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Abstract

Printed circuit boards (PCB) are critical com-
ponents in many aerospace applications. In
these applications harsh dynamic environ-
ments, such as shock and vibration, are en-
countered and it is critical that the electronic
assemblies endure these conditions. An ef-
fective method for minimizing the detrimen-
tal impact of these conditions on a PCB is to
increase the lowest natural frequency of the
PCB through the use of structural supports.
In this report we describe a global optimiza-
tion method, based on surrogate models, that
was found to be effective at finding optimal
support locations on a PCB. Using a global
optimization method within the DAKOTA op-
timization solver, wrapping a smooth-spline
based finite element software, proves effective
at handling unreliable gradients and multi-
modal solution space.

1 Purpose

A primary purpose of this project is to apply the
open-source DAKOTA optimization framework to
the smooth-spline finite element software being de-
veloped by Coreform. DAKOTA is the primary Ver-
ification, Validation, and Uncertainty Quantification
(VV & UQ) platform used and developed by Sandia
National Labs. Coreform currently services several
U.S. Department of Energy customers that have re-
quested to use the DAKOTA optimization framework
with Coreform’s tools. This effort will help identify
required features in Coreform’s software to support
the use of DAKOTA as an optimization platform.

Due to current limitations of Coreform’s software ca-
pabilities, a simple exemplar problem is identified
that will allow for various job submission categories,

*This report was prepared to partially fulfill the course re-
quirements for ME575: Optimization Techniques at Brigham
Young University in Provo, Utah. This report has not un-
dergone peer-review.

as well as DAKOTA’s optimization/space-search al-
gorithms to be evaluated. This project can then be
used as a tutorial to train future users of Coreform’s
finite element code in the use of DAKOTA for auto-
mated job submissions, VV & UQ efforts, and opti-
mization.

2 Exemplar Problem: Optimal
placement of printed circuit
board supports

2.1 Motivation

Printed circuit boards are the principle component
of nearly every modern electronic assembly. PCBs
not only provide a platform on which to mount elec-
tronic the various electronic components of an as-
sembly but also act as a substrate through which
to electronically connect the components. PCBs are
a planar geometry, having a thickness that is usu-
ally much smaller than its other two dimensions'.
In aerospace applications PCB assemblies are subject
to high dynamic load environments that can induce
fatigue-based and/or strength-based failure modes in
PCBs. The predominant strategy to decrease the ef-
fects of the dynamic loads on a PCB is to increase
the first natural frequency (i.e. the fundamental fre-
quency) as much as possible. This is primarily done
through the use of various support mechanisms such
as screw mounts or wedge supports. An example of
a PCB with holes to accommodate screw mounts is
shown in figure 1.

2.2 Prior Work

Won and Park[1] presented an method for identifying
optimal, variable finite-stiffness support positions, on
a plate. Their method calculates the sensitivity of the
eigenvalue at each configuration and then produces a
new configuration based on this sensitivity. Their

1For instance a Micro-Star 845E Max mainboard has di-
mensions 300mm x 200mm x 1.5mm



Figure 1: Example of PCB with support locations
located near the board’s boundary.
https://callnerds.com//motherboard-repair-replacement

method uses a finite element analysis, with a static
mesh, to calculate the eigenvalues at each configura-
tion.

Ong and Lim [2] presented an approach for locating
the optimal placement of infinite stiffness supports on
beams and plates. Their approach places point con-
straints at positions that eliminates lower modes from
the original configuration. These points are chosen
by introducing the constraints along the nodal lines
of the modeshape corresponding to the first eigenfre-
quency occurring at or above the desired new funda-
mental frequency. Then, for 2D cases, the average
driving point residues calculated from higher modes
are used to determine the optimal locations along the
nodal lines. The ANSY'S finite element analysis code
is used for computing the natural frequencies, mode
shapes, and average driving point residues.

Ou and Mak [3] describe a global optimization ap-
proach for determining the configuration of external
boundary conditions for a plate that provide optimal
values across multiple frequencies. Their methodol-
ogy utilizes a genetic algorithm that includes a finite
element analysis to evaluate the objective function.

