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Dynamic network slicing has emerged as a promising and fundamental framework for meeting 5G’s diverse use
cases. As machine learning (ML) is expected to play a pivotal role in the efficient control and management of
these networks, in this work, we examine the ML-based quality-of-transmission (QoT) estimation problem under
the dynamic network slicing context, where each slice has to meet a different QoT requirement. Specifically, we
examine ML-based QoT frameworks with the aim of finding QoT model/s that are fine-tuned according to the
diverse QoT requirements. Centralized and distributed frameworks are examined and compared according to
their model accuracy, routing and spectrum allocation (RSA) accuracy, and CPU (training time) and RAM (mem-
ory) requirements. We show that the distributed QoT models outperform the centralized QoT model in accuracy
and CPU usage. The RSA accuracy, i.e., measuring the accuracy of the models with regard to the QoT-aware RSA
decisions, is sufficiently high for both frameworks. Regarding the RAM usage, as the distributed framework has
to train in parallel several QoT models, it may require higher memory, especially as the number of diverse QoT
requirements increases. This memory, however, tends to be reserved for a shorter period of time. Moreover, this
work develops a dynamic multi-slice QoT-aware (RSA) framework that integrates the ML-based QoT models.
The aim is to examine the network performance when the diverse QoT models are considered, as opposed to the
state-of-the-art single-slice QoT-aware RSA approach where all connections/slices are provisioned according to a
single QoT requirement. We show that the multi-slice QoT-aware RSA approach significantly improves network
performance, a clear indicator that the commonly considered single-slice QoT-aware RSA approach may lead to
connection overprovisioning. © 2020 Optical Society of America
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1. INTRODUCTION

Network slicing is considered today as a promising and fun-
damental framework for supporting 5G mobile networks and
their emerging services (e.g., connected autonomous cars,
connected robots) and applications (e.g., video streaming,
augmented reality, virtual reality) with very diverse service level
requirements (e.g., bit rates, bit-error rates (BERs), latency,
availability) [1]. In general, network slicing is a technology
allowing multiple virtual networks (slices) to be created on top
of a common shared physical infrastructure, with the slices
being customized to meet the specific needs of each service
[1,2]. The realization of this service-oriented view of the net-
work is based on the principles of software-defined networking
(SDN) and network function virtualization (NFV), allowing
for the dynamic (on-demand) creation of virtual slices that can
also be linked through software. On this basis, many telecom
operators (e.g., Ericsson, Nokia, and AT&T) have in the past

few years adopted network slicing as an emerging technology
and business model [2,3].

In general, the implementation of network slicing is con-
ceived as an end-to-end feature spanning over different
technology domains. While relevant work focuses mostly
on the implementation of network slicing in the radio access
network (RAN) segment [1,2,4,5], recent work also focuses
on extending the scope of network slicing beyond the RAN
to include both mobile and transport (optical) network seg-
ments [6–8]. In particular, recent work deals with SDN/NFV
demonstrations, network orchestration implementations,
and traffic demand analysis, towards the vision of end-to-end
network slicing. In general, SDN/NFV, network orchestra-
tion, and analytics are considered as the key ingredients for
successful implementation of end-to-end network slicing [1].
However, regarding the efficient control and management of
these slices (i.e., enabling not only their creation but also their
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smart deployment at the right place, at the right time, with
optimized resources), little has been done so far.

Without doubt, machine learning (ML) will be instrumen-
tal in the efficient control and management of these slices
by enabling automation of the network planning functions.
This is especially true in current networks, where network
planning functions are becoming increasingly complex in an
uncertain network environment that is continuously changing,
supporting heterogeneous applications and services. Existing
ML applications [9,10] focus on traffic demand predictions
and resource allocation optimization [11–15], fault detec-
tion/localization [16–19], attack detection/identification
[20,21], and quality-of-transmission (QoT) estimation [22–
26]. In most of these works, however, the diverse optical service
level agreements (OSLAs) of the next generation optical net-
works [27] are not specifically considered. Since the QoT
requirement (i.e., BER) is among the OSLA specifications
[27], in this work, we examine the ML-based QoT estima-
tion problem for sliceable optical networks, where each slice
has to meet a different QoT requirement. As the OSLAs are
usually set a priori between the telecom operators and the
services/applications, the diverse QoT requirements can also
be known a priori, hence allowing for the application of ML
for QoT model estimation. Note that the use of ML applica-
tions for QoT estimation aims at alleviating the drawbacks
of the static Q-factor models traditionally used for the QoT
estimation of unestablished connections [28–30] (i.e., lack of
self-adaptiveness to network changes, highly overestimating
the nonlinear physical layer impairments, underutilization of
network resources [22,31]).

A. Our Contribution

The ML-based QoT estimation problem has been extensively
studied in the literature. Commonly, the aim is to find a QoT
model that is fine-tuned to the QoT requirement that best fits
all the diverse QoT requirements. Thus, for ensuring sufficient
QoT for all services (regardless of their actual QoT require-
ment), the QoT model has to accommodate the highest QoT
requirement among all services (i.e., lowest BER). However,
this practice may lead to connection overprovisioning. As
optical networks are already transforming to a multi-slicing
network planning scenario [6–8], the QoT estimation problem
has to also be transformed accordingly. Towards this direction,
our previous work [32], examined centralized and distributed
ML-based QoT estimation frameworks with the objective of
finding QoT estimation model/s that are fine-tuned to the
diverse QoT requirements of each optical network slice.

Specifically, in [32], an SDN-based hybrid framework is
examined that consists of both a centralized controller and
several distributed controllers. In the centralized QoT frame-
work, a multiclass classifier is trained at the central controller
according to global network information (i.e., according to
all QoT requirements). In the distributed QoT framework,
a set of binary classifiers is trained in parallel and independ-
ently within a set of distributed controllers. Each distributed
controller stores information that is relevant only to its own
slice type, with each slice type being formed by the connections
with the same QoT requirements. Hence, each distributed

model is trained according to a different QoT requirement.
The preliminary results of [32] showed that the distributed
approach outperforms the centralized approach in model
accuracy, accuracy per class, and training time, especially as the
number of slice types increases. In this work, we significantly
extend [32] as follows:

• We analytically describe the mathematical formulations
of the proposed ML-based QoT estimation methods.

• We train both the centralized and distributed QoT mod-
els on new datasets consisting of more patterns and also consid-
ering different network loads.

• We train both the centralized and distributed QoT mod-
els according to neural network (NN) topologies consisting of
different numbers of hidden layers and units. Specifically, as
the centralized framework is based on a multiclass classification
problem, which is in general harder to solve than its binary
decompositions [33–35] (distributed QoT problem), the
centralized framework is examined for a larger NN topology.

• The models/frameworks are compared not only accord-
ing to their accuracy and CPU usage, but also according to
their RAM usage and routing and spectrum allocation (RSA)
accuracy.

• We develop dynamic multi-slice QoT-aware RSA heuris-
tics integrating the diverse QoT models of both the centralized
and distributed frameworks.

• The network’s performance is compared when utilizing
the proposed multi-slice QoT-aware RSA approach versus
the case where the conventional single-slice QoT-aware RSA
approach is used.

The rest of this work is organized as follows: Section 2
discusses related work, Section 3 provides the approach
overview, while Section 4 provides the problem statement.
The ML-based QoT estimation problem formulation is given
in Section 5, and the multi-slice QoT-aware RSA heuris-
tics are described in Section 6. Section 7 discusses the QoT
models’ training and evaluation, and Section 8 presents the
network performance evaluation. Concluding remarks are
given in Section 9.

2. RELATED WORK

ML applications for optical network planning have in the past
few years attracted significant attention [9,10]. In their general
form, existing ML applications assume an SDN-based optical
network controller that centrally controls and manages the
network [11,36] (Fig. 1). The central controller/orchestrator
is equipped with storage, processing, and monitoring capa-
bilities, and the ML applications run centrally according to
the datasets found in the central knowledge database. Under
this framework, the aim of the SDN-based controller is to
efficiently manage the network resources so that the diverse
quality-of-service (QoS) requirements of the different services
are met, as closely as possible, by the virtual network topology
(VNT). The VNT is in essence a single slice (virtual network)
that has to accommodate as best as possible all the services.

