 

between songs is in a high degree dependent on their instrumentation. Additionally, the 

knowledge of the musical instruments present in a song supports other MIR tasks such as genre 

classification, and thus allows moving towards the realization of the semantic web, since it helps 

dealing with its major bottleneck: manual annotation. 

2.2.2 Isolated musical instrument classification 

Most of the work in automatic instrument recognition has been focused on isolated musical 

instrument classification. An extensive review of such approaches can be found in the work by 

Herrera [8], with accuracies that reach 90%, a number of classes below ten, and several 

classification techniques. The classification on isolated notes allows the simplification of the 

signal processing needed to extract relevant features, and has the advantage that there are sound 

databases which can easily be used to test the algorithms, such as the RWC database [29]. 

2.2.3 Polyphonic instrument recognition 

More recent works deal with polyphonic instrument recognition, which is a more demanding and 

realistic problem, both with and without source separation. There have been some attempts to 

perform instrument recognition in polyphonic mixtures without using source separation as a pre-

step. Some early approaches focused on the detection of specific instruments or voice, such as 

Tzanetakis in 2004 [30]. Heittola tried detecting the presence of several instruments (bowed, 

electric guitar, piano, saxophones and vocals) by using MFCCs and their derivatives ∆MFCCs 

and Hidden Markov Model (HMM) classifiers [18]. The performance was reported to be 

different for each of the instruments, getting the best results for the detection of bowed 

instruments and voice. For the rest of instruments, the results were not much above chance. 

Better accuracies were reported in the same work for the detection of drums. A more recent work 

by the same author dealt with the use of source separation as a pre-step for the instrument 

classification, as will be presented in a further section. In 2005, Essid [17] used a taxonomy 
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based hierarchical classification approach, training the classifiers not on the instruments 

themselves, but on a combination of them, such as: double bass, drums, piano and tenor sax. 

In a more recent approach, Fuhrmann [22] approached the automatic recognition of 

predominant instruments, with SVM classifiers trained with features extracted from polyphonic 

audio. Figure 2.1 shows a schema of the supervised classification system in this work: 

 

Figure 2.1: Supervised approach for predominant instrument recognition in polyphonic music [22]  

The black arrows in the figure denote the workflow followed in the training stage, while the 

white arrows are followed in the classification stage, when unseen excerpts are to be annotated 

with the predicted tags. 

A different approach is presented by Fuhrmann and Herrera [4], where the focus is not set 

on the recognition of the instruments in a frame basis, but on the most predominant instruments 

in a whole audio excerpt. Several strategies for labeling the music pieces are proposed, which 

include exploiting the temporal dimension of music: segments in which there is a predominant 

instrument are found, and then the labels of each of the segments are combined to provide the 

confidence of each instrument to be present in the whole piece. As in the case of the human 

ability of discriminating between musical instruments, automatic approaches also have more 

difficulties with certain kind of sounds. Fuhrmann et al [22] report that the accuracy of detecting 

the sax being the predominant instrument in polyphonic music is the lowest, around 40%, while 

the average classification accuracy for pitched instruments, with 11 different classes is 63%.  

A comparison of the results between the approaches is not straightforward due to several 

reasons. The number of categories used is typically different, which certainly influences the 

results. Additionally, the classification task may be different in each work, e.g.: classification 

based on families of instruments instead of instruments, interest on the predominant instruments 
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or on all present instruments, the use of real world musical signals or artificially created 

mixtures, etc. 

2.3 Source Separation 

Sound signals are commonly a mixture of several signals. Sound Source Separation (SSS) deals 

with the problem of recovering the original audio signals from a mixture by computational 

means. A typical example is the cocktail party problem, in which one tries to follow the 

conversations held simultaneously in a room, with music and other noises. This is a relatively 

easy task for humans, which are able to concentrate the attention on a specific source within a 

mixture of signals which may even have interfering energies. However, it is much more difficult 

to teach a machine how to do this. 

The interest in this problem began in the mid 1980’s, and the attention of the research 

community to source separation increased in the 1990’s, with the use of Independent Component 

Analysis (ICA) [31], and the Computational Auditory Scene Analysis (CASA). The CASA 

approach tries to imitate the mechanisms involved in human perception, which allow the 

recognition of sources in a mixture. Bregman introduced the cognitive process called Auditory 

Scene Analysis (ASA) in 1990 [32], proposing five principles used by the brain to group and 

isolate sounds: proximity, similarity, good continuation, closure and common fate. These 

principles, which are similar to the ideas of the Gestalt, are applied to both frequency and time 

domains of the audio signals. Based on the work by Bregman, several approaches have been 

proposed to deal with the computational modeling of ASA. Wang and Brown presented in 2006 

a detailed literature review in this field [33]. This master thesis will be based on source 

separation methods built on a mathematical basis, exploiting the statistical properties of the 

sources and mixtures, instead of using the approach by CASA. 

An overview of Source separation methods can be found in the work by Vincent et al. [34], 

Siamantas et al. [35], and more recently by Burred [13]. In this work, Burred divides source 

separation methods according to the assumptions made on the statistical nature of the models of 

the sources. If little or no assumptions are made, they are said to be Blind Source Separation 

(BSS) methods, which include ICA, and time-frequency masking methods. If more advanced 

models of the sources are used, they are classified as Semi-Blind Source Separation (SBSS) 

methods. Examples of SBSS include sinusoidal models, and supervised methods in which a 
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database of sounds is used for training the SS algorithms. Finally, non-blind source separation 

methods make use of other information than the mixture, such as the musical score. 

Vincent et al. proposed in 2003 a topology for the classification of the applications of source 

separation, dividing them into two groups [36]: Audio Quality Oriented (AQO) applications and 

Significance Oriented (SO) applications. The former (AQO) applications deal with a full 

separation of the sources, with the best possible quality, and include: unmixing, remixing, 

hearing aids or postproduction. The latter (SO) are less demanding, and are more feasible with 

the current state-of-the-art techniques. SO applications deal for instance with several tasks within 

MIR, and therefore, could help to bridge the semantic gap. Some tasks that can benefit from the 

use of source separation include: instrument recognition, chord detection, melody extraction, 

audio genre classification, etc. Burred [13] complements the previous classification, devising 

four different paradigms: Understanding without separation, in which the mixture itself is used 

to gain knowledge about the constituent source signals, Separation for understanding, which 

corresponds to the SO scenario, Separation without understanding, which deals with Blind 

Source Separation (BSS), and finally, Understanding for separation, which deals with 

supervised source separation, based on a training database. 

2.3.1 Overview and principles 

This subsection provides an overview and the most important principles of the source separation 

problem. 

Mixing models 

Several mixing models can be applied to combine several sources into a mixture. Each of 

the models corresponds to a real world situation. The most basic is the linear mixing model, in 

which the mixture is a combination of the original sources, with a possible amplitude scaling. 

The mathematical formulation is: 

 
1

( ) ( ) 1, ,
N

i ij j
j

x t a s t i P
=

= = …∑  (2.2) 

In the previous equation, 1( ) [ ( ), , ( )]TPx t x t x t= ⋯  is the vector of observed mixtures, 

1( ) [ ( ), , ( )]TNs t s t s t= ⋯  is the vector of the original sources, and A  corresponds to the mixing 
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matrix, which is used to transform from the signal space to mixture space, P  is the number of 

sensors or mixtures, and N  the number of sources. The mixing matrix has a size of N P× , and 

its elements are the coefficients ija . 

In a linear model, sound source separation deals thus with solving the system X AS= : 
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  (2.3) 

In this system, X  is known, S  is unknown, and A  is in most of the approaches also 

unknown. Depending on P  (the number of sensors or mixtures) and N  (the number of sources), 

the system is overdetermined if P N> , determined if P N= , or underdetermined if P N< . The 

most challenging task is solving underdetermined systems. 

In a delayed model, each of the sources needs some time to arrive to each sensor, and thus 

the mixture is a combination of the original sources with different delays. The formulation is as 

follows: 
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In a convolutive mixing model, there is a filtering process between the sources and sensors, 

such in the case of a reverberant room, where the sources can follow several paths to arrive to the 

sensors: 
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The contribution of the source j  to a sensor i  can be modeled with the impulse response of 

a filter ( )ija t , where ∗  is the convolutional product: 
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It can also be expressed in a matrix notation as: 

 X AS=   (2.7) 

In musical source separation, which is the scope of this thesis, most of the mixtures are 

underdetermined, since we typically deal with one or two observations, for mono and stereo 

respectively ( 1P =  or 2P = ), and more than two sources (instruments) present in the mixture. 

