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Abstract

We present a general mixed quantum classical method that couples clas-

sical Molecular Dynamics (MD) and vibronic models to compute the shape

of electronic spectra of flexible molecules in condensed phase without, in

principle, any phenomenological broadening. It is based on a partition of

the nuclear motions of the solute+solvent system in ”soft” and ”stiff” vi-

brational modes, and an adiabatic hypothesis that assumes that stiff modes

are much faster than soft ones. In this framework the spectrum is rigor-

ously expressed as a conformational integral of quantum vibronic spectra

along the stiff coordinates only. Soft modes enter at classical level through

the conformational distribution that is sampled with classical MD runs.

At each configuration, reduced-dimensionality quadratic Hamiltonians are

built in the space of the stiff coordinates only, thanks to a generalization

of the Vertical Hessian harmonic model and an iterative application of pro-

jectors in internal coordinates to remove soft modes. Quantum vibronic

spectra, specific for each sampled configuration of the soft coordinates, are

then computed at the desired temperature with efficient time-dependent

techniques, and the global spectrum simply arises from their average. For

consistency of the whole procedure, classical MD runs are performed with

quantum-mechanically derived force fields, parameterized at the same level

of theory selected for generating the quadratic Hamiltonians along the stiff

coordinates. Application to N-methyl-6-oxyquinolinium betaine in water,

dithiophene in ethanol, and a flexible cyanidine in water are presented to

show the performance of the method.
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1 Introduction

Electronic spectroscopy is a ubiquitous tool in modern chemical research. Theoret-

ical models and computational methods can greatly help to unveil all the informa-

tion carried by the spectroscopic signal, allowing to establish a direct connection

with the microscopic properties of the system under investigation.1–3

The quantum nature of molecular vibrations has a remarkable impact on the

shape of electronic spectra. Although the most spectacular feature is the appear-

ance of vibronic bands, an analysis in terms of moments4 reveals that nuclear quan-

tum effects (NQEs) are also important for structureless bands, modifying e.g their

centre of gravity,5 width4,6,7 and asymmetry.4 While for small systems in gas phase

full anharmonic and nonadiabatic approaches are conceivable (see e.g. ref. 8), the

treatment of large systems, including dozens or hundreds of vibrations, requires

approximations. In the following we generically indicate as ”stiff” systems, those

for which quadratic expansions provide a reasonable description of the Potential

Energy Surfaces (PESs) of the initial and final electronic states of the transition of

interest. For harmonic PESs, and if couplings among the electronic states are neg-

ligible, the calculation of vibronic spectra is nowadays standard thanks to recent

progresses in time-independent (TI)9–13 and time-dependent (TD) approaches.14–17

Both TI12 and TD12,18–23 schemes have been extended to account for intensity bor-

rowing Herzberg-Teller (HT) mechanisms. These methods are efficient enough to

be applicable to systems with dozens or hundreds of normal modes, as revealed in

combination with cost-effective electronic methods like Density Functional Theory

(DFT), and its TD extension (TD-DFT) for excited states.24 Linear (LVC) and

Quadratic vibronic Hamiltonians (QVC),25 including quadratic diagonal potentials

plus linear and quadratic off-diagonal couplings, provide a natural extension of the

above models when interstate electronic couplings are important. With LVC and
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QVC models, the vibronic spectra can be efficiently computed even for systems

with dozens of normal modes,26,27 by numerically propagating nuclear wavepackets

on the coupled surfaces with powerful methods like MCTDH28 and its multilayer

extension (ML-MCTDH).29,30 Anharmonic corrections31,32 can be included in the

vibrational frequencies, adopting second-order vibrational perturbation theory,33,34

and taking benefit, for example, from the availability of analytic Hessians within

DFT and TD-DFT, which allow the numeric generation of cubic and quartic force

fields.35 An interesting approach that uses harmonic approximation to scrutinize

the most important modes and reduced dimensionality anharmonic models, has

just been presented in literature.36

Current challenge for methods aiming at simulating electronic spectra shapes

retaining a quantum mechanical (QM) description of vibrational motion is rep-

resented by flexible molecules37(i.e. those characterized by one or more large

amplitude, anharmonic motions) in condensed phase, in particular when signifi-

cant and specific interactions with the environment (like a homogeneous medium,

as a simple solvent, or a heterogeneous one, as a protein or a surface) can be estab-

lished. For systems in aprotic solutions some solvent effects can be introduced in

standard vibronic calculations,38,39 computing the PES, and even the inhomogene-

geous broadening,22 with implicit models like the polarizable continuum model40

(PCM). Conversely, when strong specific interactions between the solute and its

embedding medium take place, an explicit description of the environment should

be taken into account.

Molecular Dynamics (MD) simulations are very well suited to explore con-

formational space in these situations, and their usage to simulate the electronic

spectra through classical ensemble averages of vertical energies (CEA-VE) is well

established.2,41–48 In practice, in these hybrid QM/MD methods, sometimes re-
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ferred as sequential classical-QM approaches,42,49 the spectral shape arises from

the distribution of transition frequencies and intensities at a representative set of

conformations (or snapshots) chosen along the MD trajectory. This is an appli-

cation of the so called Franck-Condon (FC) classical principle.4 A key ingredient

for the success of such approaches stands in the accuracy of the force-field (FF)

underlying the MD simulations, i.e. on the FF’s capability to reliably represent

the molecule’s equilibrium geometry and the corresponding harmonic frequencies,

its internal flexibility and its interactions with the surrounding environment.7,50–53

The usage of standard FFs that do not meet these requirements may, in fact, lead to

wrong positions and widths of the simulated spectra.7,53 Yet, since vibrational mo-

tions are described classically, two main limitations arise for this methodology: (i)

it cannot reproduce vibronic peaks and (ii) the contribution to the spectral width

is underestimated, because the classical Boltzmann distribution is narrower than

what expected at quantum level. The extreme case occurs at 0 Kelvin when the

classical distribution is a single structure while the quantum distribution has still a

finite width, but even at room temperature the underestimation can be remarkable

for high-frequency modes.6,7,54,55 This second limitation is usually partially over-

come applying to each computed transition frequency an empirical broadening.

The latter is sensibly smaller than the one usually employed in a static approach

(i.e. based on the minimum energy conformation only), but still of phenomeno-

logical nature.

Non-phenomenological treatments have been recently proposed, by explicitly

accounting for NQEs in the MD,55 using path integral formalisms like the ring

polymer MD.56 These very interesting approaches only introduce NQE in the initial

state distribution, and therefore cannot reproduce vibronic peaks.