Regarding the QoT estimation problem, which this work
focuses on, an ML application runs centrally according to
the monitored and stored lightpath information (i.e., BER
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Fig. 1. Single-slice control and management framework.

and lightpath’s features). The objective is to find an accurate
QoT estimation model that is subsequently used for centrally
managing the network resources. In general, this model can
be adapted to network changes by, for example, retraining
the model according to information that is shifted in time.
Under the single VNT assumption, however, the ML-based
QoT model may lead to underutilization of network resources.
Specifically, the ML-based QoT model, for best meeting the
diverse QoT requirements of the various services, must be
trained according to the highest QoT requirement (i.e., the
lowest BER requirement) among all services. Therefore, the
state-of-the-art problem is usually addressed as a binary classifi-
cation problem that is based on a single BER threshold (i.e., the
lowest BER requirement). The binary classifier is trained for
estimating whether the BER of the candidate lightpath is above
or below the threshold. Thus, the QoT model is capable of
classifying the unestablished lightpaths into one of two classes:
the infeasible QoT class or the feasible QoT class [22–24].
However, the practice of considering a single BER requirement
may lead to connection overprovisioning, especially as the
diversity of the various BER requirements increases.

To alleviate the connection overprovisioning effect, central-
ized and distributed ML-based frameworks are examined that
specifically account for the diverse BER requirements of the
slices. Both frameworks are evaluated and compared according
to their model accuracy, RSA accuracy, CPU usage (training
time), and RAM usage (memory requirement). A multi-slice
QoT-aware RSA heuristic is then developed that integrates
all the diverse QoT models. The single-slice QoT-aware RSA
heuristic, integrating only the QoT model of the lowest BER
requirement, is used as a benchmark. The reader should note
that in the literature, existing QoT-aware RSA algorithms
consider only a single BER requirement [28–30]. In this work,
we show that the multi-slice QoT-aware RSA outperforms
the state-of-the-art single-slice QoT-aware RSA approach by
avoiding slice/connection overprovisioning, an indicator that
the diverse BER requirements must be specifically taken into
account during slice/connection provisioning.

3. APPROACH OVERVIEW

A sliceable optical metro/core network is assumed, in which
connections of diverse slice types arrive and leave the net-
work dynamically. Connection requests cause the dynamic
partitioning of the network into a number of slices (one for
each different slice type), with each slice adhering to the QoT

Fig. 2. Multi-slice control and management framework.

requirement of its own slice type. The general assumption is
that in the metro/core network, a slice is defined according to
a set of QoS requirements (e.g., QoT requirement, bit rate,
etc.) of the same type, and thus, it is not directly associated
with a particular application (which is the case for fronthaul
networks). Since in this work we consider only the QoT
requirement, a slice type is formed only by the connections
requesting the same BER. The aim is to find QoT models that
are capable of accurately distinguishing between the diverse
BER requirements. These models can then be integrated into
the slice/connections provisioning phase for ensuring that
each slice will meet its BER (slice type) requirement before it is
actually (re)configured.

In this work, the QoT model/s estimation procedure is
based on the general multi-slicing control and management
framework shown in Fig. 2, consisting of a central con-
troller (orchestrator) and several distributed controllers (e.g.,
fog/edge-computing-based controllers). Each controller,
has its own monitoring and management capabilities, and it
can store and process control and management information.
Hence, under this framework, the model/s can be computed
in either a centralized or distributed manner. In the first case,
the central controller stores and processes global network
information, whereas in the second case, each local controller
stores and processes information that is relevant only to the
connections intended for the slice type that each distributed
controller manages (i.e., each distributed controller manages
the connections of a different slice type/BER requirement).
For both centralized and distributed frameworks, an ML appli-
cation runs on top of a database from which it extracts and
analyzes the stored data (i.e., BER data obtained via optical
performance monitoring (OPM)), by means of model training.
In the centralized framework, a single QoT model is trained
that centrally controls/manages the network, whereas in the
distributed framework, a set of QoT models is trained locally
and independently, with each QoT model being responsible
for handling the connection intended for its own slice type.

After the training procedure, the QoT model/s can be used
during the slice provisioning phase for ensuring connection
feasibility (Fig. 2). Since slice provisioning takes place in the
central controller (available network resources can be more effi-
ciently managed in a centralized manner), the distributed QoT
models need to be communicated to the central controller.
Note, however, that only the model parameters need to be sent
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to the central controller and not the entire training datasets,
given that the central controller is aware of the ML method/s
applied to each slice type (e.g., NN topology and activations)
and that the ML method/s applied do not require the training
dataset (or a subset of the training dataset) during inference
(e.g., NNs do not require the training dataset, k-nearest
neighbors require the entire training dataset, support vector
machines require a subset of the training dataset, etc.). The
QoT models (distributed or centralized) are then integrated
into the multi-slice QoT-aware RSA algorithm responsible for
the slice provisioning phase.

In general, the QoT model/s can be retrained offline
according to the most recent dataset, for capturing the net-
work changes (i.e., network degradation), and subsequently
update the multi-slice QoT-aware RSA algorithm. Retraining
can be performed either periodically or after the controller
observes that the QoT model/s have drifted from a predefined
acceptable number/percentage of misclassifications (i.e., a
mechanism exists that triggers model retraining). To avoid the
misclassification side effects, a safety margin could be used in
conjunction with the QoT model (e.g., training the models
according to higher BER requirements than the acceptable).
The development of a retraining triggering mechanism is
out of the scope of this work but constitutes an interesting
research direction.

Regarding the practical implementation issues of the afore-
mentioned frameworks, it is important to note that the existing
single-slice approach of the optical network segment sup-
ports a forward error correction (FEC) scheme that tolerates
a single BER requirement (the lowest acceptable among all
the services). However, the support of an efficient end-to-end
network slicing implementation requires the appropriate
transformation of the FEC schemes (e.g., applying a FEC
scheme that is designed for tolerating the diverse BER require-
ments). As the optical network slicing concept is currently
in its infancy, such practical feasibility issues remain open
research problems.

4. PROBLEM STATEMENT

We assume an elastic optical network (EON) in which con-
nections of diverse BER requirements arrive and leave the
network dynamically. The network is therefore dynamically
partitioned into a number of slices that are formed according
to the diverse slice types of the arriving connections. Each con-
nection request is defined by the set C k

n = {s , d , Bk
}, where s

is the source node, d is the destination node, and Bk is the BER
requirement of connection n. Furthermore, k = 1, . . . , K ,
which means that connections of K diverse BER requirements
may request admission or equivalently that the network may
be temporarily partitioned into up to K slice types. On this
basis, the slices are dynamically (re)configured according to the
arriving connections intended for each different slice type.

In an EON, one possible way for dynamically
(re)configuring the diverse slice types is by solving the QoT-
aware RSA problem for each arriving connection request. This,
however, requires that predefined QoT estimation model/s
are integrated into the RSA procedure to ensure that each
computed slice type will meet its QoT requirement prior to

its (re)configuration. In this work, for finding the QoT esti-
mation model/s we apply multilayer perceptrons (MLPs),
aiming to find accurate QoT models, according to the BER
requirements of each slice type k. Centralized and distributed
ML frameworks are examined. The trained ML-based QoT
models are then integrated into the multi-slice QoT-aware RSA
procedure.

5. ML-BASED QoT ESTIMATION

To find the QoT models, several ML methods can be applied
(e.g., support vector machines, logistic regression, NNs, etc.).
In this work, we have opted for an MLP that is a class of
feedforward artificial NNs [37] with low memory and com-
putational requirements. In general, it was shown that NNs
achieve higher accuracy than other ML techniques used for
finding QoT models [24], and they were also demonstrated
experimentally [38,39] achieving an overall high accuracy.
Comparing different ML methods is out of the scope of this
work, as this work focuses mainly on comparing the advantages
and limitations of the centralized and distributed frameworks
proposed. Such a study, however, constitutes an interesting
future direction for providing comparative results of the pos-
sible ML methods that can be applied. Note that in general,
despite the ML method applied, multiclass classification prob-
lems (centralized framework) are harder to solve than their
binary decompositions [33–35] (distributed framework).
Hence, even though different ML methods are expected to per-
form differently regarding their achievable accuracy and RAM
and CPU requirements, the centralized approach will still be
harder to solve (with higher CPU and RAM requirements)
than its distributed decompositions.

On this basis, we first describe the mathematical formu-
lation of the MLP applied in this work. Then, we proceed
to describe how our QoT estimation problem is formulated
as a multiclass classifier (centralized framework) and as a set
of binary classifiers (distributed framework). The follow-
ing description concerns an MLP with one hidden layer.
Information regarding the extension of an MLP to more
hidden layers can be found in [37].

A. MLP Classification

A generic graph representation of an MLP is given in Fig. 3.
The MLP in Fig. 3 consists of the input layer, one hidden
layer, and the output layer. Given feature (input) vectors of the
form x= {x j }

M
j=1, the input layer consists of M inputs. Given

ground truth vectors of the form y= {yk}
K
k=1, the output layer

consists of K outputs. The hidden layer, h , consists of M′

activation units with their outputs denoted as {h i }
M′
i=1 (their

optimal number depends on the problem setting and can be
found in general with trials). Given a set of training examples
(x1, y1), (x2, y2), . . . , (xN, yN), where xn is the feature vector
of a sample n, and yn ∈ {0, 1} is the ground truth vector of a
sample n, an MLP learns the function f (zk), for each output
of the MLP.