This makes necessary the simplification of the problem, by taking some assumptions on the 

statistical nature of the sources, or use models which increase the feasibility of the separation. 

Signal models 

In digital signal processing, it is common to assume that the signals can be decomposed into 

a weighted sum of expansion functions, and the choice of a function depends on the context or 

application [13]. Some common models which make use of a fixed basis function for the 

representation of a signal in the frequency domain are the Discrete Fourier Transform (DFT) and 

the Discrete Cosine Transform (DCT). In order to consider the time along with the frequency 

domain, the Short- Time Fourier Transform (STFT) is commonly used. Increasing the resolution 

in one of the domains decreases the resolution in the other domain, which is related to the 

uncertainty principle in signal analysis. 

The previously introduced PCA and ICA are also a specific case of a signal model, in which 

the expansion functions are extracted from the signal itself, and thus they are data-driven 

functions. 

It is important to note that signal decomposition is very related to source separation. In fact, 

some of the approaches used for source separation, such as ICA, have also been successfully 

applied to signal decomposition. 

Solving the system 

The main problem in source separation is solving the previously introduced system 

X AS= , in which typically both A  and S  are unknown. This system can be solved in two 

ways: by firstly estimating the mixing matrix and then the sources in a staged manner, or in a 

joint manner. The mixing matrix estimation deals with finding the coefficients of the matrix A , 

or similarly, the mixing directions (the columns of the mixing matrix). A possible manner of 

estimating the mixing matrix is with the use of ICA. As it has been previously introduced, there 
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is a need for sparsity, meaning that the coefficients in some domain are zero or close to zero. 

Sparsity is related to a peaked probability distribution in any domain, and to the coefficients 

(values of the signal in a certain domain, such as time sample or the time-frequency bin) being 

concentrated around the mixing directions, which allows an easier estimation of the coefficients 

of the matrix. 

A commonly used method for the estimation of sources is the time frequency masking. 

Yilmaz and Rickard [37] used this approach for the separation of speech mixtures, and it has also 

been used in the musical domain in several contributions, such as Vinyes et al. [38], which 

additionally exploit the spatial information (panning) for improving the results. This approach 

deals with the use of the STFT to transform a signal from the time domain to the time-frequency 

domain. In this domain, a mask can be used to select only certain coefficients which are 

supposed to correspond to the source of interest. The selection of the coefficients can be 

performed in a simple form with a binary mask, which sets to 0 the coefficients which are not of 

interest. This approach relies on the fact that there is reduced overlap between several sources in 

the time frequency domain [37]. The sound is then synthesized by estimating the signal in the 

time domain from the filtered spectrum, with the Inverse Discrete Time Fourier Transform 

(IDTFT). One of the drawbacks of binary time frequency masking is that it produces “artifacts” 

known as musical noise. 

However, time frequency masking will be considered in this master thesis, as a relatively 

simple method, which provides fast results in comparison with NMF based source separation, 

and can even be used for online source separation, as in the approach recently presented by 

Marxer [19].  

2.3.2 Fundamental frequency estimation 

A melody can be defined as an organized sequence of notes and rests, where each of the notes 

has a pitch, an onset time, and an offset time. The melody followed by an instrument is a very 

important cue for many of the source separation approaches. 

The knowledge of the melody of the instrument to be separated could come from the (MIDI) 

score of the music piece, but most usually, the fundamental frequency is estimated by 

computational means. The transcription of a melody is commonly performed by estimating the 

trajectory of the fundamental frequency (f0). Many algorithms have been proposed on the 
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literature for melody extraction, such as Dressler [39], or the multipitch estimation by Klapuri 

[40]. Marxer et al. [19] recently presented a method for low latency pitch estimation, and a 

technique for the detection and tracking of a pitched instrument. 

The previously introduced time-frequency masking methods make use of the f0 trajectory to 

create the appropriate masks for the selection of the time-frequency bins where the mask is to be 

applied.  In the case of the NMF approaches that use the source-filter model, the information 

about the estimated f0 trajectories is used to initialize the parameters of the source part of the 

model, since the information about the pitch is related to this part. In the case of the approach by 

Durrieu [41], the interest is on the separation of the main instrument; thus, the f0 estimation is 

only for the predominant instrument. In the case of Heittola [18], the interest is not just on the 

main instrument, but on all present instruments, and therefore, a multipitch estimation approach 

is necessary, in this case Klapuri’s. More details about this work will be presented in the 

following section, dealing with instrument classification based on source separation. 

2.3.3 A Flexible Audio Source Separation Framework (FASST) 

FASST is a framework for source separation recently presented by Ozerov et al. [42], which 

aims to generalizing several existing source separation methods, and allows creating new ones.  

It is based on structured source models, which allow the introduction of constrains according to 

the available prior knowledge about the separation problem. 

The framework can be used for many different use cases, such as speech separation, or for 

professionally produced music recordings. This framework has been considered for the thesis 

since the (MATLAB) source code is available, and it allows to perform the separation of audio 

excerpts into four different sources: drums, bass, melody (either singing voice or a leading 

melodic instrument), and the remaining sounds. The first step of this separation is performed by 

computing the time-frequency transform of the input, with the STFT or with the auditory 

motivated Equivalent Rectangular Bandwidth (ERB). Then, the model parameters are estimated 

e.g. with a Expectation Maximization algorithm, and finally the spectral components are 

separated, with the aid of spectral patterns for e.g. bass, drums. The interest in such separation 

strategy is introduced in the methodology. 
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2.4 Source separation based on timbral models 

Timbral models based on descriptors such as MFCCs, MPEG7, or more advanced descriptors 

[13] have been widely used in source separation algorithms, since such models typically provide 

better results in musical source separation applications, as they can deal better with the 

separation of signals with overlapping spectrums. 

Source separation systems can be classified as being supervised or unsupervised: supervised 

methods rely on a previous training step to estimate the models from a training database, while 

unsupervised systems do not need a training step. Supervised methods typically provide a better 

separation quality, and are able to cope with more demanding situations, but are less generic than 

unsupervised methods. Two unsupervised methods which have been used for source separation 

are the previously introduced ICA and NMF. With both methods, the magnitude spectrogram of 

the mixture is approximated with a weighted sum of basis functions (also named components) 

with a fixed spectrum. Typically, a clustering process is required to group the basis functions 

according to each of the sources, since each source is typically the sum of a set of basis.  One of 

the drawbacks of ICA is that the number of sensors must be the same as the number of sources, 

thus not allowing solving the most demanding, but also more common tasks in which the system 

is underdetermined. Independent Subspace Analysis (ISA) can deal with this limitation, by 

performing the analysis in a transformed domain, such as the magnitude or power spectrum. 

NMF can also cope with underdetermined systems, and seems to provide better results than ISA 

[43].  

As it was previously introduced, NMF introduces non negativity constrains which are 

appropriate when working with amplitude or power spectrograms. The algorithms proposed by 

Lee and Seung [28] do the decomposition by minimizing the distance between X  and 

ˆ ·X AS= . One of the drawbacks of this basic spectrogram decomposition is that the basis 

functions used for each instrument are dependent on the pitch of the note being played, and thus 

the amount of basis functions to be employed is large, and the estimation less reliable. In order to 

deal with this shortcoming, Virtanen and Klapuri [44] proposed the use of a source filter model 

with NMF for the analysis of polyphonic audio. In this work, the spectrogram is modeled as a 

sum of basis functions with varying gains, as in the normal NMF. Furthermore, each basis 

function is decomposed into a source and a filter. The source refers to a vibrating object and 
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changes with the pitch. On the other hand, the filter refers to the “resonance structure” which is 

constant for each instrument, thus reducing the parameters to estimate.  Important for this master 

thesis will be the approach by Durrieu [41], in which NMF is combined with a source filter 

model for the separation of the singing voice from the accompaniment. In order to have an idea 

of the possible pitches which each instrument or voice is playing, some kind of fundamental 

frequency estimation algorithm is typically employed. Timbral models are also employed by 

Marxer [19] to identify the spectral envelopes of the target instruments, in order to improve the 

tracking of their pitch. This pitch is then used to generate a time frequency mask to perform the 

source separation. The features used are the MFCCs extracted from the Harmonic Spectral 

Envelope (HSE), as previously introduced. 

2.5 Instrument classification based on source separation 

In previous sections, the state of the art in instrument recognition and source separation has been 

introduced. This section presents some of the approaches found in the literature which have used 

source separation as a prior step to the classification of the instruments present in polyphonic 

mixtures. 