Moreover, they are expected to show limitations also for structureless bands
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since the adoption of the true quantum initial-state distribution only guarantees

the exactness of the first and second moments of the spectrum, while higher-order

moments (ruling the asymmetry), as well as vibronic resolution, inevitably depend

on a proper description of the quantum time-evolution on the final state PES.4

In some cases the latter can be computed with ”on-the-fly” semi-classical approx-

imations of the propagator,57 but these methodologies are, at the state of the art,

only feasible for small systems. For larger ones, like flexible molecules in condensed

phase, a number of approximated protocols to mix classical MD sampling and vi-

bronic computations have been proposed.7,37,48,58–62 In the simplest approaches, the

vibronic spectrum of the solute has been considered independent of the specific MD

snapshot.58–61 A way to go beyond this approximation, explicitly accounting for

the coupling of intra-molecular and inter-molecular vibrations, is to use in vibronic

calculations spectral densities extracted from classical MD trajectories.37,51,53,63

The potentiality of such approach has been recently illustrated by Loco et al.;64

its partial limitation is that the spectrum is computed with reference to vibronic

harmonic models that only account explicitly for linear couplings. The effects of

quadratic differences in the initial and final states PES, which are responsible for

shift of the maxima5 and contribute to the spectral width,4 are only implicitly

reflected in the parameters of the spectral density. Moreover the inclusion of non-

Condon effects does not appear straightforward. More recently,37,48,65,66 Zuehls-

dorff and co-workers proposed an interesting methodology to combine the ensemble

approach (i.e. the sampling from a MD trajectory) with vibronic calculations, and

named it E-ZTFC (Ensemble-Zero Temperature FC). In practice, a quantum vi-

bronic spectrum of the solute is computed at 0 K and thermal fluctuations of

the vertical energy and the transition dipole strength, due to intra-molecular and

solvent motions, are introduced at classical level with a conformational sampling
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from MD trajectories. Some effects of specific solute-solvent interaction on the

vibronic spectrum are introduced by recomputing the 0K vibronic spectrum for a

small (typically 5) number of different snapshots and taking the average. In ref. 66

the same authors further extended E-ZTFC methodology introducing NQE also

in the conformational sampling, by performing ab initio path-integral MD. Both

methods are very interesting and showed that anharmonic corrections may play a

remarkable role in the spectra and be enhanced when NQEs are taken into account

in the MD simulation. Nonetheless, as explained by the authors, this approach

suffers of a partial double-counting of the effect of intra-molecular vibrations. The

latter depends on the temperature and the frequency of the mode, and therefore

its impact is system-dependent and not easily quantifiable a priori.

In this framework, a mixed quantum-classical (mqc) approach for the computa-

tion of electronic spectra in molecules with a set of stiff (harmonic) modes and one

or few internal large-amplitude motions was recently proposed by our group.7,62 It

is based on an adiabatic approximation, which assumes that the large amplitude

motion is slow compared to the stiff modes and can be therefore treated classi-

cally. In this work, we start again from this adiabatic approximation to present

a general method for computing electronic spectra of flexible dyes in explicit en-

vironments without introducing, in principle, any phenomenological broadening,

which describes soft modes of both solute and solvent at classical level, and the

stiff modes of the dye at vibronic quantum level. Concretely, a first MD simu-

lation with an accurate, quantum-mechanically derived FF (QMD-FF)67–69 pro-

vides a representative set of configurations of the solute+solvent system. Reduced-

dimensionality vibronic models for the stiff coordinates are then computed from

energies, gradients, and Hessians of the initial and final states evaluated in the

specific configuration with a QM/MM embedded scheme. For vibronic models, we
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introduce a generalized Vertical Hessian (VH) model70 (gV H), so to include also

the effect of frequency changes and Duschinsky71 mixings, and we iteratively apply

proper projectors in curvilinear internal coordinates (ICs) to rigorously separate

the modes to be treated at classical and quantum level, thus avoiding double-

counting effects. The global spectrum eventually arises from the average, over the

conformational space of the classical flexible coordinates, of configuration-specific

thermally-averaged vibronic spectra. Since the here-proposed protocol combines

a quantum gVH method with classical MD simulations, through an adiabatic ap-

proximation, in the following we refer to it as the Ad−MD|gV H approach.

The paper is organized as follows. In Section 2 the different parts of the the-

oretical method and the computational protocol are explained and in Section 3

computational details are given. In Section 4 we present the results obtained

on three different systems (sketched in Figure 1), where both the solute flexibil-

ity and the strength of its interaction with the solvent increase along the series:

N-methyl-6-oxyquinolinium betaine (MQ) in water, an almost rigid system estab-

lishing H-bonds with a aqueous solvent, the flexible dithiophene (T2) in ethanol,

and a flexible cyanidine (Cyan) dye which additionally has five oxydrilic groups,

establishing several H-bonds in water. Finally Section 5 is devoted to discussions

and conclusions.

2 Methods

2.1 Mixed Quantum-Classical spectral shape

In a TD formalism the general quantum (q) expression of the absorption lineshape

Lq(ω) from the electronic state i to statef is
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Figure 1: Molecular structure of the 3 dyes investigated in this work. (MQ): N-methyl-6-
oxyquinolinium betaine, (T2): dithiophene and (Cyan): Cyanidin.

Lq(ω) =
1

2πZvi

∫
Tr
[
µife

−itHf/~µfie
−(β−it/~)Hi

]
eiωtdt (1)

where Zvi is the partition function of the initial vibrational states |vi〉, Tr refers to

the trace operation, β = (KBT )−1, KB is the Boltzmann constant, T the absolute

temperature, Hi and Hf are the Hamiltonians for the i and f states and µif is

their transition electric dipole moment (µif is real and therefore equal to µfi). The

absorption spectrum is ε(ω) = CωL(ω) where C is a constant depending on the

selected units. For harmonic systems, the integrand of Eq. (1) is analytical even

when frequency-changes and Duschinsky rotations exist, and also when a linear

expansion of the transition dipole is considered to account for both FC and HT

effects.14–23

According to Lax,4 a semi-classical (sc) approximation of the spectrum line-

shape, Lsc(ω) can be obtained expressing the trace in Eq. (1) in the coordinate

representation (Q), and neglecting the commutators between Hi and Hf and be-

tween the operator of the nuclear kinetic energy and the transition electric dipole
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moment.4,17 We thus get