Chen [4] describes a method for determining optimal
placement of support locations for a PCB loaded with
heavy components - such as a cooling fan. Chen’s
method constructs unique feasible domains for the
support locations and uses a commercial engineer-
ing software (ANSYS Workbench) to control the op-
timization algorithm (ANSYS optimization module)
and objective function evaluation (ANSYS FEA).
Chen converts the constrained problem to an uncon-
strained problem via penalty functions and uses the
nonlinear conjugate gradient method.

3 Implementation

3.1 General Eigenvalue Problem

The fundamental frequency is found by solving the
generalized eigenvalue problem (GEP) [5] posed in
equation 1, which is sometimes written in the form
shown in equation 2.2

(A—AB)x =0 (1)

Ax = \Bx (2)

In the general case, A and B are infinite-dimensional
linear operators. However, in the finite element
method, the PDE’s domain is discretized into cells
of finite size (i.e. finite elements) which results in
a discrete solution space - thus the linear system is
comprised of finite-dimensional operators which are
represented as matrices. The discrete problem is then
written in equation 3. For the discrete problem there
are dim(A) total solutions, with rank(A) unique so-
lutions. Indexing the total solutions in order from
the lowest eigenvalue to the largest the equation can
be rewritten 3 with index notation in equation 4.

(A" — APB") x" = o" (3)

(A" = X'B") x} = 0" (4)

Finally, for the PDEs that arise in structural dynam-
ics applications A is called the stiffness matriz and is
often written as K; B is called the mass matriz and is
written as M; the entries of the eigenvectors represent
displacements and x is thusly written as u. This final
form of the general eigenvalue problem is provided in
equation 5. Once the generalized eigenvalue problem
has been solved for AI' the angular frequency of the
system w; can be determined through the relation in
equation 6. This process for constructing and solving
the general eigenvalue problem, as well as computing
the objective function for the optimization routine, is
shown in figure 3.

(K" — A'M") ul = o" (5)

2
)\i = Wy

(6)

For the posed problem, there are no large-
displacement effects (e.g. no initial stresses) and so
K can be assumed to be symmetric positive definite,
although in some instances, depending on the quality

2When B = I equation 2 simplifies to what is perhaps the
more commonly recognized eigenvalue problem: Ax = Ax.
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(a) Continuous

(b) Discrete

Figure 2: Continuous and discrete problem definitions of the optimization result for a four-support configu-
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Figure 3: High-level description of solving the gen-
eralized eigenvalue problem within the optimization
process.

of the finite elements and the boundary conditions,
may only be semidefinite.?

To reduce on computational costs an efficient method
is to extract only the lowest (i.e. fundamental) eigen-
value of the problem. The most obvious method
would be to use solvers available in the finite element
solver, however Coreform Crunch does not yet sup-
port eigenvalue problems therefore we were limited
to writing the linear system to disk and solved using
a 3rd-party software. To this end, solvers were eval-
uated for the GEP in Python, MATLAB, and Julia
and these results are provided in table 1.

The results showed little variance in the accuracy of
the fundamental frequency, but also demonstrated
that MATLAB is the most performant. Further in-
vestigation found that the techniques available in Ju-

3 A matrix is positive definite if and only if all its eigenval-
ues are positive. A matrix is semi-definite if and only if all
its eigenvalues are mon-negative — the finite element solution
includes rigid-body modes occurring at A = 0.

Language | Relative Error | Time (s)
Python 9.2659e-11 30
MATLAB 0. 0.15*
Julia (eigen) 1.0078e-10 12f
Julia (LOBPCG) | 6.0682¢-11 6.81

Table 1: Comparing languages for solving the gen-
eralized eigenvalue problem. (*) Does not include
startup time. (1) Includes JIT compilation time

lia scaled poorly as the size of the linear system in-
creased, whereas MATLAB’s performance scaled well
- thus MATLAB was chosen as the eigensolver.