Heittola et al. [18] presented an approach to instrument classification based on the use of 

NMF with a source filter model, based on the previously introduced work by Virtanen and 

Klapuri [44]. An overview of the system is illustrated in Figure 2.2. 

 

Figure 2.2: Musical instrument recognition with a source filter model for source separation by Heittola [18] 
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Klapuri’s multipitch estimation is used to help to separate the sources, with the aid of an 

optional streaming algorithm which organizes individual notes into sound sources, using the 

Viterbi algorithm to find the most likely sequence of notes. 

The instrument classification is performed by using MFCC (with a 40 channel filter bank), 

with their first time derivatives and a polynomial fit. GMM are used to model the instrument 

conditional densities of the features, and the parameters are estimated using the Expectation 

Maximizations (EM) algorithm from the training material. A Maximum Likelihood classifier is 

used for the classification. The reported F1-measure reaches 59.1% with a database of artificially 

created mixtures (using the RWC), and six note polyphony. The number of classes selected for 

the experiments was 19, including only pitched instruments. 

Burred [13] also presents an instrument classification approach with a stereo Blind Source 

Separation pre-step, reaching 86.7% accuracy, using Gaussian likelihood as a timbre similarity 

measure, with a polyphony of 2 instruments, and 5 classes. The results are significantly better 

than in the case of monaural separation, with an accuracy of 79.8%. 

Source separation is thus a useful pre-step to improve the instrument recognition in 

polyphonic mixtures. However, there are some problems that source separation algorithms could 

pose for the automatic instrument recognition:  they usually add some artifacts such as musical 

noise, or they even alter the timbre of the instruments. These facts will be investigated in the 

course of this master thesis, and some solutions proposed, as detailed in the methodology. 
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3 Methodology 

The hypothesis of this work is that after understanding and acknowledging the limitations of 

current state-of-the-art algorithms in source separation and automatic instrument recognition, it is 

possible to effectively combine them in order to enhance their results. Such synergies will be 

investigated following the methodology presented in this chapter. 

As previously introduced, instrument recognition algorithms usually generate a set of tags 

corresponding with the (most predominant) instruments in an audio excerpt. On the other hand, 

source separation algorithms can provide several kinds of outputs, depending on the intended 

application: some estimate the contributions of the each of the instruments to the input mix, or 

the harmonic+percussive components, or for instance, the predominant instrument+ 

accompaniment. The usual application of both types of algorithms is presented in Figure 3.1. 

Source 
Separation

polyphonic 
audio

Instrument 
Recognition

Instrument tags

Estimations: 
Instruments, 

Harmonic+Percussive,
Lead+Accompaniment 

 
Figure 3.1: Instrument Recognition and Source Separation application 

The first section in this chapter deals with the methodology proposed to enhance the source 

separation with a previous instrument recognition step, and the second section details the 

methodology proposed to enhance the instrument recognition with a previous source separation 

step. It is important to note that the main interest is the application of the algorithms to 

professionally produced western music recordings, as opposed to audio data created by 

artificially mixing several instrument with no musical relation between them, as used in [18]. 

This fact adds more complexity to the source separation algorithms, due to several reasons. 

Firstly, if there is a high melodic and harmonic relation between the instruments, their spectral 

components usually share same frequencies, which pose problems to the source separation 

algorithms.  Additionally, in professionally produced music recordings, the typically applied 

effects such as reverbs, delays, etc. make the separation much more difficult. On the other hand, 
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such scenario allows source separation and instrument recognition algorithms to make use of the 

panning information, which typically allows achieving a better separation quality. 

3.1 Instrument recognition for source separation 

The problem of interest in this section is the separation of a music recording into the instrument 

of interest and the accompaniment. Many separation algorithms produce errors due to an 

imperfect matching of the spectral components to the instrument to be removed, causing the 

removal of other instruments, instead of the one of interest. A similar problem is that, even when 

the instrument of interest is not present, other instruments are removed. The hypothesis is that 

the integration of an instrument recognition algorithm prior to the source separation can enhance 

the quality of the separation, by avoiding the separation to take place in the parts of the audio in 

which the instrument of interest is not present. The proposed way for the integration is presented 

in Figure 3.2. 

 

Figure 3.2: Schema of the integration of instrument recognition into the source separation algorithm. The 
instrument recognition module gives as output the probabilities of presence of the n classes used in the 
classifier. These probabilities are then used to compute the mixing weights to be applied to the output of the 
source separation algorithm. 

The instrument recognition module is based on the system by Fuhrmann [4], [22], depicted 

in Figure 2.1. The input of this system is polyphonic audio, and the output is the probabilities of 

presence Pn(t) of n=11 different instruments (cello, clarinet, flute, acoustic guitar, electric guitar, 

hammond organ, piano, saxophone, trumpet, violin, and voice). The original system uses one vs. 

one SVM classifiers and Pair Wise Coupling to combine the probabilities. However, in this 

scenario the focus should be set in detecting the presence of the instrument of interest in the 

polyphonic mixture. Therefore, it was decided that it would also be appropriate to train a binary 

classifier with n = 2 classes: the instrument of interest, and a second artificial class, containing 
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the rest of instruments. Since the voice is typically the most important element of a music 

recording, and there are applications which would benefit of the voice removal, such as karaoke, 

it was decided to initially focus on it. The procedure followed for the training of the SVM 

classifier of the instrument recognition algorithm is detailed in the next subsection. 

Several source separation algorithms have been considered with the following output: lead 

instrument + accompaniment. In order to reduce the errors produced by the separation 

algorithms, the probabilities of presence are used to remix the separated components, by 

computing the weight a(t) with a mixing function. When the probability of presence of the 

instrument of interest is high, the weight tends to 1, while with a low probability of presence, the 

weight tends to 0. The mixing function can be either binary or non binary. In the first case, the 

mixing coefficients are {0,1}, and in the second case, intermediate values are allowed, in the 

range [0,1]. The binary mixing logic is presented in the following equations: 

 ( ) ( ), ( ) 1voice iP t P t i voice a t>= ∀ ≠ ⇒ =   (3.1) 

 ( ) ( ), ( ) 0voice iP t P t i voice a t< ∀ ≠ ⇒ =   (3.2) 

( )voiceP t  represents the probability of the voice being present in the excerpt, and 

( )iP t represents the probability of presence each of the classes i  considered. If a binary classifier 

is used, the classes considered are: voice or non-voice (n = 2), while in the original non binary 

classifier, the number of classes corresponds to each of the considered instruments (n = 11). Note 

that it is possible to use a binary classifier with non binary mixing. 

As previously mentioned, the non-binary mixing allows having values between 0 and 1, and 

thus the effect is more subtle. This kind of mixing would be appropriate when the probability of 

presence of the instrument of interest is not very high, or when the results of the instrument 

recognition algorithm cannot be fully trusted. 

The final estimation of the voice provided by the integrated system (est. lead) tends to the 

estimation produced by the separation algorithm (sep. lead) if the ( )voiceP t is high, and tends to 

zero if the ( )voiceP t  is low. On the other hand, the final estimation of the accompaniment (est. 

accomp) tends to the estimation produced by the separation algorithm (sep. lead) if the 

probability of presence is high, and tends to the input mix if the probability of presence is low. 
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Note that in the case of a perfect recognition of the presence of the instrument of interest (in our 

case, the voice), the quality of the separated audio is perfect in the parts of the input audio 

excerpt in which no voice is present. However, in the parts with a voice the quality is limited by 

the quality of the separation algorithm. 

3.1.1 Data 

Two different sets of data have been used for training and testing. Firstly the SVM classifier of 

the instrument recognition algorithm has been trained with a large set of data, and secondly, the 

combination of both modules has been evaluated with a reduced set of multitrack data. 

The original training data of the instrument recognition module was a large set of features 

extracted from short excerpts of audio from different western music genres (pop, rock, jazz, 

classical), which included the annotation with the predominant instrument, as described in [4]. 

This set of features includes typical features in the description of timbre, such as the MFCCs, 

along with other features, such as HPCP (Harmonic Pitch Class Profiles), LPC, inharmonicity, 

spectral moments, crest, rolloff, and RMS energy features, and their time derivatives [22].  As 

described before, the focus was set on the voice, and an additional binary classifier was trained to 

classify audio excerpts into: voice and non-voice.  The training process began thus with the 

division of the training instances into these two classes. Since the non-voice training data had a 

larger number of instances in the original dataset compared to the voice, a sub-sampling of the 

original collection of non-voice data was performed, in order to even up their sizes. Additionally, 

care was taken to select a similar number of samples of each of the instruments in the original 

collection, so as to have a quite uniform distribution. Finally, the number of training instances 

was around 800 for each of both classes. 