Lsc(ω) =

∫
dQρqi (Q, T )|µif (Q)|2 1

2π

∫
dteiωt−i(Hf (Q)−Hi(Q))t/~ (2)

where ρqi (Q, T ) is the quantum coordinate distribution of the initial state at tem-

perature T . The integral in time then collapses into a δ function and the spectral

lineshape becomes

Lsc(ω) =

∫
dQρqi (Q, T )|µif (Q)|2δ (ω −∆Ω(Q)) (3)

where ∆Ω(Q) = ~−1 [Vf (Q)− Vi(Q)], and Vi and Vf are the initial and final

state PESs. It is interesting to notice that Eq. (3) provides a spectral shape

without vibronic resolution which, in FC approximation, exactly reproduces the

first and second moment of the quantum lineshape in Eq. (1), but not higher-order

momenta.4 The integral in Eq. (3) can be evaluated from the value of the integrand

at a number of structures (since now on ”configurations”) Qα with α = 1, . . . , Ncon,

that provide a proper sampling of the distribution ρqi (Q, T )

Lsc(ω) =
1

Ncon

∑

α

|µif (Q
α,q)|2g (ω −∆Ω(Qα,q)) (4)

where we have substituted the delta function with a convenient lineshape function

g (usually a Gaussian or a Lorentzian),41 and the superscript q on the coordinate

values Qα,q reminds that the sampling is done on the quantum distribution, like,

for instance, when path integral MD trajectories55,66 are employed.

In the most popular approach, however, for sizeable systems in a solvent or in

a complex environment, ρqi (Q, T ) is substituted with the classical (c) distribution

ρci(Q, T ) which can be sampled with a classical MD trajectory. With this new
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distribution, the classical lineshape Lc(ω) is obtained according to an equation

equivalent to Eq. (4):

Lc(ω) =
1

Ncon

∑

α

|µif (Q
α,c)|2g (ω −∆Ω(Qα,c)) (5)

We now introduce a mqc approximation of the spectrum, which combines Eqs.

(1) and (5) or (4). To this end, we consider the super system comprising the dye

and its embedding. Rather than performing the standard partition into solute’s

and environmental coordinates, we divide all nuclear degrees of freedom (DoFs) of

the whole system in two categories: the stiff modes r, pertaining to the dye and, if

needed, to some environment molecule, and the soft modes R, represented by the

flexible DoFs of the dye together with all the remaining environmental modes. The

former r set will be handled at quantum level, while the R set will be treated at

classical level (but semiclassical approaches are also possible). Concretely, we run

a MD trajectory to sample the configurational space obtaining a representative set

of snapshots (Rα,rα) with α = 1, . . . , Ncon. At this point we have all the data to

obtain the classical Lc(ω) or semiclassical Lsc(ω) spectrum, depending on whether

the MD has taken into account NQEs. In order to (re-)introduce a quantum vi-

bronic treatment of the stiff-coordinates we invoke an adiabatic approximation,

i.e. we assume that R coordinates are much slower than r ones. Therefore we can

think that stiff-coordinates rearrange very quickly to any change in the position

of the soft coordinates, considered frozen at each configuration α. Quadratic ex-

pansions around α of Vi(r; Rα), and Vf (r; Rα) allow to establish harmonic PES

for both states along the stiff coordinates, and therefore compute a vibronic quan-

tum spectrum Lα,qr (ω) involving these coordinates only, that is specific for Rα. To

that end it is possible to use the TD expression in Eq. (1). The global spectrum
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Lmqc(ω) can be therefore recovered as an average of all the spectra Lα,qr (ω).

Lmqc(ω) =
1

Ncon

∑

α

Lα,qr (ω) (6)

It is interesting to notice that the expression for Lmqc(ω) is formally very

similar to the ones for the semiclassical (Eq. 4) and classical (Eq. 5) spec-

tra. However a fundamental difference is that the phenomenological lineshape

|µif (Q
α)|2g (ω −∆Ω(Qα)), where g has the same shape for each snapshot, is now

substituted by Lα,qr (ω), configuration-specific (α) quantum vibronic spectral shapes

along the stiff coordinates. It is also worthy to notice that at each configuration

α, a linear expansion of µif along the stiff coordinates can be computed, and this

allows for including HT quantum effects, depending on the slow coordinates also,

which are lost or treated in an inaccurate way in the semi-classical and classical

expressions in Eqs. (4) and (5).

2.2 Workflow of the Ad−MD|gV H method

The partition in stiff and soft coordinates, pivotal for the Ad−MD|gV H method,

is practically achieved in two steps. First, the classical distribution of stiff and

flexible coordinates is retrieved through a MD simulation performed on the target

condensed phase at constant temperature and pressure. In order to ensure a

consistent description of the nuclear potentials in the classical MD simulation and

the quantum mechanical calculations, very accurate FFs are required, therefore

specifically taylored QMD-FFs are adopted for the MD runs (Section 2.3). Next,

at each representative snapshot along the MD, R flexible coordinates are separated

from the stiff ones r and the contribution to the spectrum of the latter is computed

quantum mechanically within a vertical harmonic model (Section 2.4).
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The Ad−MD|gV Hmethod is summarized in Figure 2 and can be outlined as

follows:

1. Compute at QM (DFT) level for the chosen electronic state the data re-

quired for parametrization of the QMD-FFs, i.e. the optimized geometry,

the Hessian matrix in the minimum conformation and the relaxed torsional

scans of the flexible dihedrals.

2. Generate a complete FF, by combining a QMD-FF intra-molecular part with

selected parameters to represent the solvent-solvent and solute-solvent inter-

action. The former QMD-FF for the solute is derived from the previously

computed QM data using the Joyce protocol67–69 obtaining at once all

force constants and equilibrium values for all selected stiff and flexible ICs.

3. Run a classical MD simulation at temperature T for the solute+solvent

system, to get a proper sampling of the configurational distribution of all

coordinates, ρc(R, r).

4. Compute the Hessian matrices of the initial and final states of the solute

(plus, if necessary, the most significant solvent molecules) at each config-

uration, including the effect of the surrounding medium with an adequate

embedding scheme. At this step, if HT effects are important, also derivatives

of the transition dipoles are computed.

5. Move to a set of non-redundant set of curvilinear coordinates defined in

terms of all valence internal coordinates, i.e. bonds, angles and dihedrals.

Soft modes are expressed in terms of such internal coordinates. Project out

the soft coordinates R from the initial and final state Hessians at each snap-

shot, and use the resulting reduced dimensionality Hessians and gradients to
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build up a gVH vibronic model along the stiff coordinates, specific for the

considered configuration.

6. Compute the vibronic spectrum at temperature T with the TD implemen-

tation, by the FCclasses code.72

7. Compute the final spectrum as the average of the vibronic spectra at each

snapshot.