Briefly, f (zk) is the activation function applied to the kth
output of the MLP:
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Fig. 3. Graph representation of an MLP.

zk =

M′∑
i=1

w
(h)
ik h i + b, (1)

where b is the bias of the hidden layer, and w(h)ik are the train-
able parameters between the outputs of the hidden layer h
and the kth output of the MLP [37]. Specifically, for an MLP
with one hidden layer, h , the h i outputs are calculated as
follows [37] :

h i = g

 M∑
j=1

wjix j + b′

 , ∀ i = 1, 2, . . . , M′, (2)

where wji are the trainable parameters between the x j inputs
and the i th hidden unit, b′ is the bias, and g () is the activa-
tion function applied to the hidden units. In this work, we
opted for the rectified linear unit (ReLU) activation function.
Information on possible activation functions and comparisons
can be found in [40]. According to [40], ReLU is currently
the most successful and widely used activation function and is
given by

g (z′)= (z′)+ =max(0, z′), (3)

where z′ =
∑M

j=1 w j x j + b′.
Regarding the activation function f (), applied to the out-

puts of the MLP, for the binary classifier, where the number of
classes K is equal to two (the MLP has one output and hence
f (zk)= f (z)), the logistic activation function is applied as
follows [37]:

f (z)=
1

1+ e−z
, (4)

and ŷ = f (z) ∈ {0, 1} is the score/estimate of the MLP. In gen-
eral, the logistic activation function f (z)maps the z output of
the MLP to a binary value (zero or one), and it is typically used
for binary classification.

For the multiclass classifier, where K > 2, the softmax acti-
vation function is applied to every k output of the MLP as
follows [37]:

f (zk)=
e zk∑K
j e z j

, (5)

and ŷ j = 1 if f (z j )=max{ f (zk)}
K
k=1; otherwise ŷ j = 0 (the

output is a vector ŷ= { ŷ }Kj=1, and the maximum score of
{ f (zk)}

K
k=1 indicates the class that sample x belongs to). Note

that the softmax activation function f (zk) is typically used
for multiclass classification purposes and maps the outputs zk

of the MLP to scores (probabilities). Then, the class with the
highest probability is chosen for the input sample x.

In order to train the MLP, the crossentropy loss function
is used, optimized in accordance with the Adam algorithm
[41]. Specifically, for multiclass classification, the categorical
crossentropy is used [42]:

CEloss =−

K∑
k

yk log( f (zk)), (6)

where yk ∈ y is the ground truth of a sample x, and f (zk)

[Eq. (5)] is the score of the MLP for class k. For the binary
classification case, the crossentropy loss function reduces
to [42]

CEloss = y log( f (z))− (1− y ) log(1− f (z)), (7)

where y is the ground truth of a sample x, and f (z) is the score
of the MLP [Eq. (4)].

B. Centralized QoT Problem Formulation

The centralized QoT estimation problem is formulated as a
multiclass classifier for an EON. In general, a multiclass clas-
sification problem can be briefly described as follows: given a
dataset D= (X, Y)= {xn, yn}

N
n=1, where xn is an input vec-

tor describing the features of pattern n, and yn is its ground
truth vector describing the class that pattern n belongs to,
find a model that accurately predicts the class that any unseen
pattern n′ belongs to. For our QoT estimation problem, xn

is a vector describing the features of lightpath n, and yn is the
vector describing the BER ground truth of lightpath n. Thus,
the objective is to find, from D, a QoT model f = ŷ that
accurately estimates the QoT class of any unseen lightpath n′.

Feature vector xn = {x j }
M
j=1 describes lightpath n as follows:

• x1: is the entire length (in km) of lightpath n.
• x2: is the maximum link length (in km) of lightpath n.
• x3: is the central frequency allocated to lightpath n.
• x4: is the number of slots allocated to lightpath n.
• x5: encodes the modulation format for lightpath n.

Specifically, x5 = 1 for binary phase shift keying (BPSK),
x5 = 2 for quadrature phase shift keying (QPSK), x5 = 3 for
8-quadrature amplitude modulation (8-QAM) and x5 = 4 for
16-QAM.

• x6: denotes the number of erbium doped fiber amplifiers
(EDFAs) along lightpath n.

• x7: is the number of links along lightpath n.

Vector yn = {y j }
K+1
j=1 ∈ {0, 1} declares the QoT class of

lightpath n. Specifically, y j = 1 if lightpath n belongs to class
j , and y j = 0, otherwise. Regarding the QoT classes, these are
defined according to a set of all possible BER requirements.
Specifically, given B= {Bk

}
K
k=1, where B is the set of all pos-

sible BER requirements, K is the number of all possible slice
types, and Bk < Bk+1, then K + 1 QoT classes can be defined
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Fig. 4. Example: encoding the centralized BER ground truth for a
connection with monitored BER= 5× 10−7.

Fig. 5. Example: centralized model output declaring a feasible
QoT for a connection with BER requirement equal to 10−6.

Fig. 6. Example: centralized model output declaring an infeasible
QoT for a connection with BER requirement equal to 10−6.

according to the ground truth BERn of each lightpath n as
follows:

• Class 1: if BERn < B1, then y1 = 1.
• Class v: if Bv−1

≤ BERn < Bv , then yv = 1 ∀1< v ≤
K .

• Class K + 1: if BERn > B K , then y K+1 = 1.

As an example, consider that B= {B1, B2, B3, B4
} =

{10−8, 10−7, 10−6, 10−5
}, which results in five possible

classes. The five classes are illustrated in Fig. 4 through the
ground truth vector y. Given a lightpath n with a ground
truth (monitored) BERn = 5× 10−7, its y vector is encoded as
shown in Fig. 4. Specifically, since 10−7 < BERn< 10−6, a one
is placed for class 3 of the y vector, and zeros are placed for the
rest of the classes.

In this work, the QoT model f = ŷ is obtained based on the
MLP described in Section 5.A. An unseen vector xn′ (which
has not been used during the training procedure) is the input to
the trained QoT model, and output vector yn′ is subsequently
returned. If ŷv = 1 and the BER requirement of lightpath n′ is
B j , then lightpath n′ is feasible (i.e., its BERn′ is lower than the
B j requirement) if v < j ; otherwise it is infeasible.

As an example consider Figs. 5 and 6. If we assume that
an arriving connection n′ has a BER requirement equal to
B3
= 10−6 and the trained model returns ŷ2 = 1 (Fig. 5), then

the computed lightpath for connection n′ is considered as
feasible, as the estimated BER is lower than the connection’s
BER requirement. If, however, the trained model returns
ŷ4 = 1 (Fig. 6), then the computed lightpath for connection n′

is considered as infeasible, as the estimated BER is higher than
the connection’s BER requirement.

C. Distributed QoT Problem Formulation

The distributed QoT estimation problem is formulated
according to a set of binary classifiers for an EON. Each
binary classifier is trained according to a dataset Dk , where

Dk is the dataset stored in the local controller of slice type
k. If K is the total number of slice types/BER requirements,
then D= {Dk

}
K
k=1 is the set consisting of all the distributed

datasets. The objective is to find from D a set of QoT models
f= { f k

}
K
k=1, where f k is the QoT model of slice type k.

Specifically, Dk
= (xk, y k)= {xk

n, y k
n }

N′
n=1, where xk

n is
the features’ vector of lightpath n, y k

n encodes the BER
ground truth of lightpath n, and N′ is the number of pat-
terns in dataset Dk . Note that Dk describes a set of lightpaths
established/intended only for slice type k. The xk

n vector
is as previously defined in Section 5.B. The ground truth
y k

n is encoded in a binary manner. Specifically, y k
n = 0

when the BER of lightpath n is above its BER requirement
Bk (class 1—infeasible class), and y k

n = 1 otherwise (class
2—feasible class).

Each distributed QoT model, f k
∈ f, is trained locally and

independently from the other QoT models according to an
MLP. Once the model is trained, the f model parameters are
communicated to the central controller and integrated into
the QoT-aware connection provisioning procedure that is
executed centrally. During inference, the f k model takes as
input an unseen feature vector xk

n′ and returns ŷ k
n′ . Lightpath n′

is feasible if ŷ k
n′ = 1; otherwise it is infeasible.