The testing data were extracted from 6 multitrack recordings of professionally produced 

music. The excerpts in the created testing dataset have a lead instrument (in this case, vocals) 

which is present in a segment of the excerpt, and absent in another part of the excerpt. As 

explained in the following subsection, it is necessary that the testing dataset includes the original 

separated tracks, or at least the vocals + accompaniment, since the evaluation is based in 

comparing the output of the separation algorithms against this ground truth. 
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3.1.2 Evaluation method 

For the evaluation of the quality of the source separation, the SiSEC evaluation campaign 

measures have been used. This campaign deals with speech and music datasets, synthetic 

mixtures, microphone recordings and professional mixtures and divides the source separation 

problem into four tasks: source counting, mixing system estimation (mixing gains), source signal 

estimation (mono source signals), and source spatial image estimation (contribution of each 

source to the two mixture channels). The objective evaluation measures proposed deal with the 

comparison of the estimates of the spatial images of the source j in the channel i ˆ g
ij
ims , against the 

true source images g
ij
ims . The first step deals with the decomposition of ˆ g

ij
ims  into the target source 

and distortion: 

 intˆimg img spat erf artif
ij ij ij ij ijs s e e e= + + +   (3.3) 

Three kind of distortions are considered: spatije , interfije  and artifije  which correspond to the 

spatial (or filtering) distortion, the interference, and artifacts respectively. This decomposition is 

motivated by the distinction in the auditory system between the sound from the target source: 

img spat
ij ijs e+ , the  sounds from other sources: interfije , and the gurgling or musical noise, artifije  as 

presented by Vincent [45]. Three energy ratios are derived from this decomposition: Source 

Image to Spatial distortion Ratio (ISR), which considers the sounds from the target source, 

Source to Interference Ratio (SIR), which considers sounds from other sources and Sources to 

Artifacts Ratio (SAR), related to the “gurgling noise” or other artifacts due to the separation. The 

ratios are defined by the following equations:  
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Additionally, the Source to Distortion Ratio (SDR) is a compound of all previous measures: 
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The results of the previously presented energy ratios are in decibels (dB). A higher value 

means that the quality of the separation is better. If the values are negative, it means that there is 

more distortion than source components. Usually, values range between 0 and 20 dB, but this 

depends on the algorithm, the data, and the energy ratio, as presented in the experiments section. 

As previously mentioned, in order to compute these measures, it is necessary to have the 

original data with the vocals and accompaniment tracks (which serve as a reference). A dataset 

of excerpts of 6 songs has been created, with the original set of audio excerpts (vocals, 

accompaniment, mix), and the annotation of the presence of the lead instrument. Additionally a 

ground truth annotation of the instrument recognition algorithm output has been manually 

created for each of the files, in order to be able to measure the upper limit in separation quality 

that the combination of both algorithms would have. If the instrument recognition was perfect, 

the separation would be improved in the segments where there is no lead instrument, and would 

remain the same in the segments of the excerpt where a lead instrument is present. 

A further possibility was to use the Perceptual Evaluation methods for Audio Source 

Separation (PEASS) toolkit as proposed by Emiya et al. [46]. This software allows the 

calculation of objective measures to assess the perceived quality of estimated source signals, 

based on perceptual similarity measures obtained with the PEMO-Q auditory model [47]. The 

PEASS toolkit is distributed under the terms of the GNU Public License version 3, but a fee is 

required for the use of PEMO-Q, so this option was finally not considered. 

3.2 Source Separation for instrument recognition 

The interest in this part of the thesis is to improve the recognition of pitched instruments in 

polyphonic audio. The algorithm used by Fuhrmann in [4] is considered as the instrument 



27 

 

recognition method to be enhanced. This algorithm is conceived to output a set of labels 

corresponding with the most predominant instruments in an excerpt of polyphonic music. The 

interest is focused on the following pitched instruments: cello, clarinet, flute, acoustic guitar 

(acguitar), electric guitar (eguitar), organ, piano, saxophone, trumpet, violin, and also the voice. 

A problem found in this system is that it too often misses some of the instruments in the case that 

the piece has more than one predominant instrument. 

The hypothesis is that in order to enhance its performance, a previous step could be 

performed, in which the input audio data is separated into several streams. These streams would 

then be processed by the instrument recognition algorithm separately, which would output 

several labels.  

Several separation processes can be considered, as well as different strategies for the label 

combination, and also several models used in the instrument recognition. The schema in Figure 

3.3 illustrates the combination of a separation process followed by the instrument recognition: 

 

Figure 3.3: Generic schema of the application of source separation as a previous step to the instrument 
recognition. 

In this work, the previously introduced FASST algorithm is used to separate the input 

polyphonic audio into “drums”, “bass”, “melody”, and “other” streams. This separation 

algorithm was selected, because of the characteristics of the instrument recognition algorithm 

which is used in combination with it, as it does not consider the bass or drums for the 

classification. In the case of the ideal source separation, the “melody” stream would contain the 

main instrument to be recognized, and the “other” stream would contain the rest of the 

instruments, with no presence of bass and percussive instruments. The recognition of instruments 

in these streams of audio, with no presence of drums or bass should be easier than in the case of 

the polyphonic mixture. 

However, a common limitation found in most source separation algorithm is that they 

produce artifacts and errors in the separation, producing some leakage of instruments in 
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estimations where they should not be present. This leakage may affect the recognition of 

instruments due to the changes in timbre it produces.  

It is thus interesting to investigate in the course of this work if a classifier could learn how a 

source separation algorithm behaves, by training models on the separated audio estimations. In 

this case, what the models would learn could be expressed in simple words as: these are the 

features of the estimated {“drums”, “bass”, “melody”, “other”} stream, when the predominant 

instrument of the audio is a {cello, clarinet, flute, acoustic guitar, electric guitar, organ, piano, 

saxophone, trumpet, violin, or voice}. The use of different models for each of the separated 

streams would allow the usage of a different set of (automatically selected) features, as well as 

different parameters for training the classifiers, as further detailed in Chapter 4. The following 

subsection details the data used for training and for testing the proposed system. 

3.2.1 Data 

Two different datasets have been created, based on the database originally compiled by 

Fuhrmann in [4], [22]. Firstly, the training dataset contains annotated short excerpts of 3 seconds 

duration in which only one instrument is predominant. There is a total amount of around 6700 

excerpts, with a minimum number of excerpts corresponding to each of the instruments of 388, 

and a maximum of 778. Secondly, the testing set was created, with around 6500 excerpts 

annotated with one to three predominant instruments. This set was created by dividing the 

original music pieces of Fuhrmann’s database into segments with the following properties: 

• The predominant instruments are the same throughout all the excerpt 

• The excerpts are between 5 and 20 seconds long. Shorter segments are discarded, and 

longer segments are divided into segments with a length in this range 

• The excerpts are in stereo 

The first property deals with the fact that the predominance of instruments in a music piece 

typically changes amongst or even within sections. This property allows not considering the 

segmentation of the songs into the evaluation of the instrument recognition. The second property 

deals with two different issues. Firstly, the 20 second limitation is due to the memory limitations 

in Matlab. Since some of the algorithms used have been implemented in Matlab, it was necessary 

to divide the longer segments into smaller segments. Secondly, the 5 second limitation is in order 

to ensure that the instrument labeling process has enough information to output the labels with a 
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certain confidence. The third and last property corresponds to the use case of interest, which in 

this case are professionally produced music recordings, in stereo format. 

3.2.2 Evaluation method 

The evaluation method compares the labels outputted by the algorithm against the ground truth 

in the annotation files, and computes the confusion matrix (as in the traditional information 

retrieval evaluation), by calculating the true positives (tp), true negatives (tn), false positives (fp) 

and false negatives (fn) for each of the instruments (labels). We consider L  the closed set of 

labels { }iL l= , with 1...i N= , where N  is the number of instruments, and the dataset 

{ }iX x= , with 1...i M= , where M  is the number of excerpts. We define ˆ ˆ{ }iY y= , with 

1...i M=  as the set of ground truth labels, and { }iY y= , with 1...i M= , and iy L⊆ , the set 

of predicted labels assigned to each instance i . Precision and recall are defined for each of the 

labels l  in L as: 
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where,  ,l iy and ,l̂ iy  are boolean variables referring to the specific instance i , which indicate 

the presence of the label l  in the set of predicted labels, or in the set of ground truth labels 

respectively. Additionally, we define the F1-measure, as the harmonic mean between precision 

and recall: 
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Furthermore, macro and micro averages of the previous metrics are defined, in order to 

obtain more general performance metrics, which consider all labels. The macro is here 

understood as an unweighted average of the precision or recall taken separately for each label 

(average over labels).  