QM level
CM level

“0 K” QM data 
(equilibrium geometry, energy curves, 

gradients and Hessian, atomic 
charges)

QMD-FF 
parameterization

Solvent and solute-
solvent FF parameters

MD
(at T K)

Trajectory 
snapshots

QM Hessian calculation 
(each performed on MD snapshots in 

initial and final electronic states)

FCclasses
(vibronic spectrum computed at 
T K on each reduced Hessians)

Removing soft IC
(by projecting them out from the QM 

Hessians)

Thermally 
averaged 
vibronic

spectrum
(by averaging the 
vibronic spectra 

obtained for each 
snapshot extracted from 

the T K simulation)

+

Figure 2: Workflow of the proposed Ad−MD|gV Hmethod. The red line evidences the sepa-
ration between the classical (CM) and quantum mechanical (QM) level of theory.

The generation of the QMD-FF and the gVH model with removal of soft ICs

are crucial steps, and they are described in some detail the following sections.

2.3 QMD-FF parameterization

The parametrization of the solute’s intra-molecular FF is carried out through

the Joyce protocol,67–69 based on QM data purposely computed for the target
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molecule. The following functional form is employed,

Eintra
QMD−FF = Es + Eb + Est + Eft + Eintra

Nb (7)

where Es, Eb and Est are the potential terms related to stretching, bending and

stiff torsions, and are described by harmonic potentials. Eft refers to the flexible

torsions, which are described by a series of periodic (sine) functions. The last

term, Eintra
Nb , contains the non-bonded intra-molecular interactions, implemented

as a sum of electrostatic charge-charge and Lennard-Jones (LJ) terms.

The parameterization is carried out by minimizing the objective function I intra:

I intra =

Ngeom∑

g

Wg

[
∆Ug − Eintra

g

]2
+

3N−6∑

K≤L

W ′
KL

[
HKL −

(
∂2EFFintra

∂QK∂QL

)]2

g=0

(8)

where g is a chosen molecular conformation, ∆Ug its QM internal energy, QK is

the Kth normal coordinate and HKL is a QM Hessian matrix evaluated in the

minimum energy geometry (g = 0). Wg and W ′
KL are selected weights, which are

set according to the Joyce default values.7,50,52,53,69 Further details about the

parameterization are included in Section S2 of the Supporting Information (SI).

2.4 gV H vibronic model in reduced dimensionality spaces

The Ad −MD|gV H method displayed in Figure 2 requires identifying and pro-

jecting out the molecular soft DoFs. In general, such DoFs correspond to the

flexible dihedrals, as defined in the QMD-FF, but some molecules may present,

in one or both states, additional flexible DoFs, like e.g. the pyramidalizations

of some centers. Finally additional flexibilities may occur if some intermolecular

solute-solvent modes (e.g. H-bonds) must be retained in the vibronic calculations.
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Therefore, to be as general as possible, we name x the set of all Cartesian coor-

dinates of any molecule for which at least one vibrational mode must be included

in the vibronic model, and X the Cartesian coordinates of all the other solvent

molecules. We work in a VH approach,70,73 i.e. we build up harmonic potentials,

for both i and f states, along the stiff coordinates, with a second-order Taylor ex-

pansion around the same starting geometry, α (xα,Xα), contained in the α-th MD

snapshot. However, while standard VH approaches are built from the initial-state

equilibrium geometry, in general the MD configuration α will not be a minimum

along the stiff-coordinates either in the initial or in the final state, and therefore

the VH model needs to be generalized, to obtain what we name a gV H model.

To apply this gV H approach, we first compute, at QM level for each MD

snapshot α, the energies (V i,α
0 and V f,α

0 ), gradients (gi,αx and gf,αx ) and Hessians

(Hi,α
x and Hf,α

x ) along the coordinates x. This is done describing the remain-

ing molecules, with coordinates X, with some adequate embedding scheme and

considering the values of these coordinates frozen. From now on, for the sake of

brevity, we will neglect the superscript α, but it will be reintroduced at the end

of this section, before giving the final equations of the gV H model. The second

step is to shift to internal curvilinear coordinates as (i) they provide the most

natural set to define reduced-dimensionality models, since soft modes are much

better described in internal coordinates than in Cartesian ones, (ii) at variance

with Cartesian coordinates, they allow to rigorously remove rotational coordinates

and thus properly define normal coordinates when the Hessian is not computed at

a stationary point.7

Nonetheless, when using curvilinear internal coordinates, one needs to take into

account that, except at stationary points,74 the Hessian elements are not invariant

with respect to the coordinate frame, because the metric tensor is not constant
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along the conformational space. This eventually means that the computed fre-

quencies depend on the selected set of non-redundant curvilinear internal coordi-

nates. The non-redundant set selected in this work corresponds to linear combi-

nations of all possible bonds, angles and dihedrals, following the recipe described

by Reimers,.75 Indeed, in a recent work,70 we showed that such non-redundant

set generally provides Hessian elements at non-stationary points consistent with

those computed at nearby stationary points, in contrast to other sets such as the

Z-matrix coordinates. In order to construct the non-redundant set from the re-

dundant one, the G matrix corresponding to all bonds, angles and dihedrals is

diagonalized, and the linear combinations correspond to the Nvib eigenvectors as-

sociated to non-zero eigenvalues. Yet, it might be worth noticing that other valid

strategies to define non-redundant sets of internal coordinates have been proposed

in literature.76,77

The new protocol that we introduce to remove an arbitrary number of internal

coordinates generalizes what proposed by Jackels et al.78 for a single coordinate.

We first define the projector that removes a given coordinate, s, from an arbitrary

vector of the space, v, as the following linear application,

P (v) = v − s(s,v)

|s|2 (9)

where (, ) indicates scalar product and |s|2 = (s, s) is the square modulus of the

vector s. In the case of non-orthogonal basis, such as our valence internal non-

redundant set, the metric tensor, i.e., the list of scalar products between basis

vectors, is required to compute the scalar product. A given non-orthogonal basis

has an associated dual basis, each having its own metric tensor, named covariant

(involving scalar products of the basis vectors) and contravariant (related to the

dual basis) metric tensors. The elements of the contravariant tensor, hij, corre-