3.2 Nonlinear Inequality Constraints

Nonlinear inequality constraints were defined to re-
strict the support placement to within the feasible
region, Qp, of the PCB (or disk). Each support
is assigned a single nonlinear inequality constraint,
which is computed in Coreform Flex by first query-
ing whether the center of the support lies within the
CAD BREP surface associated with the feasible re-
gion. The minimum distance between each support
and each boundary is calculated and its additive in-
verse is used if the support is on the surface - to return
a satisfied constraint. Thus this constraint returns a
value whose magnitude is the distance from the near-
est boundary of the feasible region and whose sign
indicates whether the support is within the feasible
region (negative — satisfied constraint) or is outside
the feasible region (positive — violated constraint).

Listing 1: Python function which computes the non-
linear inequality constraint described in figure 5
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Figure 4: Geometric domain (2 — blue) representing
realistic PCB with a feasible domain (Qp — green)
that represents a minimum distance that the center
of a support may be placed from the board’s edge
and from a critical board-mounted component. This
requirement is enforced via nonlinear inequality con-
straints. The four circles represent the support loca-
tions as determined from the optimization process.

def computeNonlinearConstraint(x,y):
nlcon =numpy.zeros(len(x))
target_surface =cubit.surface(2) # Feasible domain
surface is id = 2
vertex_on_surface =[False for i in range(0,len(x))]
# First, determine whether the nonlinear constraint is
satisfied
for i in range(0,len(x)):
vertex_on_surface[i] =target_surface.
point_containment ([x[i], y[i], 0.]1)
# Second, determine the magnitude of the nonlinear
constraint value
# which is the distance of the point to the closest
curve
cid =cubit.parse_cubit_list("curve",
for i in range(0,len(x)):
dist =numpy.zeros(len(cid))
pXYZ =numpy.array([x[il, y[il, 0.]1)
for ¢ in range(0,len(cid)):
C =cubit.curve(cid[c])
cpXYZ =numpy.array(C.closest_point (pXYZ))
dist[c] =numpy.linalg.norm(cpXYZ -pXYZ)
if vertex_on_surface[i] ==True:
# Nonlinear constraint is satisfied
nlcon[i] =-1. *numpy.min(dist)
else:
# Nonlinear constraint not satisfied
nlcon[i] =+1. *numpy.min(dist)
return nlcon

"in vol 2")

3.3 Summary

The optimization problem is summarized in equation
7. In terms of the physical definition (x;, z;4+1) cor-
responds to the (z,y) position of a support, of which
there are N;. The domain of the PCB is denoted
Q, while the region of the PCB within which a sup-
port’s center must be contained (i.e. feasible domain)
is denoted Qp. The bounding box of €2 is used as the

lower and upper bounds, and is denoted as min £
X

Figure 5: Graphical depiction of calculating the “sup-
port on surface" nonlinear inequality constraint. In
this example the supports (circles) are colored by the
boundary curve to which they are closest. The orange
support lies on the surface, satisfying the constraint,
while the black support lies outside the surface, vio-
lating the constraint.

and max €2 for the minimum and maximum extents

of the bounding box.

——\/,Xl(x)

arg min
rE€Qr CN 2m
subject to (x4, zit1) € QF, i=1,3,...,2Ns — 1,
T; meinQ, i=1,2,...,2N;,
T; Smisz, i=1,2,...,2N;
(7

4 Optimization Workflow

4.1 DAKOTA

While DAKOTA has some abilities to directly inter-
face with some 3rd-party software (such as MATLAB,
Python, and Sandia’s SIERRA finite element pack-
age), this functionality doesn’t exist for Coreform’s
Flex and Crunch software. Thus, after testing op-
timization capabilities using DAKOTA on a simple
surrogate model (see section 4.4), DAKOTA’s fork
simulation interface was investigated. This approach
uses the operating system to create new processes
that communicate with DAKOTA through parameter
and response files, initiating the simulation software
via its own standard invocation procedure (as a “black
box”) which can then be coordinated with a variety of
tools for pre- and post-processing. Transfer of vari-
ables and response data between DAKOTA and the
simulator code then occurs through reading and writ-
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Figure 6: Process-flow diagram of DAKOTA’s
“Black-Box" interface, as implemented in the project.

ing of text or standard data files [6]. Figure 6 shows
the process flow-diagram that occurs when DAKOTA
is executed. As DAKOTA input files, and the ancil-
lary black-box functions, can become extremely ver-
bose when including multiple independent variables
and constraints, templated versions of these files were
developed which are then used to automatically gen-
erate a unique set of files for a given problem defini-
tion, see listings 2, 3, and 4 for an example of this
process.