30 

 

 
1

1
L

macro l
l

P
L

P
=

= ∑ , and 
1

1
L

macro l
lL

R R
=

= ∑   (3.10) 

On the other hand, the micro average is an average over instances, and thus, labels with a 

higher number of instances have more weight in the computation of the average measures. 
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The macro and micro F1-measures are defined as the harmonic mean of respectively, the 

macro and micro averages. 
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The following chapter details the experiments executed based on the presented 

methodology. 
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4 Experiments and results 

After the implementation of the algorithms introduced in the methodology, several experiments 

have been designed and conducted. Firstly, the experiments dealing with instrument recognition 

for source separation are presented, and secondly the experiments focused on the source 

separation for instrument recognition are introduced. 

4.1 Instrument recognition for source separation 

Several experiments have been conducted, based on the schema of Figure 3.2. First, the source 

separation algorithms have been evaluated without the integration of the instrument recognition. 

In the case of Marxer’s algorithm [19] introduced in section 2.3, two different experiments have 

been conducted in order to test the benefit of using Pan-Frequency filtering, which allows 

restricting the range in the stereo field and the spectrum in which the fundamental frequency of 

the voice is searched for. Another test has been performed to evaluate how useful the internal 

voice models of Marxer’s approach are.  With internal voice models it is meant the SVM model 

trained with the MFCC’s of the spectrum envelope of the voice, as introduced in section 2.1.1. 

When the voice models are not used, the algorithm always performs separation of the most 

predominant instrument, independently of which one it is.  

Then, the FASST algorithm introduced in section 2.3.3 is employed to estimate the 

melody+accompaniment, where the accompaniment contains the bass+drums+other 

components. Finally, the algorithm based on source/filter separation by Durrieu [41] is also 

evaluated. The experiments conducted without the integration of the instrument recognition are: 

• Marxer_noPF: No Pan-Frequency filtering, with internal voice models  

• Marxer_PF: With Pan-Frequency filtering, with internal voice models  

• Marxer_NoVoiceModel: With Pan-Frequency filtering, no internal voice models 

• FASST 

• Durrieu 

All following experiments with Marxer’s approach used Pan-Frequency filtering, and 

internal voice models, since they provided the best results. 
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Secondly, the upper limit of the combination of the instrument recognition and source 

separation has been investigated, by using the ground truth instrument recognition: 

• IR_Marxer_GT 

• IR_FASST_GT 

• IR_Durrieu_GT 

Then several experiments have been conducted to test different implementations of the 

combination of the instrument recognition with Marxer’s separation approach. Four 

combinations were tested, depending on the use of binary classification or not, and depending on 

the use of binary mixing or not: 

• IR_Marxer_binClassif_binMix 

• IR_Marxer_notbinClassif_notbinMix 

• IR_Marxer_binClassif_notbinMix 

• IR_Marxer_notbinClassif_binMix 

The integration was also tested on other state-of the art separation algorithms, in order to 

investigate the improvement in the quality of the results. Since the best combination found for 

the integration was the use of a binary classification and a not binary mixing strategy, only these 

results are reported here: 

• IR_FASST_binClassif_notbinMix 

• IR_Durrieu_binClassif_notbinMix 

At last, in the No Separation experiment, the output estimated vocals is equal to the original 

mix with 24dB attenuation, and the estimated accompaniment was the original mix. Thus no 

separation has taken place. This experiment was conceived to test the adequacy of the evaluation 

measures used. Table 4.1 contains the results of the previously introduced experiments. 

Additionally, the figures in the Annex A show the detailed SDR per song, for each of the 

experiments performed. In the first figure, the ground truth is the accompaniment, and in the 

second the vocals. Some of the songs are clearly more difficult for the algorithms to separate. For 

instance, the first song corresponds to an Alanis Morissette song excerpt in which the vocals are 

very soft, which certainly poses problems to both the source separation and instrument 

recognition algorithms. Figure 4.1 and Figure 4.2 show the output probabilities in this 

challenging excerpt, for both the multiclass and binary classifier, showing the benefits of the 
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binary classifier. The voice, only present in the second half of the excerpt is better identified 

when a binary classifier is used. 

Some conclusions can be obtained by analyzing all the data in Table 4.1. A first conclusion 

is that filtering the input mix in pan and frequency  with Marxer’s approach, some quality 

improvement can be achieved, as seen in MarxerPF experiment. A second conclusion is that the 

results obtained by both Durrieu and FASST approaches are better than Marxer’s. The difference 

in quality is mostly due to the Signal to Artifacts Ratio, which is worse in Marxer’s approach. 

This is reasonable since this is approach is based on time frequency masking, which usually 

produces more artifacts than other approaches such as NMF, but the advantage is that it is much 

faster, which is the main interest of Marxer’s approach. Additionally, the online approach 

estimates the fundamental frequency in each frame, instead of using the information of the whole 

excerpt to calculate the fundamental frequency trajectory, what makes the process faster, but 

typically less reliable. 

Table 4.1: SiSEC quality measures for different experiments in the own database of multitrack data. The 
following abbreviations have been used: PF – use of Pan-Frequency filtering, IR – combination of the source 

separation with Instrument Recognition, GT - combination of the source separation with a Ground Truth 
instrument recognition, binClassif: use of binary classification, binMix: use of binary mixing. 

Experiment Lead (vocals) Accompaniment 

 SDR SIR ISR SAR SDR SIR ISR SAR 

Marxer_noPF 0.37 3.99 12.02 1.77 7.41 17.58 13.27 7.95 

Marxer_PF 0.89 5.84 9.48 0.78 7.93 15.32 16.29 9.11 

Marxer_NoVoiceModel 0.05 4.31 10.54 0.63 6.47 17.31 13.04 6.84 

FASST 2.17 2.81 6.32 5.38 9.16 12.36 14.79 14.48 

Durrieu 3.00 6.90 9.12 4.25 10.00 15.45 16.96 12.80 

IR_Marxer_GT 2.53 10.97 9.47 1.43 9.56 15.95 21.36 11.24 

IR_FASST_GT 2.94 6.09 6.32 4.34 9.97 12.78 18.12 14.84 

IR_Durrieu_GT 5.02 14.10 9.60 5.61 12.01 16.32 23.49 14.74 

IR_Marxer_binClassif_binMix 1.79 9.94 6.66 -0.13 8.82 13.19 22.13 11.57 

IR_Marxer_notbinClassif_notbinMix 1.19 9.01 3.36 -2.97 8.22 10.12 27.79 16.01 

IR_Marxer_binClassif_notbinMix 2.19 9.03 6.16 0.52 9.23 12.63 21.64 12.45 

IR_Marxer_notbinClassif_binMix 1.10 7.11 4.33 -2.90 8.14 10.96 24.64 13.38 

IR_FASST_binClassif_notbinMix 2.72 4.73 5.36 3.94 9.75 11.84 19.04 16.30 

IR_Durrieu_binClassif_notbinMix 3.71 11.44 6.04 3.78 10.72 12.74 23.53 15.64 

No Separation 0.46 0.56 -6.96 49.06 7.03 36.28 7.04 218.57 
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Figure 4.1: Probability of presence of the eleven instruments (including voi – the voice), given as output of the 
non binary classifier. A flute is detected at the end of the excerpt where a voice should be detected. 

 
Figure 4.2: Probability of the two classes of the binary classifier: voice, and non-voice. The binary classifier 

provides more accurate recognition results. 
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The third conclusion is that the combination of instrument recognition with source 

separation provides an improvement in quality. In the case of a perfect recognition of the 

presence of the lead instrument (by using the manually created ground truth), the tables show a 

clear increase in the performance of the source separation algorithms, as it can be seen in 

experiments containing GT. In fact, if Marxer’s algorithm is combined with the instrument 

recognition, it can potentially achieve similar separation quality levels than Durrieu or FASST, as 

shown in the experiment IR_Marxer_GT. As it can be observed in Table 4.1, the quality is 

increased by 2.6dB in the case of vocals, and by more than 1.5 dB for the accompaniment, with 

respect to MarxerPF. The experiments with the different combinations of source separation with 

the instrument recognition provide different results. The best results are obtained with a non 

binary mixing, and binary classification, achieving a SDR only 0.3dB lower than the upper limit, 

obtained the ground truth instrument recognition, as it can be observed when comparing the 

results of the experiments: IR_Marxer_binClassif_notbinMix and IR_Marxer_GT. 