17



spond to the entries of the G matrix,78 while those of the covariant ones, hij,

correspond to its inverse, i.e., G−1. It is also convenient here to highlight that

some entities in the vector space are more straightforwardly represented by either

the basis or its dual. For instance, in our case, an arbitrary internal coordinate

is naturally represented by the non-redundant set, while gradient of the potential

energy is naturally represented in the dual basis.79

The elements of the matrix representation of the above linear application reads,

P i
j = δij −

sisj
|s|2 = δij −

si
∑

k s
khjk

|s|2 = δij −
sj
∑

k skh
ik

|s|2 (10)

where P i
j represents a 1-covariant, 1-contravariant tensor (in practice, a matrix

element with i running over rows and j over columns), δij is the 1-covariant, 1-

contravariant version of the Kronecker delta and we have explicitely given the

expression in terms of either contravariant vectors (e.g., an arbitrary internal co-

ordinate) or covariant ones (e.g., the gradient). The projector defined in terms of

contravariant vectors can be written in matrix form as,

P = 1− sst

sths
h (11)

where s are column vectors containing the contravariant components (si) and h

is a matrix containing the elements of the covariant metric tensor (hij). A sim-

ilar expression is obtained in terms of covariant vectors.78 The Hessian elements

transform as a 2-covariant tensor,79 and thus the application of the projector over

the Hessian, H, can be expressed as,

H̃ = PtHP (12)

In order to run the process iteratively one must also update the metric tensor

18



and the remaining vectors to be projected out. The former tranforms as h̃ = PthP,

while the latter are updated by directly applying the projector over them, s̃j = Psj.

At this point, we are ready to project the next coordinate. This iterative protocol

is summarized in the scheme of Figure 3. We notice that we already proposed an

approximate version of this protocol in ref.80 which worked satisfactorily only to

remove torsions, because they are rather orthogonal to the rest of coordinates.

Initialization

Set initial metric tensor: h(0) = G−1

Define set of coordinates to remove: {s(0)n }n=1,Nr

Generate projector of k-th coordinate

P(k) = 1−
s
(k−1)
k

(
s
(k−1)
k

)t

(
s
(k−1)
k

)t

h(k−1)s
(k−1)
k

h(k−1)

Apply k-th projection

Hessian: H(k) =
(
P(k)

)t
H(k−1)P(k)

Metric tensor: h(k) =
(
P(k)

)t
h(k−1)P(k)

Coordinates to remove: s
(k)
n = P(k)s

(k−1)
n

(n = k + 1, Nr)

k = 1

k = k + 1

Figure 3: Summary of the iterative method to remove a set of Nr coordinates. The superscripts
in parenthesis indicate the iteration to which the element corresponds. The loop is repeated while
k ≤ Nr

After all the soft coordinates have been eliminated, the gradient, gr, and Hes-

sian, Hr are contained in the reduced space of the r stiff coordinates only. We

can therefore straightforwardly write down quadratic expansions along the r stiff

coordinates for the PES of state k

V k,α(r) = V k,α
0 + (gk,αr )T (r− rα) + (r− rα)THk,α

r (r− rα) (13)

where we reintroduced the superscript α to make explicit the dependence of this
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expansion on the specific configuration α, characterized by the flexible set Rα.

V k,α
0 is the energy of PES V k,α(r) at the snapshot geometry α, while its minimum

is at rk,α0 = rα − (Hk,α
r )−1gk,αr , with energy V k,α

min, simply obtained by substitution

in Eq. 13.

Finally, application of the Wilson’s GF method81,82 leads to the definition of

effective normal coordinates Qk,α for both states

r− rk,α0 = Lk,αQk,α (14)

with normal frequencies Ωk,α. We can therefore establish a Duschinsky relation

between Qi,α and Qf,α

Qi,α = JαQf,α + Kα (15)

Jα = (Li,α)−1Lf,α (16)

Kα = (Li,α)−1(rf,α0 − ri,α0 ) (17)

where Kα is the displacement vector between the equilibrium positions along the

stiff-coordinates in the two states, and the Duschinsky matrix Jα is orthogonal be-

cause the Gr matrix has been defined at the same geometry (rα) for both states.

The Duschinsky relation in Eq. (15), together with the normal frequencies Ωi,α and

Ωf,α, and with the extrapolated adiabatic energy difference ∆Eα = V i,α
min − V f,α

min

are the final result of the gV H model and allow to compute the vibronic spectrum

Lα,qr (ω), which is specific for the snapshot α. This is done at the required temper-

ature by applying the expression in Eq. (1), i.e. with standard TD techniques for

harmonic systems.
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It is worth stressing that although the soft coordinates are not directly in-

cluded in the quantum vibronic treatment, their dynamics is still accounted for

by the Ad−MD|gV H method, but at a classical level. In fact, the effect of the

fluctuations of the soft coordinates is reflected in the values of: (i) the adiabatic

energy difference ∆Eα, which introduces a shift of Lα,qr (ω) on the energy axis that

is specific for each configuration, (ii) the matrices of the normal frequencies Ωi,α

and Ωf,α, which introduce a further configuration-specific fluctuation of the 0-0

transition frequency and, finally, (iii) the Kα vector and Jα matrices that, together

with normal frequencies, rule the spectral shape of Lα,qr (ω).

2.5 Final remarks on the method

The mqc expression for the Ad−MD|gV H spectrum was obtained on the grounds

of an adiabatic hypothesis. In refs. 7,62 we adopted an analogous hypothesis

to formulate the expression for a mqc spectrum for a molecule with one or few

soft internal coordinates. In those cases however, the conformational integral was

performed on a grid of equally spaced points along the soft coordinates with weights

that, we showed, depend on the free energy. This grid approach is not suitable

for large systems in an environment, where the soft (large amplitude and slow)

modes are numerous since they include both solute and solvent modes. Therefore

it was necessary to devise a new approach able to accommodate the possibility to

perform the conformational integral on the grounds of an effective MD simulation.

In practice in our method we move to the ”classical set” R all flexible modes.

The accuracy of this approximation is expected to be better the slower these

motions are. This assumption is tested with simple models in section S1 of the

SI, and the conclusions are briefly summarized at the beginning of the Results

section herein. Since each snapshot taken from the MD represents, by definition, a
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configuration out of equilibrium, nothing guarantees in principle that the harmonic

expansion in Eq. 13 give rises to all positive frequencies, i.e. represents effective

fast modes r with stable oscillations around an equilibrium position on both the

initial and final states of the electronic transition. However, this is of course a

requirement for the computation of the vibronic spectrum Lα,qr (ω). Therefore, as

shown in the Results section, a pre-screening of the expected robustness of our

Ad −MD|gV H prediction for the spectra is performed analysing the occurrence

of imaginary frequencies and if they are reduced by moving one or more soft

coordinates to the ”classical set”. While sporadic problematic snapshots are clearly

statistically irrelevant, a large fraction of snapshots with imaginary frequencies

along stiff modes would indicate either the non applicability of the method or that

additional DoFs should be considered ”soft” and moved to the R set.