6. QoT-AWARE SLICE PROVISIONING

To establish a connection of any slice type k, the QoT-aware
RSA problem must be solved. To solve the QoT-aware RSA
problem, we developed simple multi-slice QoT-aware RSA
heuristics that integrate both the centralized and distrib-
uted ML-based QoT models. As a benchmark, we have also
developed the single-slice QoT-aware RSA, which does not
distinguish between the diverse QoT requirements/slice types
and is based on a single ML-based QoT model that utilizes the
lowest BER requirement among the diverse BER requirements.
All heuristics developed follow the same RSA procedure and
differ only in the way the QoT of each connection request is
estimated and considered. In particular, all heuristics for each
arriving connection C k

n solve the routing (R) problem utilizing
Dijkstra’s algorithm [43], and the spectrum allocation (SA)
problem utilizing the first-fit approach. According to the first-
fit algorithm, the heuristics allocate to each shortest path the
first feasible spectrum slots, such that the spectrum continuity,
contiguity, and no-frequency overlap constraints are met. The
QoT for each computed lightpath is then estimated. If the
estimated QoT is sufficient, then the lightpath is established in
the network; otherwise it is blocked.

A. Multi-Slice QoT-Aware RSA

1. Centralized ML-Based QoT Models

Given f , where f is a multiclass QoT estimation classifier
trained according to the set of all possible BER requirements
B, the multi-slice QoT-aware RSA objective is to find for each
C k

n connection a route and an SA that meets the SA constraints
(i.e., spectrum continuity, contiguity, and no-frequency over-
lap), along with its corresponding QoT requirement as defined
by the f model. As a reminder, C k

n = {s , d , Bk
}, where s–d

is the pair of source–destination nodes, and Bk is the BER



152 Vol. 12, No. 7 / July 2020 / Journal of Optical Communications and Networking Research Article

Algorithm 1. Multi-Slice QoT-Aware RSA Heuristic
Utilizing the Centralized ML-Based QoT Model

Input: QoT model f , K diverse BER requirements (slice types),
connection arrival rate λ and departure rate µ
Output: Number of blocked connections

1: for each arriving request do
2: Calculate the shortest path for connection C k

n

3: For the shortest path of C k
n , choose the first-fit SA that meets

the SA constraints (i.e., spectrum continuity, contiguity, and
no-frequency overlap).

4: if lightpath n is not feasible then
5: Set ŷ= 0
6: else
7: Randomly set an element ŷv′ ∈ y to 1 and the rest to 0 so

that
∑

ŷ= 1
8: if

∑
ŷ= 1 then

9: Extract the feature vector xn from lightpath n
10: Set ŷ= 0
11: Estimate ŷ= f
12: if ŷv = 1 AND v < k then
13: C k

n is admitted into the network
14: else
15: C k

n is blocked
return The number of blocked connections

requirement of connection n. Model f is trained in a central-
ized manner as a multiclass classifier (Section 5.B). Hence, f
returns ŷv = 1 and ŷ j = 0 ∀ j 6= v if the BER of connection n
is below the predetermined threshold Bk (i.e., v < k). In that
case, the connection is admitted into the network; otherwise,
if ŷv = 1 and v ≥ k, the connection is blocked. The descrip-
tion of the multi-slice QoT-aware RSA heuristic utilizing the
centralized ML-based QoT model is shown in Algorithm 1.

2. Distributed ML-Based QoT Models

Given f= { f k
}

K
k=1, where f k is a binary QoT estimation

classifier trained according to Bk , the multi-slice QoT-aware
RSA objective is to find for each C k

n connection a route and
an SA that meets the spectrum continuity, contiguity, and
no-frequency overlap constraints, along with its corresponding
QoT requirement as defined by the f k model. For the set of
QoT models, f, each f k model is trained locally and inde-
pendently (Section 5.C). Hence, for each f k

∈ f, f k returns
ŷ = 1 if the BER of the connection is below the predetermined
threshold Bk , and zero otherwise. If ŷ = 1, the connection
is admitted into the network; otherwise it is blocked. The
description of the multi-slice QoT-aware RSA heuristic
utilizing the distributed ML-based QoT models is shown
in Algorithm 2.

B. Single-Slice QoT-Aware RSA

Given f= f m , where f m is a binary QoT estimation classifier
trained according to Bm

=min{Bk
}

K
k=1, the objective of the

single-slice QoT-aware RSA is to find for each C k
n connection

a route and an SA that meets the spectrum continuity, con-
tiguity, and no-frequency overlap constraints, along with its

Algorithm 2. Multi-Slice QoT-Aware RSA Heuristic
Utilizing the Distributed ML-Based QoT Models

Input: Set of QoT models f= { f k
}

K
k=1, K diverse BER requirements

(slice types), connection arrival rate λ, and departure rate µ
Output: Number of blocked connections

1: for each arriving request do
2: Calculate the shortest path for connection C k

n

3: For the shortest path of C k
n , choose the first-fit SA that meets

the SA constraints (i.e., spectrum continuity, contiguity, and
no-frequency overlap).

4: if lightpath n is not feasible then
5: ŷ = 0
6: else
7: ŷ = 1
8: if ŷ = 1 then
9: Extract the feature vector xn from lightpath n

10: Estimate ŷ = f k

11: if ŷ = 1 then
12: C k

n is admitted into the network
13: else
14: C k

n is blocked
return The number of blocked connections

corresponding QoT requirement as defined by the f m model.
For the QoT model, f m is trained as a binary classifier accord-
ing to the MLP described in Section 5.C. Hence, ŷ = 1 if the
BER of the connection is below the predetermined threshold
Bm , and zero otherwise. If ŷ = 1, the connection is admitted
into the network; otherwise it is blocked. The description of
the single-slice QoT-aware RSA is not given; however, it is sim-
ilar to the one shown in Algorithm 2 with the difference that
only one binary QoT classifier is used for the QoT feasibility
decisions.

7. DATASET GENERATION AND MODEL
TRAINING AND EVALUATION

A. Dataset Generation

For the dataset generation procedure, we used the Telefonica
network topology (shown in Fig. 7). An EON is assumed,
which is implemented using bandwidth variable transponders
that can operate with BPSK, QPSK, 8-QAM, and 16-QAM
modulation formats. The channel spacing for this network
is set to 25 GHz, the guard band is set to 25 GHz, and the
baud rate is set to 16 Gbaud for a total of 160 frequency slots
for each network link. Twenty-five thousand (N = 25,000)
connection requests were generated in a dynamic network
following a Poisson process with exponentially distributed
holding times for several network loads varying between 50
to 500 Erlangs. Specifically, we have performed 10 simu-
lation runs, and for each simulation run, 2500 connection
requests were generated. The datasets extracted from all the
runs were merged into a single dataset subsequently used for
training/validating the ML-based QoT models.

Each connection request C k
n = {s , d , Bk

} was generated
as follows: the s–d (source–destination) pairs were generated
by randomly sampling from the set of network nodes; the
Bk (BER) requirement of the nth connection request was
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Fig. 7. Telefonica network topology.

generated by randomly sampling from a set of possible BER
requirements B= {Bk

}
K
k=1; a bit rate was randomly generated

for each connection request by uniformly sampling within the
interval [10,200] Gbps.

For the connection provisioning phase, a conventional
RSA algorithm was applied. Dijkstra’s shortest path algo-
rithm [43] was used for the R sub-problem, and the first-fit
technique was utilized for the SA sub-problem, while at the
same time ensuring that all three SA constraints are met. For
each lightpath provisioned, the Q-tool (described in [28]) was
used for estimating the ground truth values (i.e., BERn). In
practical implementations, the BER ground truth values can
be extracted trough OPM at the receivers [11]. Furthermore,
probing lightpaths or alien wavelengths [11,38] can also be
utilized to supplement the dataset information, especially for
the connections with insufficient QoT. Moreover, transfer
learning [44] or active learning [45] techniques can be applied
for reducing the number of probes required for QoT model
training.

1. Centralized Dataset

The multiclass dataset D= {xn, yn}
N
n=1 was created by extract-

ing from each computed lightpath n its xn and yn vectors.
Section 5.B analytically describes both the lightpaths’ features
(specified in vector xn), as well as the encoding procedure of the
ground truth BERn in vector yn .

2. Distributed Datasets

The distributed datasets D= {Dk
}

K
k=1 were created by par-

titioning the multiclass dataset D into K binary datasets.
Specifically, each distributed dataset Dk

= {xk
n, y k

n }
N′
n=1 was

generated by selecting from D only the patterns (connections)
with a BER requirement that is equal to Bk . Hence, feature
vectors xk

n can be found in D, while y k
n takes the value one if

the ground truth BERn of lightpath n is below Bk ; otherwise it
takes the value zero. Note that in our simulations (for simplify-
ing the dataset generation procedure of the diverse datasets) the

sum of patterns in the distributed datasets D may be less than
the number of patterns in the multiclass dataset D depending
on the Bk requirements considered for the creation of the Dk

datasets. Specifically, if the number of diverse Bk requirements
considered in the distributed case is less than the number of
BER requirements considered for generating dataset D, then
the number of patterns in D will be less than the number of
patterns in D.