A significant challenge encountered was that, since
Coreform Crunch currently only supports strongly-
enforced boundary conditions, each function evalua-
tion requires a unique discretization leading to linear
systems that are not equivalent, even prior to the ap-
plication of the Dirichlet boundary conditions. Nu-
merical finite differencing was thus highly unreliable
and often would result in DAKOTA errantly “finding"
local minima at seemingly every trial point.

The objective function evaluation is expensive, re-
quiring between 10s - 180s depending the problem
size, we investigated? so we sought solution meth-
ods that would minimize the amount of sequential
function evaluations needed to converge to a solution.
Additionally, whenever a solution method was com-
patible with DAKOTA’s asynchronous evaluation ca-
pabilities, we used this functionality to execute multi-

4Problem sizes ranged from ~60 P2C! finite elements to
~1500 P4C3 finite elements.

ple objective function evaluations simultaneously. On
our workstation we were able to concurrently evalu-
ate 20 evaluations reliably.

We determined DAKOTA’s efficient_global
method to be the most efficient method, while also
able to robustly find good solutions. The efficient
global optimization (EGO) method in DAKOTA
utilizes a surrogate modeling approach, using a
Gaussian process approximation of the objective
function within each of its sequential iterations.
EGO constructs an expected improvement function
(EIF), which provides insight into how much a given
new trial might improve the objective function.
EGO then uses DAKOTA’s Dlvision of RECTangles
(DIRECT) method to perform the optimization of
the EIF function. Since the EIF provides information
regarding potential trials that minimize the objective
function, as well as regions of the design space with
high uncertainty, it provides a good balance between
between exploring and exploiting. Finally, EGO
handles constraints via an augmented Lagrangian
merit function.

Listing 2: Snippet of templated Python script —
interface_template.py

mdl_in_path ="params.template"
mdl_out_option =mdl_out_option_output_file

#{define_qois}

cmd_line ="Python3 runCFS.py ${input_file} ${output_filel}"
cmd_in_repl ="${input_file}"

Listing 3: Function makeInput.py that parses list-
ing 2 for #{define_qois} and replaces with problem-
specific code

def define_qois(fLines, num_pins):
qoi_str ='qois =[qoi.QoiAnchor("objective", 1, qoi.
FIELDS, 1, qoi.FIELDS, qoi.AFTER, "ObjVal"),' +"\
"
for i in (0,num_pins) :
qoi_str +=" "#8 +'qoi.QoiAnchor("nlcon_' + str(i
+1) + '", 1, qoi.FIELDS, 1, qoi.FIELDS, qoi.
AFTER, "nlcon_' + str(i+l) + '"),' +"\n"
qoi_str +=" "x8 +"]"

for i in (o, (fLines)):
fLines[i] =fLines[i].replace("#{define_qois}",
qoi_str)
return fLines

Listing 4: Auto-generated script, interface.py, cre-
ated via listing 3 operating on listing 2

mdl_in_path ="params.template"



(a)
(b)

Figure 7: Comparison of linear shape functions and
associated geometry (a) with a smooth polynomial
spline function (b).

mdl_out_option =mdl_out_option_output_file

qois =[qoi.QoiAnchor("objective", 1, qoi.FIELDS, 1, qoi.
FIELDS, qoi.AFTER, "ObjVal"),
qoi.QoiAnchor("nlcon_1", 1, qoi.FIELDS, 1, qoi.
FIELDS, qoi.AFTER, "nlcon_1"),
qoi.QoiAnchor("nlcon_2", 1, qoi.FIELDS, 1, qoi.
FIELDS, qoi.AFTER, "nlcon_2"),
qoi.QoiAnchor("nlcon_3", 1, qoi.FIELDS, 1, qoi.
FIELDS, qoi.AFTER, "nlcon_3"),
qoi.QoiAnchor("nlcon_4", 1, qoi.FIELDS, 1,
FIELDS, qoi.AFTER, "nlcon_4"),

qoi.
]

cmd_line ="Python3 runCFS.py ${input_file} ${output_file}"
cmd_in_repl ="${input_file}"