Starting from the same adiabatic hypothesis we made in refs. 7,62, Zuehls-

dorff et al. reported very recently, in the SI of ref. 66, an expression for the

calculation of the spectrum of a solute in a solvent very similar to the one we

gave in Eq. (6). Some significant formal differences however exist, that make our

Ad−MD|gV H method of more general applicability. The expression of Zuehls-

dorff and co-workers is suitable for the standard partition that identifies the stiff

coordinates with the solute and the soft coordinates with the solvent ones, whereas,

thanks to the adoption of suitable projectors, in our approach soft and stiff modes

can be chosen among all the degrees of freedom of the solute+solvent system

(although clearly, most of the solvent coordinates will always be in the classical

set). A second more technical difference, but pivotal to the generalization we just

mentioned concerns with the PES expansion around the selected conformation.

Zuehlsdorff and co-workers compute the harmonic PES according to an Adiabatic

Hessian (AH) model, i.e. in a given configuration they locate the equilibrium ge-
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ometry of both the initial and final states PESs and expand them quadratically

around their own minima.73 Although our approach may recast also in an AH

framework, we chose a VH model because it straightforwardly allow us to include

in both soft and stiff subsets either solute or solvent coordinates. It is much more

complicated to allow such a possibility within a AH approach, because it would

be necessary to perform constrained optimizations freezing simultaneously a num-

ber of internal coordinates (or their combination) of the solute, and the solvent

(Cartesian) coordinates. To the best of our knowledge this is not doable in most

of the popular quantum chemistry codes.

Apart from these formal differences, in practice Zuehlsdorff et al. did not

compute spectra according to the proposed expression mainly because of the com-

putational cost. We overcame this technical problem by exploiting in vibronic

calculations, the very fast and effective TD methodology implemented in our code

FCclasses. As a matter of fact a calculation of Lα,qr (ω) typically requires seconds

on a single-core of a standard machine.

3 Computational details

The whole Ad −MD|gV H computational protocol is based on a combination of

four different codes, namely the Gaussian16 package for electronic calculations,83

the Gromacs engine84,85 for MD simulations, and two programs written by some

of the authors of this contribution:, the Joyce program,86 for the generation of

the FFs, and version 3.0 of the FCclasses code,72,87 for the computation of the

vibronic spectra. Details are given in the following subsections.
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3.1 QM calculations

All QM calculations have been performed at DFT level for the ground electronic

state and TDDFT for the excited states using the Gaussian16 package.83 The

level of theory was chosen based on previous works, namely PBE0/6-31+G(d,p)

for MQ,6 PBE0/6-31G(d) for T2,88 and CAM-B3LYP/6-311+G(d,p) for Cyan.52

The DFT database necessary for QMD-FF parametrization includes a full geom-

etry optimization in the desired electronic state, the Hessian computed at the

equilibrium geometry and a number of relaxed energy scans along the flexible tor-

sions. In all cases, the data are computed with the same level of theory employed

to build the model harmonic PESs for vibronic calculations.

3.2 Force-fields

Specific FFs were here parametrized for two of the three investigated systems (MQ

and T2), while the FF Cyan was taken from previous work of some of us.52

All three FFs were built as detailed in the following. The intra-molecular

parameters of the dyes (solutes) were carried out with the Joyce program,67–69

according to the procedure briefly discussed in the previous section and detailed in

the SI. The solute’s atomic charges, entering the expression of the solute-solvent

inter-molecular term (see equations (22) and (23) in the SI), were obtained from

QM calculations through either the CM5 (for MQ and T2)89 or the RESP (for

Cyan)90 procedure, applied on the optimized geometry of the target solute, while

accounting for the solvent through the PCM model.40 It might be worth noticing

that, as discussed in some detail in section S3.5 of the SI, the adoption of a different

scheme (i.e. RESP rather than CM5) for retrieving specific point charges for Cyan

was dictated by the fact that this species is charged, hence the reliability of the

Hirsfield scheme, from which CM5 charges are derived,89 is not ensured.91 All other
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parameters specifying the solvent intra-molecular term (see equations (15)-(21) in

the SI) and the solute-solvent and solvent-solvent inter-molecular contributions

(i.e. solute and solvent inter-molecular LJ parameters and solvent point charges

(see equation (23) in the SI) were transferred from the OPLS FF.92–94 A complete

list of the FF parameters for all systems and further details on the parameterization

procedure can be found in Section S2 of the SI.

3.3 MD simulations

All MD simulations, as well as molecular mechanics (MM) optimizations, were

performed with the Gromacs engine,84,85 in the NPT ensemble, on systems

composed of one solute molecule (MQ, T2 or Cyan) and a large number (∼ 1000)

of solvent molecules (either water or ethanol). In the case of Cyan, a Cl− counter

ion was also added,52 to ensure electroneutrality. For each dye, two different

schemes were applied, to investigate on the effect of including or not including the

fast stretching vibrations in the MD runs. To this end, each run was separately

carried out without or with the LINCS algorithm,95 to constrain all bond lengths

to their equilibrium value. In the former case the employed time step was 0.2 fs,

whereas, without accounting for the fast stretching motions, the time step was

increased to 1 fs. In all runs, temperature T (300 K) and pressure P (1 atm)

were kept constant through the v-rescale96 and Parrinello-Rahaman97 schemes,

using coupling constants of 0.1 ps and 1 ps, respectively. A cutoff radius of 11 Å

was employed for both short-range charge-charge and LJ terms, whereas long-

range electrostatics was accounted for through the particle mesh Ewald (PME)

procedure. All systems were first minimized, and afterwards atomic velocities

were assigned according to a Maxwell–Boltzmann distribution at 300 K. Each

system was first equilibrated for 2 ns; thereafter, production runs were performed
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for further 6 (MQ, T2) or 3 ns (Cyan).

3.4 QM:MM gradient and frequency calculations

Along the MD trajectories, snapshots were extracted every 30 ps, which ensured

uncorrelated conformations. An ONIOM QM:MM model was built to evaluate the

energy, gradient and Hessian over the solute atoms. The solute was included in

the model system (high layer) while the real system was extended to include the

first solvent layer. The extension of such first neighbour shell, quantified through

the shell radius Rcut, was assessed, as detailed in the SI (see Figures (S11)-(S15)),

based on the solvation structure retrieved from the MD runs: for all dyes, Rcut

was fixed at 4 Å.