B. Model Training

Both centralized and distributed QoT models were trained
according to an MLP with one hidden layer and 20 hidden
units. The centralized QoT models were additionally trained
according to a larger MLP topology consisting of three hidden
layers and 1000 units each. In practice, the centralized mul-
ticlass classification problem is in general harder to solve, and
hence a larger MLP topology may be needed to achieve better
classification accuracy. The MLPs used for training the central-
ized multiclass classifier consist of K + 1 outputs (equal to the
total number of classes in dataset D), while the MLP used for
training the distributed binary classifiers has one output. The
mathematical formulation of the MLP applied for both the
multiclass classifier and the binary classifiers, consisting of one
hidden layer, is analytically described in Section 5. Information
regarding MLPs with more hidden layers can be found in [37].

Note that different MLP training trials were performed
examining different numbers of units and layers. We have cho-
sen to show the results of a few MLP configurations achieving
sufficient classification accuracy for both the centralized and
distributed frameworks, and also highlighting the trade-offs
between the multiclass classification approach and its alter-
native binary decompositions. In general, by increasing the
number of hidden layers, higher accuracy can be achieved, but
complexity of the MLP and training time are increased many-
fold. Furthermore, unnecessary increments in the neurons
and/or layers lead to overfitting [46].

The Adam [41] algorithm was used for optimizing the loss
function applied to the output layer, for a total of 30 epochs
and a batch size equal to 50. Dropout regularization [47] was
applied to Adam, and the dropout rate was set to 0.5 (which is
close to optimal for a wide range of networks and tasks accord-
ing to [47]). In general, dropout is a regularization method
for preventing units from co-adapting too much by randomly
dropping units (along with their connections) from the MLP
during training (for each batch). The resulting network (i.e.,
during testing) is used without dropout. Specifically, during
testing, all the units and connections are in place (i.e., the
trainable parameters are scaled over all the batches and used for
testing).

The learning rate was set to 0.01, and the size of the valida-
tion dataset was set to 1/3 of the total number of patterns in
dataset D. Three-fold cross validation was performed, and the
model’s accuracy was averaged over all the folds. It is important
to note that dataset D was standardized (scaled) so as the data
features to be standard normally distributed before training
and testing. Standardization of a dataset is a common require-
ment for many ML estimators, since they might otherwise
behave badly.
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C. Model Evaluation

After the training procedure, both the centralized and distrib-
uted QoT models were evaluated and compared according to
their accuracy, accuracy per class, CPU time, and RAM usage.
To train and test the QoT models, a PC with an i7-3930K
CPU, a 6 GB GTX 1660Ti GPU, and 24 GB RAM was used.

1. Centralized Model

The centralized framework was examined for three cases that
differ according to the sets of possible BER requirements.
Specifically, in the first case, the set of BER requirements
assumed is B= {10−8, 10−6, 10−4

} (i.e., K = 3 slice
types), in the second case B= {10−8, 10−7, 10−6, 10−4

}

(i.e., K = 4 slice types), and in the third case B=
{10−8, 10−7, 10−6, 10−5, 10−4

} (i.e., K = 5 slice types).
Note that these sets of BER requirements were chosen so that
the BER ground truth for each connection request can be
estimated utilizing the Q-tool [28].

Therefore, three QoT models were trained that differ based
on their number of classes. Specifically, as K slice types (i.e.,
BER requirements) lead to K + 1 classes, three classifiers
were trained and tested consisting of four, five, and six classes.
Table 1 provides information regarding the total number of
patterns (training plus testing patterns) that belong to each
class. Note that 16,667 patterns were used for model train-
ing and 8333 for model inference/testing. Tables 2 and 3
present results on the models’ accuracy, accuracy per class,
CPU, and RAM usage for the two MLP topologies exam-
ined, i.e., the MLP with one hidden layer with 20 units and
the MLP with three hidden layers with 1000 units each,
respectively.

Figures 8 and 9 illustrate how the model’s accuracy and loss
evolve (converge) with the number of epochs, respectively.
These figures correspond, indicatively, to the K = 5 case for
the MLP with one hidden layer, while similar convergence
behavior has also been observed for the K = 3 and K = 4 cases
and the MLP with three hidden layers, i.e., by increasing the
number of epochs, the model’s accuracy/loss does not improve.
Note that according to Fig. 8, the model seems to converge
well before it reaches 30 epochs. However, Fig. 9 shows that the
loss function keeps decreasing up to 30 epochs, an indicator
that the model achieves better generalization accuracy (avoids
overfitting). Specifically, the method avoids overfitting, as
the test loss function keeps decreasing. Note that in Fig. 8,
the test accuracy is slightly higher than the training accuracy,

Table 1. Number of Patterns per Class for the
Centralized QoT Model

4 Classes
(K = 3)

5 Classes
(K = 4)

6 Classes
(K = 5)

Class 1 10,083 10,083 10,083
Class 2 8895 4323 4323
Class 3 5199 4572 4572
Class 4 823 5199 4755
Class 5 - 823 444
Class 6 - - 823

Table 2. Accuracy Results for the Centralized QoT
Model (1 hidden layer with 20 units)

4 Classes
(K = 3)

5 Classes
(K = 4)

6 Classes
(K = 5)

Model acc. (%) 94 90 90
Class 1 acc. (%) 96 96 96
Class 2 acc. (%) 92 82 82
Class 3 acc. (%) 93 80 79
Class 4 acc. (%) 100 93 92
Class 5 acc. (%) - 100 83
Class 6 acc. (%) - - 100
CPU usage (s) 68 68 71
RAM usage (MB) 283 283 283

Table 3. Accuracy Results for the Centralized QoT
Model (3 hidden layers with 1000 units each)

4 Classes
(K = 3)

5 Classes
(K = 4)

6 Classes
(K = 5)

Model acc. (%) 95 92 91
Class 1 acc. (%) 96 97 96
Class 2 acc. (%) 93 83 86
Class 3 acc. (%) 94 82 82
Class 4 acc. (%) 100 93 91
Class 5 acc. (%) - 100 86
Class 6 acc. (%) - - 100
CPU usage (s) 1026 1096 1094
RAM usage (MB) 419 428 429
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Fig. 8. Centralized model: accuracy versus the number of epochs
for K = 5 (MLP with one hidden layer).

and in Fig. 9, the test loss is slightly lower than the training
loss. A common reason behind this outcome is the dropout
regularization [47] applied during Adam optimization [41].
In particular, the dropped MLP units and connections during
training may lead to a lower training accuracy (higher train-
ing loss) than the testing accuracy (testing loss), since during
testing all the units and connections are considered.

According to Tables 2 and 3, the overall model accuracy is
sufficiently high for all three cases examined, while the MLP
with three hidden layers slightly improves both the overall
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Fig. 9. Centralized model: loss versus the number of epochs for
K = 5 (MLP with one hidden layer).

classification performance and the per class classification per-
formance, an indicator that the increment in both hidden
layers and units favors performance accuracy, at the expense
of CPU and RAM usage. However, for both MLP topologies
examined (a small and a large MLP topology), as the number
of classes increases, the model’s overall accuracy slightly drops.
Further, the model’s accuracy per class is also high (for the
majority of the classes). However, as the number of classes
increases, this metric decreases significantly. Indicatively, the
model’s accuracy per class drops to approximately 82% for the
six classes (Table 3), below an accuracy level that is considered
acceptable. This is to be expected, considering that, as the
number of classes increases, the problem of distinguishing
between the various classes becomes harder, i.e., the success rate
of each class drops as the number of classes increases. Moreover,
as the BER requirements increase, the training dataset is par-
titioned into more classes with reduced patterns (Table 1),
with sizes that may not be large enough for achieving a high
accuracy per class. Note that the F1-score (representing the
harmonic mean of precision and recall) [48] was also evaluated
for each one of the classes to check if the imbalanced classes
(Table 1) affect the classification performance. As the F1-scores
were similar to the accuracy results (slightly different but with
the same classification performance, especially as the number
of classes increases), we have chosen to analytically present
only the results regarding the accuracy, a metric that is widely
accepted and more easily interpreted.

Recently, it has been shown that deep NN training can
always achieve the highest inference accuracy, so long as suf-
ficiently large amounts of data samples are fed for training,
emphasizing the importance of sufficient data sample acquisi-
tion [49,50]. On this basis, for our QoT estimation problem,
although the accuracy per class may increase if the number
of diverse patterns increases (especially within each class that
underperforms), such a procedure inevitably increases the
RAM and CPU usage of the MLP training [49,50], as well as
the complexity of the dataset generation process.