If the instrument recognition is applied to other separation algorithms, their separation 

quality is also potentially enhanced with the ground truth instrument recognition, but also with 

the real algorithm (IR_FASST_binClassif_notbinMix and IR_Durrieu_binClassif_notbinMix). 

The No Separation experiment seems to provide evidence that it does not make sense to 

consider the SDR as a unique measure to evaluate the quality of the source separation. Even 

though no separation at all has taken place, the SDR for both vocals and accompaniment is very 

similar to the one obtained with Marxer. This is due to the fact that in the No Separation 

experiment; the SAR is excellent, since by definition the original mix has no artifacts. However, 

the SIR is very bad, especially for the vocals, since the rest of the mix is acting as interference. 

And also in the accompaniment, the complete presence of the vocals reduces the SIR to its 

minimum possible value. 

4.2 Source separation for instrument recognition 

Four different experiments have been conducted to investigate the benefits of the separation of 

the audio signal into different streams prior to the application of an instrument recognition 

algorithm. Firstly, the original algorithm proposed by Fuhrmann in [4] was used to identify the 

instrument present in polyphonic audio (Experiment 1). Secondly, the same system was then 

applied to the recognition of the instruments present in four different streams of audio, 
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corresponding to the estimations of the bass, drums, melody and other sources by the previously 

introduced FASST separation algorithm (Experiment 2). Then, four SVM models were trained 

on the separated audio outputted by FASST, and then used for the labeling (Experiment 3). Then, 

a simple separation of the polyphonic audio into left, right, mid and side (LRMS) streams was 

used as input to the instrument recognition algorithm with the original model.  

Initially, the strategy for combining the labels in the four first experiments (in the case of 

using more than one model) was a simple union of the predicted labels. The SVM models were 

initially trained with the same parameters in the four experiments: the ones from the original 

recognition system, which optimized the performance in Experiment 1. The model used was a 

polynomial kernel, of degree 4, and a cost parameter = 0.1. 

Then, an additional set of experiments were designed to try to optimize the performance, by 

using different label combination strategies, and tuning the SVM parameters for each of the 

models (Experiment 5). 

4.2.1 Experiment 1: original algorithm 

The first conducted experiment (Experiment 1) was to evaluate the original algorithm by itself, 

without any previous separation step as shown in Figure 4.3: 

 

 

Figure 4.3: Original instrument recognition algorithm without previous separation. 

The labels obtained in this experiment are named “n” from: “no separation”. The results are 

included in Table 4.2. 

4.2.2 Experiment 2: FASST separation + original models 

In this experiment, the FASST (bass, drums, melody and other) separation is used, along with the 

original models for the instrument recognition, as shown in Figure 4.4: 
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Figure 4.4: FASST separation into the drum, bass, melody and other streams, combined with the instrument 
recognition using the original models. 

Different combinations of the labels have been tried in order to investigate which 

combination produces the better recognition results, e.g: dbmo means that the measures have 

been computed with the output labels which are the aggregation of the labels outputted in: d 

(drums) + b (bass) + m (melody) + o (other). Table 4.2 shows the results for the micro and macro 

averages of the precision, recall and F1-measure in this experiment.  

Table 4.2: Results of the combination of source separation with instrument recognition, with the original 
models. The combinations of 3 labels have been omitted in this table, since they were not significant 

 MacPrec MacRec MicPrec MicRec MacF1 MicF1 

dbmon 0.336 0.455 0.373 0.492 0.387 0.424 

dbmo 0.310 0.370 0.330 0.385 0.337 0.355 

dbmn 0.363 0.438 0.405 0.474 0.397 0.437 

dbon 0.341 0.406 0.391 0.461 0.371 0.423 

dmon 0.385 0.403 0.391 0.409 0.394 0.399 

bmon 0.356 0.419 0.389 0.432 0.385 0.409 

db 0.294 0.199 0.371 0.273 0.238 0.315 

dm 0.412 0.263 0.369 0.256 0.321 0.302 

do 0.354 0.223 0.336 0.231 0.274 0.274 

dn 0.483 0.333 0.510 0.352 0.394 0.417 

bm 0.365 0.268 0.360 0.253 0.309 0.297 

bo 0.301 0.231 0.328 0.233 0.261 0.273 

bn 0.530 0.330 0.513 0.362 0.407 0.424 

mo 0.364 0.241 0.320 0.186 0.290 0.236 

mn 0.447 0.336 0.502 0.308 0.383 0.382 

d 0.359 0.123 0.395 0.164 0.183 0.232 
b 0.269 0.098 0.360 0.138 0.144 0.200 

m 0.308 0.184 0.381 0.133 0.230 0.197 

o 0.335 0.151 0.321 0.116 0.209 0.170 

n 0.578 0.249 0.708 0.258 0.349 0.378 
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The results show that the original algorithm without source separation (labeled with n) 

provides better results than any of the combinations of the dbmo labels, obtained by means of the 

separation into streams. This decrease in the performance probably occurs due to the fact that the 

separation is not perfect, there is some energy of instruments in streams where there should not 

be, and their timbre is modified. With the separated audio, the best results of the F1-measure, not 

using the original labels (n) are obtained with the combination of all separated tracks: 

(drums+bass+melody+other) d+b+m+o. In this case, the recall is better than with the original 

algorithm (n), but the precision is quite worse, so the F1-measure is lower. 

4.2.3 Experiment 3: FASST separation + models trained with separated audio 

The schema of the conducted experiment is shown in the following figure: 

 

Figure 4.5: FASST separation into the drum, bass, melody and other streams, combined with the instrument 
recognition using models trained on the separated audio. 

In this case, the models used for the classification in the instrument recognition module have 

been trained with the separated audio, as described in Chapter 3. Four different models have 

been created, one for each of the output streams of the FASST bdmo separation algorithm. Each 

of the models makes use of a different set of features, selected automatically during the training 

process. Table 4.3 shows the results for this experiment. Note that the Experiment 1 results is 

also included in the table, in row: n (no separation), for an easier comparison. Since it would also 

be possible to add the “n” label to the “bdmo” sets of labels, these combinations are also 

included in Table 4.3. 
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Table 4.3: Experiment 3 results, showing that using the models trained on separated data provides better 
results than using the original models. The combinations of 3 labels have been omitted in this table. 

 MacPrec MacRec MicPrec MicRec MacF1 MicF1 
dbmon  0.475 0.373 0.593 0.403 0.418 0.480 
dbmo  0.490 0.306 0.625 0.347 0.377 0.446 
dbmn  0.493 0.343 0.614 0.371 0.405 0.462 
dbon  0.492 0.336 0.613 0.363 0.399 0.456 
dmon  0.491 0.366 0.612 0.395 0.419 0.480 
bmon  0.493 0.357 0.614 0.382 0.414 0.471 
dm  0.544 0.252 0.692 0.287 0.345 0.406 
do  0.518 0.210 0.680 0.254 0.299 0.370 
dn  0.543 0.287 0.670 0.308 0.375 0.422 
bm  0.550 0.218 0.690 0.241 0.312 0.357 
bo  0.503 0.172 0.662 0.202 0.256 0.310 
bn  0.546 0.269 0.671 0.282 0.360 0.397 
mo  0.547 0.267 0.684 0.294 0.359 0.411 
mn  0.539 0.312 0.666 0.331 0.395 0.442 
d  0.554 0.131 0.740 0.166 0.212 0.271 
b  0.482 0.058 0.641 0.067 0.103 0.122 
m  0.594 0.199 0.740 0.219 0.299 0.338 
o  0.551 0.148 0.707 0.172 0.233 0.276 
n  0.578 0.249 0.708 0.258 0.349 0.378 

 
The “n” labels provide a Micro F1 of 0.378. The combination of the “m” and “o” labels 

already improves the results, obtaining a Micro F1 equal to 0.411. The best micro F1-measure 

obtained without the “n” labels is 0.446, by combining the labels outputted by the four different 

models: dbmo. If the “n” labels are also combined, the F1-measure increases to 0.480. 