Within the QM:MM ONIOM scheme, the model system is treated at DFT and

TDDFT level, adopting the same functional and basis already adopted to generate

the QM data to parametrize the QMD-FF, and the real system is handled at the

same MM potential used in the MD simulations. Finally, the ONIOM calculation

was carried out by taking into account also all the remaining solvent molecules,

within a radius of 40 Å from the center of gravity of the solute, according to an

electronic embedding (EE) scheme, where all solvent atoms are treated as point

charges. It is worth mentioning that using the simple EE scheme also to treat

the first solvation shell (i.e. neglecting Lennard-Jones interactions) may lead to

the occurrence of a large number of spurious imaginary frequencies, as reported in

Section S4.2 of the SI. Although here we focus on FC transitions, we recall that

computation of TD-DFT analytical excited-state Hessians with Gaussian16 pack-

age also provides, at no additional cost, the derivatives of the transition dipoles, so

that Ad−MD|gV H calculations including HT effects do not require in principle

additional cost. Some further testing is however necessary to set the most proper
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embedding scheme to obtain such derivatives.

3.5 Vibronic calculations

The vibronic computations have been performed with the version 3.0 of the FCclasses.

For each snapshot it reads energies, gradients and Hessians of the initial and final

electronic states computed by Gaussian16, projects out the soft modes, builds

up the reduced dimensionality gV H model and computes the vibronic spectrum

with the TD approach22 at 300 K. For the electric transition dipole we adopted the

FC approximation. We note that Eq. 6 accounts for the whole lineshape, without

requiring the adoption of any phenomenological broadening. However, since the

sum over conformations, α, is necessarily finite, the average arising from Eq. 6

may display significant noise. Therefore, in order to smooth the final plots, com-

pensating the limited conformational sampling, all individual lineshapes, Lα,qr (ω),

are convoluted with a narrow a Gaussian with HWHM=0.01 eV. In section S5 of

the SI, we show that such procedure does not change the overall spectral width.

4 Results

4.1 Simple harmonic models

In Section S1 of the SI, the proposed mqc method is compared with classical

(c) approximation for a model harmonic system for which the exact quantum

vibronic calculation is possible. In this case the MD run is not necessary since

the classical (Boltzmann) distribution is known and analytical. It is shown that

Ad −MD|gV H approach largely outperforms the c one, both in terms of shape

and position of the spectra. When soft modes have a frequency ≤ than the thermal

quantum ∼ 208 cm−1, the Ad −MD|gV H spectrum is practically exact, if soft
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and stiff modes are not coupled or moderately coupled. At lower resolutions, even

higher-frequency modes could be included in the set of the classical modes without

a deterioration of the results. Finally, the robustness of the method is tested by

including in the model an artificial very strong coupling between quantum modes

and the ones with frequencies lower than 200 cm−1, included in the classical set:

even in this case, low- and intermediate-resolution Ad−MD|gV H spectra are still

fairly good, while high-resolution vibronic progressions can manifest inaccuracies.

4.2 Flexible dyes in solution

In this section the Ad−MD|gV H approach is applied to simulate the electronic

spectra of the 3 dyes sketched in Figure 1. MQ is a rather rigid fused cycle

Table 1: Number of snapshots extracted along the dynamics of the different dyes exhibiting
imaginary frequencies. The normal mode analysis is performed in the full dimensionality space
(Full) or in two different reduced dimensionality spaces, either projecting out only the flexible
torsions (rmTors) or also removing selected pyramidalizations (rm[Tors+Pyr]). The label in
parenthesis defining the MD run in the second column refers to MD runs where the solute either
has unconstrained (U) or constrained (C) bonds or is treated as a rigid rotor (R).

Calculations Settings Full rmTors rm[Tors+Pyr]
System MD Nsnap S0 S1 S0 S1 S0 S1

MQ@H2O S0(U) 200 31 50 2 6 0 0
MQ@H2O S0(C) 200 20 40 0 1 0 0
MQ@H2O S0(R) 200 1 4 0 1 0 0
T2@EtOH S0(C) 200 0 11 0 7 0 5
T2@EtOH S1cis(C) 200 14 23 0 22 0 0
T2@EtOH S1trans(C) 200 1 1 0 1 0 0
Cyan@H2O S0(U) 100 11 22 0 6 0 3

which establishes specific H-bonds with the water solvent. It also features a easily-

rotating methyl group, which, however, is not expected to have a relevant role in

the spectra. T2 is conversely characterized by an inter-ring torsion whose flexibility

is markedly different in the ground (S0) and in the excited (S1) state. It has been

suggested that this feature has a large and different impact on absorption and
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emission spectra.88 Hence, due to the possibility that the intramolecular flexibility

breaks the T2 absorption/emission mirror symmetry, we also simulate the emission

spectrum, exploiting the Joyce’s capability to deliver QMD-FF also for electronic

excited states.50,98 Finally, Cyan is a more complex dye, characterized by a flexible

torsion that tunes the coplanarity between the phenyl and naphtyl rings and several

rotatable hydroxyl groups, capable of strong interactions with the surrounding

solvent molecules. For all of these systems, we simulate the absorption spectra. In

all cases, the spectra are computed in different solvents, for which experimental

data are available: water for MQ and Cyan, ethanol for T2.

4.2.1 N-methyl-6-oxyquinolinium betaine

We start focusing on MQ in water, including all solvent’s DoFs in the classi-

cal set. Given its overall stiffness, MQ constitutes a relatively simple system to

benchmark our methodology. In fact, the QMD-FF parameterization is carried

out by assigning a harmonic potential to each internal coordinate except the flexi-

ble dihedral involved in the rotation of the methyl group around the N–CH3 bond

(Figure 1). The Joyce parameterization was carried out with a final standard

deviation of 7 · 10−3 kJ/mol, obtaining the best-fit parameters reported in detail

in the SI (Section 2.3). In Figure 4 the overall quality of the QMD-FF is shown

through the comparison of the FF frequencies and torsional relaxed energy scans

obtained for the methyl rotation with their QM counterparts. Vibrational frequen-

cies are perfectly reproduced, and the overlap of MM and QM modes is generally

significant. Moreover, the torsional profile provided by the QMD-FF remarkably

improves over the standard GAFF one. Methyl rotation is also the slow DoF pro-

jected out of the vibrational space adopted to define the effective normal modes,

and is defined as the linear combination of the six dihedrals with N–CH3 bond in
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the center (see definition (24) in the SI). Preliminary analysis revealed that the

pyramidalization of the nitrogen atom contributes to the flexibility in the system,

at least on the S1 state. The projection of complex DoFs, such as pyramidaliza-

tions, is not straightforward. In this case, we found that the most appropriate

way to define this coordinate ζ in the projector was the combination of 2 dihedral

angles (equation (25) in the SI).