Specifically, in practice, extra probing lightpaths will need
to be “intelligently” identified and established, aiming to add
valuable information into the dataset (i.e., random probes
will only increase the network load without ensuring that

any additional/valuable information will be extracted). The
development of such a mechanism is out of the scope of this
work, but it constitutes an interesting topic for future work.
In this work, we opted to utilize the same dataset for both the
centralized and distributed QoT model training frameworks
so as to fairly compare these frameworks for every relevant
metric examined. By doing so, we managed to showcase the
drawbacks and advantages of each approach.

Regarding both the CPU and RAM usage, as shown in
Tables 2 and 3, these do not significantly change with the
number of classes. Specifically, the CPU and RAM usage in
Table 2 is the same for all three cases. This is reasonable, as
these depend mainly on the number of training patterns, MLP
configuration, batch size, and number of epochs, which are
the same for all three models presented in Table 2. However,
by comparing Tables 2 and 3, clearly both the CPU and RAM
usage increase for the larger MLP. Hence, the higher accuracy
achieved with the MLP with a larger number of hidden layers
and units is achieved at the expense of an overall higher CPU
and RAM usage.

2. Distributed Models

For the distributed framework, the two cases of interest that
were examined were the cases for which the centralized frame-
work underperformed. Specifically, it was examined for the case
where B= {10−8, 10−7, 10−6, 10−4

} (K = 4) and for the case
where B= {10−8, 10−7, 10−6, 10−5, 10−4

} (K = 5). Thus,
for these cases, four and five binary classifiers were trained,
respectively. Note that only the MLP topology consisting of
one hidden layer and 20 units was examined for the distrib-
uted framework, as the accuracy achieved by this topology
was sufficiently high. Moreover, the multiclass classificiaton
problem is in general harder to solve than its alternative binary
decompositions, and hence it is reasonable that a smaller MLP
topology will be sufficient for the binary classifiers.

Tables 4 and 6 provide dataset information regarding the
total number of patterns (training plus testing patterns) per
binary classifier, and the number of patterns per class. Tables 5
and 7 summarize the results for the K = 4 and K = 5 binary
classifiers, respectively. These results include the overall accu-
racy, the accuracy per class, as well as the CPU and RAM usage.
Note that the four classifiers out of the five trained for the
K = 5 case are the same as those trained for the K = 4 case.
This is because the B set assumed for the K = 5 case includes
all the BER requirements assumed for the K = 4 case plus
one BER requirement that is placed between the 10−6–10−4

thresholds. Due to the imbalanced classes (Tables 4 and 6),
the F1-score was also evaluated for each distributed case,
exhibiting a classification performance similar to the accuracy
results. Hence, the F1-scores are not analytically presented in
this work.

Figures 10 and 11 illustrate how the model’s accuracy and
loss evolve (converge) with the number of epochs, respectively.
These figures correspond, indicatively, to the K = 5, k = 3
case (Table 7), while similar convergence behavior has been
observed for all other classifiers examined, i.e., by increasing
the number of epochs, the model’s accuracy/loss does not
improve. Similar to the centralized framework, even though
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Table 4. Dataset Information for the Distributed QoT
Models (K = 4)

Slice Type (k) Dk Patterns Class 1 Patterns Class 2 Patterns

1 3660 1515 2145
2 4137 1344 2793
3 1869 441 1428
4 9546 831 8715

Table 5. Results for the Distributed QoT Models
(K = 4)

Slice Type
(k)

Model
Acc. (%)

Class 1
Acc. (%)

Class 2
Acc. (%) CPU (s)

RAM
(MB)

1 98 96 99 9 275
2 98 97 99 10 281
3 98 96 99 7 277
4 100 100 100 17 280

Table 6. Dataset Information for the Distributed QoT
Models (K = 5)

Slice Type (k) Dk Patterns Class 1 Patterns Class 2 Patterns

1 3660 1515 2145
2 4137 1344 2793
3 1869 441 1428
4 4767 315 4452
5 9546 831 8715

Table 7. Results for the Distributed QoT Models
(K = 5)

Slice Type
(k)

Model
Acc. (%)

Class 1
Acc. (%)

Class 2
Acc. (%) CPU (s)

RAM
(MB)

1 98 96 99 9 275
2 98 97 99 10 281
3 98 96 99 7 277
4 99 91 99 10 277
5 100 100 100 17 280

the model seems to converge well before 30 epochs (Fig. 10),
Fig. 11 suggests that the model achieves better generalization
accuracy (avoids overfitting) as the number of epochs increases,
i.e., the test loss function keeps decreasing. Furthermore,
according to Figs. 10 and 11, the training accuracy (training
loss) is slightly lower (higher) than the test accuracy (test loss).
As previously mentioned, the most common reason behind
this effect is the dropout regularization applied to the Adam
optimization algorithm.

These performance results clearly demonstrate that an
overall high accuracy (exceeding 98%) is achieved for all
QoT models. Furthermore, unlike the centralized case, all the
models achieve an overall high accuracy per class (i.e., for the
infeasible and feasible classes 1 and 2, respectively). Further,
the CPU time results obtained for all models are between 7 and
17 s. This is reasonable, as the CPU time depends, apart from
the MLP configuration and batch size (which are the same for
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Fig. 10. Distributed models: accuracy versus the number of
epochs for K = 5, k = 3.
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Fig. 11. Distributed models: loss versus the number of epochs for
K = 5, k = 3.

each distributed classifier), on the number of patterns used for
training and validating each binary dataset as well. According
to Tables 4 and 6, the dataset size for each binary classifier k
varies, as each binary classifier k is trained only according to the
patterns/lightpaths that have a BER requirement equal to Bk .
Tables 5 and 7 clearly show that the CPU time increases as the
number of patterns increases.

The RAM usage (Tables 5 and 7) is roughly the same for
all binary classifiers examined, as it is affected mainly by the
MLP topology (number of hidden layers and units) and neg-
ligibly affected by the training datasets (which vary but are
in general small in size). As the MLP topology used for all
binary classifiers is the same, the RAM usage does not vary
significantly.

D. Comparing the Centralized and Distributed
Models

It is clearly demonstrated that the distributed framework
greatly outperforms the centralized framework in terms of
both the models’ overall accuracy and the models’ accuracy
per class. Importantly, the results indicate that the accuracy of
the centralized framework decreases when the number of slice
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types increases, while the accuracy of the distributed frame-
work is independent of the number of slice types. This is to
be expected, if we consider that the distributed QoT models
are always binary classifiers, and hence they always have to
distinguish between only two classes. On the other hand, the
centralized QoT model is a multiclass classifier that depends on
the number of slice types. Thus, in this case, with an increasing
number of slice types, the difficulty level for the classifier to
distinguish between the classes (BER requirements) increases
significantly. While it is possible that by “intelligently” increas-
ing the number (type) of patterns in the centralized dataset
sufficient accuracy may be achieved, the results indicate that
the distributed approach requires both less information for
achieving an overall sufficient accuracy and fewer trainable
parameters in the MLP topology.

To further compare the distributed and centralized frame-
work, we have evaluated one more metric, namely, the RSA
accuracy metric. This metric shows whether the misclassified
patterns in the centralized and distributed frameworks lead
to incorrect RSA decisions, i.e., a lightpath that is classified in
the wrong class may still lead to the right RSA decision. This
metric is readily available for the distributed framework, as
the distributed models directly indicate whether a lightpath
is feasible or not, i.e., directly indicate whether a lightpath
is below (feasible) or above (infeasible) its Bk requirement.
The centralized framework, however, classifies the patterns
into possible BER ranges, and thus the feasibility of the light-
paths with regard to the their Bk requirement is not directly
interpreted after model training and testing. Hence, this met-
ric is evaluated to further investigate the multiclass classifier
according to the QoT-aware RSA decisions.

For the distributed model, the RSA accuracy is given by
just averaging the models’ accuracy after model training and
testing. Similarly, the RSA accuracy per class is given by just
averaging the models’ accuracy per class after model training
and testing. Both the RSA accuracy and the RSA accuracy per
class measure how the distributed models jointly perform in
the network during the QoT-aware RSA decisions. For the
centralized framework, the test outputs of the model (pre-
dicted values) and the test ground truth values were compared
against the Bk requirement allocated to each unseen lightpath.
Specifically, the test outputs of the model and their test ground
truth values were mapped to a binary value indicating whether
a lightpath is feasible or not, depending on the Bk of each
unseen lightpath. The classes indicating a range of BER values
above the Bk value were mapped to the zero value (RSA class
1), indicating an infeasible lightpath. The output classes indi-
cating a range of BER values below the Bk value were mapped
to the one value (RSA class 2), indicating a feasible lightpath.