The true positives, true negatives, false positives, false negatives, and the derived measures 

(precision, recall and F1) obtained for each of the instrument in this experiment, with the dbmo 

(drums+bass+melody+other) configuration are shown in Table 4.4: 

Table 4.4: Performance per instrument in bdmo with the models trained on the separated data of each stream 

 cello clarinet flute acguitar eguitar organ piano saxophone trumpet violin voice 
tp 36 6 36 139 268 78 241 107 51 56 568 
tn 2418 2547 2425 2060 1687 2180 1683 2245 2426 2384 1586 
fp 128 48 96 98 79 126 49 108 69 87 64 
fn 69 50 94 354 617 267 678 191 105 124 433 
prec 0.22 0.11 0.27 0.59 0.77 0.382 0.831 0.498 0.425 0.392 0.899 
rec 0.34 0.11 0.28 0.28 0.3 0.226 0.262 0.359 0.327 0.311 0.567 
F1 0.27 0.11 0.27 0.38 0.44 0.284 0.399 0.417 0.370 0.347 0.696 

 

Figure 4.6 illustrates visually the recognition performance per instrument, when the models 

used for the recognition have been trained with the separated data. 
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Figure 4.6: Recognition performance for each of the instruments with a previous FASST bass, drums melody 
and other separation, and with the models created specifically for the separated data in Experiment 3 

The best results are obtained with the voice, achieving a 0.90 precision, 0.57 recall and 0.70 

F1-measure. The clarinet seems to be the most challenging instrument to be recognized, with a 

F1-measure of about 0.11. A further observation is that the performance of the instrument 

recognition depends on the stream and the model. For instance, the recognition in the bass stream 

was better for those sounds with low frequency content, such as the excerpts containing a cello, 

while they were not so well recognized in the rest of the streams. 

4.2.4 Experiment 4: Left-Right, Mid-Side (LRMS) separation + original models 

In this experiment, the audio was separated into four streams in a very simple manner, with l = 

Left, r = Right, n = Left+Right (the Mid), and s = Left-Right (the Side), and the original model 

was used. 
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Figure 4.7: Left-Right-Mid-Side separation into lrns streams, used as input of the original instrument 
recognition models (with no training on this specific separation method) 

As it can be observed in Table 4.5, the obtained results show that there is not a considerable 

difference in the performance with this simple separation, with a maximum Micro F1 = 0.451, 

compared to the case of using the time consuming FASST source separation with the original 

labels (n), achieving a maximum F1 = 0.480. 

Table 4.5: L-R+M-S separation results, which are only slightly worse than with more complex and time 
consuming separation algorithms. 

 MacPrec MacRec MicPrec MicRec MacF1 MicF1 
n  0.578 0.249 0.708 0.258 0.349 0.378 
s  0.538 0.193 0.586 0.214 0.284 0.313 
ns  0.501 0.306 0.595 0.334 0.379 0.427 
l  0.578 0.249 0.708 0.258 0.349 0.378 
r  0.590 0.249 0.720 0.258 0.350 0.380 
lr  0.544 0.301 0.672 0.314 0.388 0.428 
nslr  0.485 0.338 0.582 0.367 0.398 0.451 

4.2.5 Experiment 5: Optimizing the performance of the FASST separation + models 
trained with separated audio 

This experiment aimed at improving the results obtained in Experiment 3, with: FASST 

separation + models trained with separated audio. Since different models are used for each of the 

4 streams of separated audio, it is possible to perform an optimization of the parameters for each 

of them. Furthermore, the initial strategy for the combination of labels in the previous 

experiments was very simple: the output labels were the union of the predicted labels by all 

models. In this experiment, different combinations are explored based on the requirement of a 

degree of overlap N between the outputs of the models. This means that the output labels 

correspond to the ones present in more than N of the sets of labels predicted by the models. 

After running the experiments, it was found (as expected) that if the value of N was 

increased, the precision increased as well, at the expense of a lower recall. With N = 0, which 

means that no overlap is required, the obtained micro F1 is equal to 0.446. If N = 1, which is 
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equivalent to outputting only the labels which had been predicted by at least two of the 

classifiers, the micro precision is increased at the maximum level from all experiments: 0.733, 

but the recall is considerably reduced, and thus the F1 decreases to 0.354. The effect that 

increasing the degree of overlap has in the performance of the integration can be observed in 

Figure 4.8. 
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Figure 4.8: Effect of increasing the minimum degree of overlap N in the labels outputted by the classifiers, 
with dbmo streams. The precision is increased, but the recall and F1-measure decreased. 

The use of such strategy would only be useful if the requirement was to have a better 

precision. However, the F1-measure decreased, and thus the overall performance could be 

considered worse. 

On the other hand, the use of a different configuration for the training of each of the four 

models led to some improvements in the results. The configuration which allowed improving the 

performance the most was found to be the use of a lower degree in the polynomial kernel of the 

SVM classifiers. More specifically, the following combination was found to provide the best 

results: a second degree  polynomial kernel for the bass, melody and other models, and a third 

degree polynomial kernel for the drums model, in combination with a cost parameter of C=0.1 in 

all of them. 
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Figure 4.9 shows an overview of the results of the experiments, in which the minimum 

degree of overlap between labels was set to N=0, which provided the best results in terms of the 

F1-measure. The output labels were thus the union of all labels predicted by each of the models. 
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Figure 4.9: Comparison of the instrument recognition performance obtained with several configurations of 
the experiments. “Exp1: n” corresponds to the results obtained with the n label, with no separation as a pre-
step. “Exp2: dbmo” corresponds to the results obtained, with the FASST drum +bass +melody+other 
separation,  without a training of the models on the separated audio. “Exp3: dbmo” corresponds to the same 
combination of labels, but using models trained with separated audio. “Exp5: dbmo” corresponds to the 
experiment which used different model parameters for each of the four streams. “Exp5: dbmonslr” 
corresponds to the combination of the labels from “Exp5: dbmo” and the labels which were obtained in 
Experiment 4, with the LRMS separation. 

The first column of each of the evaluation measures in Figure 4.9 corresponds to the results 

from Experiment 1. As a reminder, these are the results obtained with the instrument recognition 

algorithm by itself, which are to be improved by the combination with the source separation. It 

can be observed that “Exp1: n” represent the most precise results, at the expense of having a low 

recall, which provides a medium F1-measure. Experiment 2 makes use of the FASST dbmo 

separation as a pre step to the instrument recognition, but the precision drops, and the results can 

be considered as worse, since the F1-measure is lower. The worse results were considered to be 

due to the errors and artifacts produced by the separation, and therefore, Experiment 3 was 
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designed to acknowledge these problems, by using models of the instruments trained on source 

separated data. As it can be observed in Figure 4.9, the results obtained in “Exp 3: dbmo” are 

considerably better than with “Exp 2: dbmo”, and also “Exp1: n”, in terms of F1-measure. The 

results from “Exp5: dbmo” show that it is possible to further improve the instrument recognition 

by tuning the parameters of each of the dbmo models. Finally “Exp5: dbmonslr” corresponds to 

the best results obtained in any of the automatic instrument recognition experiments, by 

combining “dbmo” labels with the tuned models and the “nslr” labels obtained with the Left-

Right-Mid-Side separation from Experiment 4. The detailed results for all possible combination 

of labels can be found in Annex B, as well as a figure with the evaluation measures for each of 

the instruments to be recognized. The best micro F1-measure obtained goes above 50%, thanks 

to the recall gained by the combination of all labels. The initial micro F1-measure, obtained with 

no separation was 37.8%, so we were able to improve a 12.2% in absolute terms, which 

represents a 32.3% relative to the initial value.  
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5 Conclusions and Future Work 

The present work has focused on the study of the relation between instrument recognition and 

source separation. The main motivation was to find synergies between both kinds of algorithms, 

in order to improve their quality, since current approaches still present many limitations in the 

context of professionally produced music recordings. Overcoming the limitations of the 

algorithms would be of much importance for both the research community and the industry as 

there are many areas of application. The positive results obtained in this work show that the 

followed methodology is promising, with many possibilities for further research, as well as 

potential applications. 

5.1 Contributions 

The following list contains the main contributions of this work: 

• The analysis of the limitations of the state-of-the-art instrument recognition and source 

separation algorithms, and the proposal and implementation of effective methods for their 

integration. 

• The improvement of the results of all the considered state-of-the-art source separation 

algorithms, by using a prior instrument recognition step. 

• The innovative use of source separated data to train the classifiers used for automatic 

instrument recognition, which allowed to considerably improving the quality of the 

results. 