4.2 Coreform Flex

Coreform is primarily focused on developing a suite of
tools that support a spline-based finite element anal-
ysis workflow. Traditional finite element analysis pri-
marily uses linear or C° Lagrange formulations as
the underlying shape functions for their discretiza-
tion. A fundamental characteristic of all these basis
functions is that they have discontinuous derivatives
(C?) on element boundaries. An alternative method
introduced by Hughes et. al. [7] uses higher-order
smooth-polynomials as the basis functions for analy-
sis — a method commonly referred to as isogeometric
analysis (IGA). A simple comparison of traditional
linear elements with smooth splines is shown in Fig-
ure 7.

Recent developments in the field of splines allow for
higher-order smooth-spline functions defined over un-
structured and non-conforming meshes (T-splines or
U-splines) [8]. When performing dynamic analysis
however, higher order functions are rarely used since
they often exhibit poor spectral behavior which neg-

Figure 8: Coreform Flex is based on Trelis, which is
the commercial variant of the Cubit meshing software
developed by Sandia National Laboratories

atively affects dynamic simulation. Recently it has
been shown that U-splines with mixed continuity
can alleviate the poor spectral properties shared by
both higher order Lagrange elements and traditional
smooth splines [9]. These higher order U-splines were
used as the basis for this dynamic frequency analy-
sis though no explicit comparison of this basis with
traditional methods is included.

Coreform Flex is used to produce both the topo-
logical layout (i.e. mesh) and the underlying basis
functions needed for analysis. In this current work
we apply the Dirichlet boundary conditions using
strong enforcement which requires special considera-
tion when building the mesh topology and construct-
ing the spline basis. IGA, just like traditional FEA,
requires interpolatory functions (i.e. nodes) to ex-
ist at Dirichlet boundaries in order to be enforced
strongly. Using the meshing capabilities in Coreform
Flex that were developed by Sandia National Labora-
tories for their Cubit software, the locations of mesh
vertices can be enforced to conform to the support lo-
cations and then using standard paving algorithms to
automatically and robustly generate the mesh. Then,
using the mixed continuity basis construction avail-
able for U-splines, the edges adjacent can be creased
to the vertex of interest to C° while leaving other el-
ement boundaries (where possible) at higher (C* or
greater) continuity. It should be noted that in order
to construct a well-behaved basis, additional creasing
is often necessary to obtain other requirements such
as local linear independence and partition of unity.
Several modifications were made in order to achieve
the robustness required by this optimization work-
flow.



4.3 Coreform Crunch

Once the mesh and the basis have been built, the
code automatically constructs the input necessary for
Coreform’s solver: Coreform Crunch. This is rela-
tively straightforward since there are no applied trac-
tion forces or time integration. A simple linear elastic
material model and a solid element formulation are
used. In general it would be possible to use standard
shell formulations, however, constructing the mass
matrix needed by equation 5 would require an addi-
tional integration through the thickness which would
require additional work. It is instead easier to ex-
trude the two-dimensional mesh created in Flex and
create a tensor product basis with a one dimensional
spline. Like many other parts of this workflow, since
no explicit integration exists the files are used as to
communicate between the various Coreform compo-
nents. The standard file format used by both Flex
and Crunch are JSON files. This workflow uses a
Python script that reads in a JSON file with ba-
sic mesh information from Flex and then automat-
ically parses and writes out a new JSON file for use P
in Crunch.