Hence, for the centralized framework, the RSA accuracy was
evaluated by comparing the mapped values of the test outputs
with the mapped values of their test ground truths. The RSA
accuracy is then the number of correctly classified outputs
(according to their mapped values) over the number of test
outputs. The RSA accuracy for class 1 (class 2) is the number
of outputs correctly classified to the RSA class 1 (class 2) over
the number of test outputs that truly belong to the RSA class 1
(class 2), according to their mapped ground truth values.

Table 8. RSA Accuracy Results for the Centralized
QoT Models

4 Classes
(K = 3)

5 Classes
(K = 4)

6 Classes
(K = 5)

RSA acc. (%) 98.6 98 98.5
RSA class 1 acc. (%) 96.5 96 95.7
RSA class 2 acc. (%) 99 99 99

Table 9. RSA Accuracy Results for the Distributed
QoT Models

K = 4 K = 5

RSA acc. (%) 98.6 98.5
RSA class 1 acc. (%) 97 96
RSA class 2 acc. (%) 99 99

Tables 8 and 9 show the RSA accuracy and the RSA accuracy
per class values for all the centralized and distributed cases
examined, respectively. Note that for the centralized case, we
used the QoT model that was trained according to the MLP
with three hidden layers (the RSA results of the one hidden
layer were slightly lower), while for the distributed case, we
used the QoT models that were trained according to the MLP
with one hidden layer. According to the results, both the cen-
tralized and the distributed frameworks perform sufficiently
high regarding the QoT-aware RSA decisions with the dis-
tributed framework performing slightly better, an indicator
that although the centralized framework may fail to achieve
a high accuracy for all the BER classes, the QoT-aware RSA
decisions may not be affected. Note, however, that for the
centralized framework, an extra step is required for validating
the QoT-aware RSA decisions, while for the distributed frame-
work, these results are readily available after model training and
testing.

Furthermore, according to Tables 8 and 9, approximately
3%–4% of the infeasible (negative) patterns (for both frame-
works) will be false positives, and hence will be accepted rather
than blocked. On the other hand, 1% of the feasible (positive)
patterns will be false negatives, and hence will be blocked rather
than accepted. Overall, the blocking will be negatively affected
(increased) by approximately 1% due to the false negatives,
even though approximately 3%–4% of the negative patterns
will be accepted rather than blocked. Nevertheless, according
to the high accuracy results, the RSA performance will not be
significantly affected. For handling the false positives (it is more
critical to accept a pattern with insufficient BER rather than
blocking a pattern with sufficient BER), a possible solution
is to train the QoT models according to BER thresholds that
are slightly higher than the BER requirements of each slice
type. Doing so, a safety margin can be included in the trained
model/s resembling the safety margin traditionally included in
the Q-tool models.

Regarding the CPU usage, according to the results of
Tables 2, 3, 5, and 7, it increases as the number of training
patterns increases and as the MLP topology (number of units
and layers) increases. In general, the CPU usage is significantly
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lower per distributed model compared to the centralized mod-
els, especially when compared to the larger MLP topology used
for training the centralized models.

Regarding the RAM usage, as it is affected mainly by the
MLP topology, it is approximately the same for all the mod-
els trained according to the MLP topology with one hidden
layer. However, for the MLP with three hidden layers, used for
improving the accuracy of the centralized multiclass classifier,
the RAM usage is significantly higher compared to all the other
models trained with the MLP with one hidden layer.

In general, the results indicate that both the CPU and
RAM usages are higher in the centralized framework, given
that a larger MLP topology may be needed for improving the
performance accuracy of the multiclass classifier, compared
to the MLP applied for the distributed binary classifiers. It is
important, however, to note that the distributed models have
to be trained in parallel. Hence, the overall RAM usage of
the distributed framework may become higher than the one
required by the centralized framework. This higher RAM,
however, is reserved for a shorter period of time (CPU usage),
consequently mitigating the memory overhead caused by the
parallel execution of the distributed models. These results are
in general aligned with the fact that multiclass classification
problems are harder to solve than their binary decomposi-
tions, and hence a larger MLP topology may be needed for the
multiclass classifiers, at the expense of higher CPU and RAM
requirements [33–35].

As the number of epochs required for model convergence
is small for both the centralized and distributed models, the
CPU usage does not significantly vary in these two frame-
works, given that the MLP with one hidden layer is applied.
For the larger MLP (applied to the centralized framework),
the CPU usage significantly increases. However, as the number
of epochs may be significantly larger in real datasets (e.g., the
observed data may be noisy, and the nonlinear effects may ren-
der the problem harder), we also investigate the impact of both
frameworks on the CPU metric by performing a number of
simulations in which we assume that more epochs are required.
Specifically, we gradually increase the number of required
epochs and evaluate the CPU usage in the centralized and
distributed frameworks. Figure 12 illustrates these results. Note
that the RAM usage is not affected by the number of epochs.
In fact, according to the Adam optimization algorithm applied
for model training, the model parameters are updated after
each epoch, and the same computations are performed in each
epoch; hence, the memory requirements must be the same for
each epoch, i.e., the previous model parameters are not saved
in memory, and there is no additive memory overhead as the
number of epochs increases.

Figure 12 illustrates the CPU usage (in seconds) versus the
number of epochs for both centralized and distributed frame-
works. For the distributed classifier, we have chosen to examine
the model of the slice type k = 5 for K = 5 that is associated
with the largest number of patterns and hence requires higher
CPU usage. For the centralized case, the multiclass classifier
with six classes is examined (K = 5). For both the centralized
and distributed frameworks, the MLP with one hidden layer
is chosen in order to better illustrate that the CPU usage of the
centralized framework tends to increase faster as the number
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Fig. 12. CPU usage versus the number of epochs for the distrib-
uted and centralized frameworks for K = 5.

of epochs increases (Fig. 12), even if the same MLP topology
is applied. In general, a larger number of epochs means more
iterations of the optimization algorithm (model updates), con-
sequently increasing the CPU usage (training time). The CPU
usage of the distributed framework greatly outperforms the
centralized framework, due mainly to the smaller dataset it has
to process at each epoch and the simpler arithmetic operations
it has to perform. Note that the CPU usage refers to both the
training and testing (inference) procedure. However, the infer-
ence time is negligible for both the distributed and centralized
frameworks. Specifically, the inference time is on the order of
milliseconds per test pattern (lightpath) for both frameworks,
and thus the overhead in the CPU usage is caused mainly due
to the training procedure.

Regarding the RAM usage, in general, memory is required
to store input data, weight parameters, and activations.
Furthermore, training an NN requires a large number of
simple arithmetic operations, of which the intermediate cal-
culations need to be stored in memory [50]. As previously
mentioned, the number of epochs does not have an impact on
the RAM usage, as model updates are performed per epoch,
and the previous model parameters (or the gradients) do not
need to be stored after each model update. However, as the
MLP topology significantly affects the RAM usage, i.e., more
hidden layers and units mean more weight parameters, activa-
tions, and arithmetic operations, we examined the RAM usage
as the MLP topology increases in numbers of hidden layers
and units. These results serve to show that in the centralized
framework, which may require a larger MLP topology than its
distributed decompositions, the RAM usage may significantly
increase.

Figure 13 illustrates the RAM usage versus MLP topology in
numbers of hidden layers and units. The results correspond to
the multiclass classifier consisting of six classes. Note, however,
that the RAM usage is negligibly affected by the size of the
training dataset and the number of classes, at least according to
the size of the datasets and the number of classes examined in
our QoT estimation problem (this is clearly shown in the RAM
usage results of Tables 2, 3, 5, and 7). According to Fig. 13,
as the number of hidden layers and units increases, the RAM
usage increases exponentially (note that the fluctuations in
Fig. 13 are due mainly to the fact that, for simplicity in the
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Fig. 13. RAM usage versus the number of hidden layers and units.

simulations, the number of units does not increase smoothly
with the number of hidden layers). Hence, assuming that
the centralized framework requires a larger MLP topology
(in our results, the larger MLP multiclass classifier achieved
better classification performance compared to the smaller
MLP multiclass classifier, while the smaller MLP binary classi-
fiers achieved an overall higher performance), the distributed
framework has in general lower RAM requirements per slice
type controller. Note, however, that in the distributed frame-
work, several binary classifiers have to be trained in parallel,
and hence the RAM requirement is additive to the number
of diverse slice types, a trade-off between the higher accuracy
achieved within considerably less CPU time and the higher
RAM usage that may be required.