• The proposal and use of a simple separation method such as the Left-Right-Mid-Side 

(LRMS), which is a fast but effective alternative to slower separation algorithms, when 

used for the integration with an instrument recognition algorithm. 

• The relative improvement of the performance of the automatic instrument recognition by 

around 32% (in terms of micro F1-measure). 
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5.2 Conclusions 

In relation to the contributions, some conclusions can also be derived. The most important 

conclusion is that we have been able to find synergies between instrument recognition and source 

separation, validating the main hypothesis of this work.  

Firstly, it is possible to improve the quality of several state-of-the-art source separation 

algorithms by the combination with an instrument recognition algorithm, as presented in section 

4.1. The amount of quality gained depends on the specific manner in which the combination is 

executed, but it also depends on the database used for the evaluation. As previously introduced, 

the proposed method is mostly effective in songs where there are sections in which the target 

instrument (in this case the voice) is not present.  

Secondly, the recognition of instruments has also been improved by around 32% of the 

original performance in terms of the F1-measure, with a previous separation step, as described in 

section 4.2. However, the way in which the combination is made is very important to be able to 

improve the results of the algorithms: in section 4.2.2 it was found that the application of a 

source separation pre-step may not provide a better recognition of the instruments if the models 

do not consider the limitations and errors of the separation algorithms. Training the SVM models 

used for classification with the separated audio has been found to be an effective manner of 

acknowledging the typical source separation errors, leading to a better performance, which can 

be further enhanced by tuning the parameters of each of the different models used in the 

instrument recognition.  

The main drawback of the use of source separation is that it is typically slow, except for the 

online approaches, which generally perform worse. In case that the execution time is an 

important issue, it was concluded that it is also possible to substantially increase the quality of 

the instrument recognition with a simple and fast LRMS separation. 

5.3 Future work 

Some positive results have been obtained, and synergies have been found, in a fairly similar 

degree in both directions. However, there is still room for improvement, and thus much work 

could still be done to obtain more accurate results. Additionally, further applications are devised. 
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5.3.1 Improving source separation with instrument recognition 

One of the drawbacks of the algorithm used for instrument recognition is that the best 

recognition is obtained with audio excerpts of around 3 seconds. In the proposed configuration, 

the best results would be obtained if we had information about the presence or absence of the 

target instruments with the best temporal resolution as possible. Further work could deal with the 

investigation of other approaches to instrument recognition that rely on smaller segments of 

audio.  

Anyhow, the presented combination method is only useful for avoiding the separation to 

take place in the segments of the input audio excerpt in which the target instrument is not 

present. However, if the target instrument is present, the combination is limited by the quality of 

the separation algorithm used.  Possible further research would be the improvement of the 

instrument recognition methods which are internally used in the separation algorithms for the 

estimation of the fundamental frequency trajectory. An additional possibility would be the 

combination of musicological knowledge to restrict the possible candidate pitches of the 

instruments, by exploiting the musical context. 

Other extensions of this thesis would be the consideration of other instruments apart from 

the voice, the use of MIDI information to assist the fundamental frequency estimation in 

combination with the instrument recognition, or the evaluation of the quality of the separation 

with the use of perceptual measures, such as the ones obtained with PEASS. 

5.3.2 Improving instrument recognition with source separation 

A possible extension of this thesis would be to further investigate how to improve the instrument 

recognition, with a more complex consideration of the probabilities of presence in the 

combination of the predicted labels in each of the streams after the separation. Also, a deeper 

analysis of the characteristics of each of the separated streams and the instrument recognition 

performance, could allow a tailored implementation of the models: instead of considering 11 

instruments to be recognized by each of the models, it could be possible to focus each model in 

some of the instruments only, according to the characteristics of the separated stream. Some 

other possibilities for further work could be the increase of the amount of instruments to be 

recognized. 
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5.3.3 Improving other MIR tasks 

The positive results obtained in this work and other contributions which employed 

harmonic+percussive separation to improve chord detection, melody extraction or genre 

classification, suggest that musical audio separation helps in the semantic analysis of musical 

data. Many additional tasks within MIR would thus also benefit of the combination with 

instrument recognition and source separation, thus ensuring many possibilities for further 

research. Some of these tasks could be the cover song identification or the tempo estimation. 

5.3.4 Applications 

Some potential applications which could be endeavoured in relation to this thesis are: 

• Musical hearing aids based on timbral information: Listeners with hearing loss 

benefit of processes such as gain, compression and equalisation when dealing with 

musical audio. Combined with research about the perception of timbre by hearing-

impaired listeners, it could be possible to develop a hearing aid system which analyses 

the musical audio content and adapts it to the appropriate input for the user, by 

considering the instruments present in the piece. It could also be possible for the user to 

adjust the parameters of the hearing aid in order to have the most pleasant musical 

experience as possible. 

• Graphical User Interface (GUI) assisted source separation and remixing based on 

Pan-Frequency (PF) filtering: This application would allow a user to select specific 

regions of the PF space with a GUI and have immediate auditory feedback of the audio 

content within the selected regions, thanks to the low computational cost of PF filtering. 

The application would then identify and display the most present instruments in these 

regions. The user could then chose the ones he/she is interested to separate, or could also 

adjust their volumes, panning and equalisation to create a new mix. 
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Annex B 

Best instrument recognition results, obtained in Experiment 5 with the combination of: 

drum+bass+melody+other tuned models (dbmo labels), and Left-Right-Mid-Side (lrns labels). 

The evaluation measures are provided for each of the considered instruments. The voice is the 

easiest to be recognized, while the clarinet is the most difficult. 
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Macro and micro averages of the evaluation measures for each of the possible label combinations 

in Experiment 5. The best result is obtained with the combination of all labels (“dbmolrns”), with 

a micro F-measure of 0.503, compared to 0.378 without source separation (“n”) 

 

 MacPrec MacRec MicPrec MicRec MacF1 MicF1 

dbmolrns 0.410 0.455 0.504 0.501 0,432 0,503 

dbmon 0.440 0.415 0.549 0.455 0.427 0.497 

dmon 0.454 0.399 0.566 0.435 0.425 0.492 

bmon 0.459 0.391 0.569 0.429 0.422 0.489 

dbmn 0.459 0.393 0.571 0.428 0.423 0.489 

mon 0.482 0.373 0.596 0.405 0.420 0.482 

nslro 0.458 0.383 0.555 0.422 0.417 0.479 

dmn 0.477 0.372 0.595 0.401 0.418 0.479 

dbon 0.455 0.369 0.570 0.412 0.408 0.478 

dbmo 0.450 0.367 0.563 0.410 0.405 0.475 

bmn 0.482 0.363 0.597 0.394 0.414 0.474 

don 0.475 0.349 0.595 0.387 0.402 0.469 

dmo 0.468 0.348 0.586 0.388 0.399 0.467 

dbn 0.485 0.337 0.603 0.372 0.398 0.460 

dbm 0.472 0.336 0.589 0.374 0.393 0.458 

mn 0.513 0.334 0.637 0.356 0.404 0.457 

nslr 0.485 0.338 0.582 0.367 0.398 0.451 

bmo 0.471 0.325 0.583 0.363 0.385 0.448 

dm 0.495 0.307 0.623 0.341 0.379 0.441 

dn 0.515 0.306 0.640 0.333 0.384 0.438 

mo 0.503 0.298 0.617 0.330 0.374 0.430 

lr 0.544 0.301 0.672 0.314 0.388 0.428 

bn 0.518 0.296 0.637 0.322 0.377 0.428 

dbo 0.450 0.287 0.581 0.338 0.350 0.428 

ns 0.501 0.306 0.595 0.334 0.379 0.427 

bm 0.500 0.281 0.616 0.313 0.360 0.415 

do 0.472 0.259 0.615 0.305 0.334 0.408 

db 0.481 0.230 0.620 0.277 0.312 0.383 

r 0.590 0.249 0.720 0.258 0.350 0.380 

l 0.578 0.249 0.708 0.258 0.349 0.378 
n 0.578 0.249 0.708 0.258 0.349 0.378 

m 0.546 0.231 0.673 0.254 0.324 0.368 

bo 0.451 0.219 0.591 0.261 0.295 0.362 

d 0.517 0.181 0.680 0.218 0.269 0.330 

s 0.538 0.193 0.586 0.214 0.284 0.313 

o 0.503 0.173 0.642 0.200 0.257 0.305 

b 0.470 0.121 0.621 0.151 0.193 0.244 

 