The primary role of the finite element solver in our
workflow is to assemble K" and M". Coreform =
Crunch uses C++ as its primary language and cur- ==
rently uses the PETSc linear algebra package avail-
able for C++. As of this report there is no way to
solve the generalized eigenvalue problem using this
PETSc integration. An original attempt was made to
integrate Julia directly into the C++ code and solve
for the eigenvalue directly using Julia. This workflow
was abandoned however when it became clear that
the integration was extremely difficult to debug more
complicated iterative schemes and provided no real
benefit in terms of efficiency. Instead, we made some
minor Crunch source-code modifications in order to
write these linear operators to disk to be used with
various eigensolvers (see Section 3.1).

Frequency (Hz)

Figure 9: Solution (sphere) returned by fmincon su-
perimposed on the feasible solution space of the sim-
ple surrogate model.
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Figure 10: Example of meshed geometry in Solid-
Works Simulation used to create the two-support sur-
rogate model

supports SolidWorks Simulation™ was then used to
compute the fundamental frequency.

The support positions and resulting fundamental fre-
quencies were tabulated and processed via MAT-
4.4 Surrogate Model LAB’s Curve Fitting Toolbox™ to create a surro-
gate objective function. We then included the afore-
Concurrent with our Coreform integration efforts, we mentioned nonlinear inequality constraints on sup-
developed a simplified, surrogate model of a circu- port position in relation to the PCB boundaries, as
lar PCB that allowed us to continue investigating well as an additional constraint that enforced a mini-
DAKOTA. The design space was reduced by using mum separation distance between the supports. The
symmetry in support positioning. The number of surrogate model met the requirements for a solution
design variables was also reduced by changing from matching expected behavior.
a Cartesian coordinate system (two x-locations and
two y-locations) to a reduced polar coordinate system While rudimentary, the surrogate model gave us in-
(two radial positions and a separation angle, Af;_5). sight into the considerations for obtaining frequencies
A manual pattern search was used to create 32 unique from an FEA package and also led to investigating the
support positions. For a given set of position for the efficient global optimizer in DAKOTA.



Figure 11: Example results from SolidWorks Simu-
lation. Displacement constraints are located around
the rim of the disk and the base of the PCB supports.

5 Results

5.1 Optimization on circular mem-
brane

To facilitate testing our DAKOTA-based opti-
mization workflow we began by attempting to
optimize support placements on a circular disk
with encastre boundary conditions®. We use the
efficient_global method in DAKOTA to find the
optimal configuration for a two support configura-
tion. In figure 12 we show a post-optimization, veri-
fication analysis where we compare the base problem
statement against the optimized configuration. We
observe that the fundamental frequency of the opti-
mized configuration is ~ 9% higher than the second
mode of the unsupported configuration®. Thus we
conclude that these optimal locations remove the first
vibrational mode and accomplish the task of raising
the fundamental frequency.

Further investigation explores an interesting be-
haviour, which confirms the motivation for pursuing
this project. Recall that in a 1D vibrational prob-
lem, for a given eigenmode, there exist 0D points
where the amplitude is zero - these positions are
called the nodes of the modeshape. Likewise in higher
dimensions there also exist regions of the modeshape
where the amplitude is zero; for the N-dimensional
unconstrained vibration problem there can exist sub-

5Encastre boundary condition: Az = Ay = Az = A, =
Afy = A6, = 0. This is in contrast to a pinned boundary
condition: Az = Ay = Az =0.

6The reason for the higher frequency is that, due to cur-
rent limitations in Coreform Crunch, we are not able to apply
pinned boundary conditions, which is the accurate represen-
tation of the solution at a node of a modeshape. Instead we
are only able to apply encastre boundary conditions which is
significantly stiffer than the pinned condition
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Figure 12: Verification of the optimization results for
the disk problem. The left image is of the disk’s sec-
ond mode when no supports are used. Encastring the
disk at the locations shown as red dots in the image
on the right results removes the first eigenmode from
the problem, resulting in the second mode becoming
the fundamental mode of the disk.

spaces of dimension N — 1, embedded within the N-
dimensional space, where the amplitude is zero. For
a 2D problem we call this feature a nodal-line[10].
Theoretically, a zero-displacement (pinned) bound-
ary condition could be applied along the entire nodal-
line(s) of an eigenmode, which would have the effect
of removing all lower eigenmodes from the eigenspace,
resulting in the eigenmode (and eigenvalue) becoming
the fundamental mode. However, as we demonstrate
in figure 13, there appear to be subspaces (of dimen-
sion N —2) of this nodal-line which appear to have the
same effect as constraining the entire nodal-line. The
engineering value of these positions is that they po-
tentially allow the engineer to minimize the hardware
required to maximize the fundamental frequency.