Overall, utilizing the distributed framework, less CPU and
RAM are required for each slice type controller, essentially
shifting functionalities from the central controller to the dis-
tributed controllers. One drawback of the distributed approach
is the higher overall RAM usage that may be needed for train-
ing in parallel the various distributed models. This drawback,
however, is mitigated by the considerably shorter time that this
memory needs to be reserved for finding the distributed mod-
els. Investigating other metrics for the distributed versus the
centralized case, such as energy consumption and communi-
cation overhead, is out of the scope of this work. Nevertheless,
it is important to note that in the distributed approach, extra
communication bandwidth will be needed to send the models’
parameters to the central component to execute the QoT-aware
multi-slice provisioning phase, as well as to send the patterns
to their respective local controllers. The latter situation may
occur if the patterns cannot be extracted locally (e.g., the BER
ground truth of a pattern is not locally monitored, and this
information must be communicated to the corresponding local
controller).

Examining and comparing the performance of both the
centralized and distributed approaches with the use of real
data constitute an interesting future direction. In this work, in
the absence of real data, we used synthetic data generated by a
Q-tool [28], a common practice in the QoT estimation litera-
ture [10]. It is true, however, that real data may be noisier, thus
affecting the performance of both frameworks. In such a case,
and as shown in the ML literature, the MLP can be set up to
successfully handle noise, i.e., by adding noise to the training

input [51]. Also, it has been recently shown through field trials
that NNs can achieve high QoT estimation accuracy [39].
Even though both the centralized and distributed approaches
are expected to be negatively affected by the use of real data
(and hence the MLPs will need to be adjusted accordingly),
comparatively, it is expected that still the distributed approach
will outperform the centralized approach in accuracy, accu-
racy per class, CPU usage, and RAM requirements per slice
type, especially as the number of diverse slice types increases.
Also, it is well accepted in the ML literature that multiclass
classification problems are in general harder to solve (and
more computationally expensive) than their alternative binary
decompositions, especially as the number of classes increases.
Hence, it is a common practice in the ML literature to reduce
the multiclass problem by binary decompositions [33–35].

The reader should also note that in this work, for simplicity,
and in order for the centralized and distributed frameworks to
be more easily compared, we opted for the same ML method
to be applied to every distributed and centralized controller.
However, given the diversity of the datasets (i.e., number of
patterns, imbalanced classes) or under real datasets that may be
noisier, it is possible that the application of different ML meth-
ods may result in a higher classification performance, possibly
at the expense of higher RAM and CPU usage. Indicatively,
recurrent NNs (RNNs) and long short-term memory (LSTM)
networks could achieve a better classification accuracy but
have higher computational and memory requirements than the
MLPs [52]. Since the simpler MLP approach applied in this
work returned classifiers of an overall high accuracy, we opted
not to examine other, more computationally and memory-
intensive ML methods. The investigation of different ML
methods according to their accuracy and RAM and CPU usage
constitutes, however, an interesting future direction.

8. NETWORK PERFORMANCE EVALUATION

In this section, we examine the performance evaluation of
the algorithms described in Section 6. The aim is to demon-
strate the improvement in the network performance when
the multi-slice QoT-aware RSA scheme is applied, instead of
the conventional single-slice QoT-aware RSA approach. Note
that both schemes assume the presence of pre-trained QoT
model/s integrated into the RSA heuristics. As the distributed
framework returned QoT models of higher accuracy com-
pared to the centralized approach, in this section, we perform
simulations only according to the distributed QoT models.
Note, however, that simulations according to the centralized
model are expected to yield similar results, as both the distrib-
uted and centralized models achieved sufficient RSA accuracy
(Tables 8 and 9).

For the simulations, an EON is implemented using the
Telefonica network topology (Fig. 7) with a spacing of 25 GHz
and a 16 Gbaud rate per slot, which results in a total of 160
spectrum slots per link in the network. Each connection
request, C k

n = {s , d , Bk
}, is again generated as described in

Section 7.A.
For the set of BER requirements B, five different cases were

examined. For each case, we considered the presence of dif-
ferent slice types that vary in both their number (K ) and their
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Table 10. B Sets for Each Value of K

K B = {B k}K
k=1

1 {10−8}
2 {10−8, 10−7}
3 {10−8, 10−7, 10−6}
4 {10−8, 10−7, 10−6, 10−5}
5 {10−8, 10−7, 10−6, 10−5, 10−4}
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Fig. 14. Percentage of non-admissible connections versus different
network loads for K = 1–5.

BER requirements assumed in each B set. The B sets consid-
ered for each different K value are given in Table 10. According
to Table 10, when K = 1, a single slice is present with a single
BER requirement. Hence, the K = 1 case corresponds to the
benchmark approach, where a single QoT model of the lowest
possible BER requirement is assumed during the connec-
tion provisioning phase. The rest of the K values in Table 10
correspond to the multi-slice QoT-aware RSA heuristic.

Five simulation runs were performed for each value of K . In
each simulation run, 500 connection requests were generated
according to the Poisson process with exponentially distributed
holding times. The results were averaged over all the runs
and are illustrated in Figs. 14 and 15. In particular, Fig. 14
illustrates the percentage of non-admissible connections for
different network loads for all the different slice type cases,
while Fig. 15 illustrates the spectrum utilization for different
network loads, calculated over all established connections.

Results in Fig. 14 clearly show that the multi-slice QoT-
aware RSA approach (K = 2 to 5) significantly outperforms
the single-slice QoT-aware RSA approach (K = 1), espe-
cially as the number of diverse BER requirements considered
increases. Specifically, as K increases, the percentage of non-
admissible connections decreases considerably. This is due to
the fact that in the multi-slice scenario, connections of higher
BERs are admitted, provided that their BER requirement is
met. On the contrary, in the single-slice approach, all connec-
tions will be rejected if their QoT does not meet the lowest
BER requirement (even though for some of these connections,
their actual BER requirement may be higher).

Consequently, and as shown in Fig. 15, the single-slice
approach (K = 1) will lead to underutilization of the network

100 200 300 400 500
Erlangs

0

1000

2000

3000

4000

N
um

be
r 

of
 u

til
iz

ed
 s

pe
ct

ru
m

 r
es

ou
rc

es

K = 1
K = 2
K = 3
K = 4
K = 5

Fig. 15. Number of utilized spectrum resources versus different
network loads for K = 1–5.

resources. Specifically, Fig. 15 clearly shows that as the number
of diverse slice types increases, the network resources are better
utilized, as now more connections of diverse BER requirements
can be admitted into the network. Note that in this work, with-
out loss of generality, in order to better showcase the impact of
the diverse BER requirements on network performance, the
lowest BER requirement is set to 10−8 (i.e., a low threshold).
Therefore, the number of non-admissible connections of the
single-slice approach is impractically high. In particular, the
choice of the lowest BER requirement was made according to
the range of BERs generated by the Q-tool [28]. Variations
to the QoT-aware RSA heuristic applied in this work could
slightly improve the results in Figs. 14 and 15 (e.g., applying
the κ-shortest paths algorithm [53] instead of Dijkstra’s algo-
rithm). However, the comparative results of all the K cases
examined are expected to have the same tendency.

9. CONCLUSION

In this work, different QoT estimation frameworks based on
centralized as well as distributed approaches are examined for
sliceable optical networks, where connections with different
BER requirements can be supported. The centralized QoT
estimation framework was formulated as a multiclass classifier,
whereas the distributed QoT estimation framework was for-
mulated as a set of binary classifiers. An MLP was applied for
training both the centralized and the distributed QoT models.
Performance results obtained for a variety of different network
parameters show that for the centralized QoT model, as the
number of diverse BER requirements considered increases,
the accuracy per class decreases (drops to 79%). On the other
hand, for the distributed QoT models that are independent of
the number of diverse BER requirements, high accuracy (above
91%) is achieved for both classes of interest. The RSA accuracy
is sufficiently high for both frameworks, indicating that a low
per class accuracy for the centralized framework may eventually
not affect the QoT-aware RSA decisions. An extra step is,
however, required for the centralized framework to validate the
RSA accuracy, whereas for the distributed framework, these
results are readily available after model training and testing.
Furthermore, the training time required for each distributed
QoT model is significantly lower compared to the centralized
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case, as for each distributed QoT model, only the lightpaths
with the same BER requirement are taken into consideration
during training. Regarding the RAM usage, it was shown that
each distributed classifier requires less RAM than the central-
ized classifier. Importantly, it was also shown that the network
performance is significantly improved when the BER require-
ments of each diverse slice are considered for the multi-slice
QoT-aware RSA framework, an indicator that the multi-slice
QoT-aware RSA framework avoids connection overprovision-
ing that occurs when the conventional single-slice QoT-aware
RSA framework is utilized.

Future work includes the development of a framework that
automatically provisions the required number and type of
distributed controllers for optimizing network resources in
environments that dynamically change over time. Comparing
the developed frameworks according to their energy consump-
tion, communication, and control overheads also constitute
interesting future directions.
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