5.2 Optimization on constrained PCB
geometry

In figures 14, 15, and 16 we present the op-
timzation results, as determined via DAKOTA’s
efficient_global method, for the four-, five-, and
six-support configurations. These figures demon-
strate the efficacy of the optimization framework in
determining desirable support locations. An espe-
cially interesting behaviour can be seen in figure 16
where we observe that a large increase in the funda-
mental frequency is obtained. As opposed to plac-
ing these supports directly on the nodal-lines, as sug-
gested Ong & Lim[2], for a given eigenmode, instead
the supports appear to be making a close approxima-
tion to the nodal-lines across multiple eigenmodes -
therein removing multiple low-frequency eigenmodes.
This appears to support the findings of Won &
Park[l], who noted that sufficiently stiff supports



Figure 13: Here we overlay the optimization results
for the support locations (white spheres) ontop of
the second eigenmode of the unsupported configura-
tion. The thin white line denotes the nodal-line of
this eigenmode. This mode corresponds to the first
mode of the optimized problem (see figure 12).

have a region of optimality rather than only being op-
timal at a single point. While we modeled infinitely-
stiff supports, through our encastre boundary con-
ditions, this is likely a valid assumption based on
the analysis of Won & Park, who found the critical
support stiffness for their steel plate problem to be
~ 10°X "while a #10-32 10mm PCB mounting screw
has a stiffness of ~ 108X,

While we can not confirm whether these positions
are in fact the global optimum, by comparing these
results with the corresponding eigenmodes of the un-
supported PCB, we feel these results are at least sat-
isfyingly close to a global optimum as they either ex-
ceed or are close to the eigenvalues of the unsupported
PCB. A likely reason for not being able to exactly
match the mode shapes, as we were able to observe
in the aforementioned disk problem, is that the true
globally optimal solution may not lay within the fea-
sible space and that, for both the unconstrained and
constrained problems, there exist a large amount of
local minima. It is therefore reasonable that these re-
sults might reflect a near-optimal solution contained
within the feasible domain.

6 Conclusion

An important finding from this study was that
gradient-based methods struggle to solve this prob-

port: 1 ODB: C:/UsersigregjlDocuments|...[PCB_Optimal-EGO-4Pinport: 9 ODB: C:/Users/gregj/Documentsl...Optimal-EGO-4Pin-Free]

1
8: Value =
Primary Var: U, U3

Step: Step-1
Mode 1: Value =
Primary Var: U, U3

Step: Step-
3.730326+06 Freq = 307.39  (cycles/time) Mode 1.77964E+06 Freq = 212.32  (cycles/time)

Figure 14: Comparing the results of optimization of
a 4-support problem (left), to the second non rigid-
body mode of the unsupported PCB (right). While
the supports are only active in the left case, we pro-
vide overlays of their locations on the unsupported
cases for reference. Contours depict displacements in
the page-normal direction, while nodal-lines are de-
picted as thick black curves. The feasible region for
the supports is the overlaid white geometry.

lem as posed. This is most likely caused by the ever
changing mesh required when supports are evaluated
at a even slightly different locations adversely im-
pacts the reliability of gradients. Additionally, as this
is an extremely multi-modal problem local-solvers
by themselves are not reliable for finding globally-
optimal values. We found that global, gradient-free
methods were essential to robustly obtaining solu-
tions to this problem. However, it stands to reason
that improvements to efficiency could be attained re-
liable gradient-based methods (see future work 6.1).
We’ve demonstrated a basic framework to automate
Coreform’s Flex and Crunch software via Sandia’s
DAKOTA software, especially as it pertains to op-
timization problems. We've also identified features
that could be implemented in Flex & Crunch that
would improve its functionality within DAKOTA-
based workflows. This work has laid a good foun-
dation for an optimization workflow that can be used
by several of Coreform’s customers on many different
problems moving forward. A by-product of this ef-
fort was an effective, albeit rudimentary, approach to
determining optimal placements of PCB supports in
vibration-critical applications.

6.1 Future Work

This report presents only a very basic DAKOTA /-
Coreform workflow with most if not all integration
happening manually through file transfer. This is
obviously not optimal and there are some very ba-
sic things that could be done to improve this. One
of the most obvious changes that would be needed
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Figure 15: Comparing the results of optimization of a
5-support problem (left), to the third non rigid-body
mode of the unsupported PCB (right). While the
supports are only active in the left case, we provide
overlays of their locations on the unsupported cases
for reference.

JODB: C:/Usersigregj/Documents/../PCB_Optimal- ODB: C:/Users/gregj/Documents/...Optimal-EGO- ODB: C:/Usersigregj/Documents/...Optimal-EGO-

Figure 16: The 6-support case is able to suppress
many additional modes. The first mode for the sup-
ported problem is shown at top left and then con-
tinuing from top-left to bottom-right are the 4th-8th
modes of the unsupported PCB. While the supports
are only active in the top-left case, we provide over-
lays of their locations on the unsupported cases for
reference.

would be a more standard API for extracting desired
results. Currently the only output available in Core-
form Crunch is a ParaView output file that is ex-
tremely cumbersome to work with outside the Par-
aView program. In this case the stiffness and mass
matrices were used directly, but in general, if the user
desired quantities like displacement or stress there is
currently no easy way to obtain that information.

As mentioned in section 4.2 a mixed-degree, mixed-
continuity, smooth-spline basis was used in the anal-
ysis. There is significant outstanding research that
could be conducted to understand the impact that
using these splines has on this type of frequency anal-
ysis. There is also much more work to be done on un-
derstanding these vibration-critical applications since
only very simple geometries and configurations were
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considered. To what extent this method produces
pragmatic solutions is still largely unknown and ad-
ditional validation and testing would be vital in sup-
plementing and supporting this work.

It was previously discussed that local gradient-based
solvers struggled with even small changes in support
locations: when support locations change, a unique
mesh created, essentially creating an entirely different
problem so computing derivatives via finite differenc-
ing is unreliable. An alternative approach would be
to enforce the boundary conditions weakly instead of
strongly. Strong enforcement requires interpolatory
nodes in order to function properly which requires the
mesh to fit perfectly with support locations. Weak
enforcement of boundary conditions would allow a
single, simple mesh to be created upfront and then
use standard formulations such as Lagrange, penalty,
Nitsche etc. to enforce the boundary conditions. This
has the potential to drastically improve calculation
of gradients as changes in the design variables (i.e.
boundary condition locations) would not change the
pre-Dirichlet stiffness and mass matrices, while the
post-Dirichlet matrices would have predictable, well-
behaved scalings. Furthermore weak enforcement
would enable a drastic speedup in the objective func-
tion calculation, as the pre-Dirichlet matrices would
only have to be computed once and could then be
reused for every function evaluation.

To generalize the results from a PCB support opti-
mization more parameters would need to be included
in the solid modelling. A higher fidelity model would
include the stiffness and mass of surface mounted
components (e.g. the CPU) and could additionally
include optimal placement of some of these compo-
nents, while leaving some components (e.g. system-
level interfaces) fixed.
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Appendices

A Problem Specifications

Disk PCB
K[ 1x10° | 24x10° MPa
v | 0.33 0.33
p|1x107° | 1.85 x 1079 tenne
t | 0.025 1.57 mm
r| 1. -
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B Geometry Availability

The geometry for the PCB used in this study is pro-
vided in the Zenodo distribution of this report, or
may also be found in the source-code repository listed
in appendix C

1. PCB.stp — STEP file of the PCB midsurface

2. PCB_ feasible.stp — STEP file of the feasible re-
gion midsurface of the PCB

C Source-Code Availability

The source code for this project is available on
GitHub:
https://github.com/GregVernon/Dakota_CFS


https://github.com/GregVernon/Dakota_CFS
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