The MD simulations that provide the conformational sampling of the system

were carried out with different approaches as far as the fastest vibrations in the sys-

tem are concerned. The bond lengths and angles of all water molecules were always

constrained to their equilibrium values with the SETTLE99 algorithm, in compli-
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panel: comparison between the vibrational frequencies ν computed at QM level (solid circles)
and through the QMD-FF (empty squares). Bottom panel: torsional energy profiles for the δ
dihedral computed at QM and QMD-FF level.
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ance with the standard TIP3P model adopted. As far as the solute is concerned,

we tested three different approaches: (a) all its DoFs were left unconstrained, (b)

all bonds were constrained with the LINCS algorithm95 or (c) it was treated as

a moving rigid rotor. In model (c), in analogy with the approach we presented

in ref. 27, we applied a stiff harmonic potential to all DoFs, further replacing the

structure by the equilibrium one at each extracted snapshot.

According to the discussion reported in Section 2.5, we start reporting in Table

1 a summary of the number of conformations where the normal mode analysis,

either in S0 or S1 states, lead to any imaginary frequencies, before (Full) or after

projecting out only the torsion (rmTors) or the torsion and the pyramidalization

coordinate (rm[Tors+Pyr]). As expected, normal mode analysis within the Full

space leads to a significant number of imaginary frequencies indicating that, despite

its apparent stiffness, the molecule is characterized by some soft modes. Most of the

imaginary frequencies are actually connected with the methyl torsion, and in fact,

they disappear projecting this torsion out. The remaining imaginary frequencies

disappear when the pyramidalization is also removed from the space, indicating

that, in those (very few) snapshots, this coordinate displays a marked anharmonic

behavior. Comparing the results obtained with constrained and unconstrained

simulations, a larger number of imaginary frequencies are observed for the latter

case (in both Full and rmTors schemes), indicating that the molecule visited more

critical conformations, due to the fact that also the bond lengths are now varying

along the MD samplings. Conversely, for the rigid body simulation, where the

solute’s structure is kept at the QM minimum, a very small number of imaginary

frequencies was found, already for the vibrational analysis in the Full space. Yet,

the appearance of these few imaginary frequencies indicates that the interaction

with the explicit solvent particles, whose distributions changes at each snapshot,
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can remarkably perturb the most flexible DoFs of the system. Indeed, when both

the torsion and the pyramidalization are projected out the imaginary frequencies

vanish. Such results implies a coupling between solvent and solute DoFs that is

taken in account in our Ad−MD|gV H method, within the limits of the accuracy

of the adiabatic hypothesis.

Based on the above results, to compute the absorption spectrum, we adopt the

reduced spaces (either rmTors or rm[Tors+Pyr]) to apply the Ad−MD|gV H pro-

tocol in combination with either unconstrained or constrained simulations. In the

case of the rigid body trajectory, the vibronic spectra are computed with the Full

space since none of the internal DoFs are sampled. In all the cases, the snapshots

with imaginary frequencies are discarded from the averages. Figure 5 displays the

absorption lineshape simulated with all these different settings, and the character-

istic parameters that describe the lineshape are summarized in Table 2.

Table 2: First moment (M1), standard deviation (σ) and full width at half maximum (FWHM)
of the lineshapes included in Figure 5. All quantities in eV.

Sampling VibSpace M1 σ FWHM
Unconstrained rmTors 2.66 0.220 0.498
Unconstrained rm[Tors+Pyr] 2.66 0.219 0.497

Constrained rmTors 2.63 0.215 0.481
Constrained rm[Tors+Pyr] 2.63 0.214 0.480

Rigid Full 2.62 0.210 0.465
Rigid rmTors 2.62 0.210 0.464
Rigid rm[Tors+Pyr] 2.62 0.209 0.460

As observed in the figure, the unconstrained and constrained samplings lead

to very similar lineshapes, with the latter giving rise to slightly narrower and red-

shifted bands. The narrowing and red-shifting are even more pronounced when

treating the molecule as a rigid rotor (Table 2). This effect can be connected to the

different sampling of modes with large displacement, namely the C–C stretching.
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The effect of the usage of different vibrational spaces is minor. The similarity of

the results obtained with these three strategies is not unexpected, because in this

case the solute’s DoFs most relevant for the spectral shape are the stiff ones, which

are well described within the harmonic approximation, whereas the soft solute’s

modes have only a minor effect.

In Figure 6, the lineshapes obtained from the three simulations within the

rm[Tors+Pyr] space (and with the full space for the rigid sampling) are compared

with experiment. All the three computational strategies provide a similar spectral

shape which is in very nice agreement with experiment. The moderate changes ob-

tained with the Ad−MD|gV H method with respect to the rigid sampling improve

Figure 5: Absorption lineshape computed for MQ with the Ad−MD|gV H approach presented
in this work, using the different projection schemes described in the text (i.e. Full, rmTors or
rm[Tors+Pyr]) over the snapshot sets extracted from the three MD runs (from left to right,
unconstrained MD, constrained bonds and rigid rotor. Top panels include the vibronic spectra
computed for each individual snapshot while the averages are presented in the bottom panels.
The numbers in parenthesis indicate the position of the maximum, evidenced by a dotted line.
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the agreement with experiment and the unconstrained simulation performs slightly

better than the constrained one. Finally, the Ad−MD|gV H method drastically
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Figure 6: Absorption lineshape computed for MQ with the Ad −MD|gV H approach pre-
sented in this work, using the different sets of internal coordinates described in the text. The
standard CEA-VE spectrum is also shown, broadened with a phenomenological Gaussian curve
with HWHM=0.05 eV.

improves over the CEA-VE standard approach, which is also displayed in Figure

6. In fact the spectrum obtained from the ensemble of the vertical excitations

of the same snapshots used in the Ad − MD|gV H method, simply broadened

with a phenomenological Gaussian shape with HWHM=0.05 eV, is blue-shifted

and fails in reproducing the asymmetry of the high energy wing and consequently

also predict a remarkably narrower spectrum.

4.3 Di-thiophene

At variance with MQ, where most of the flexibility involves the methyl rotation

that is not affected by the electronic transition, in T2 two rather stiff aromatic

rings are connected by a rotatable bond (C1–C1, see Figure S9 in the SI) and the
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energy profile associated to such torsion changes drastically from S0 to S1. In fact,

as displayed in Figure 7, the molecule is not planar in its ground-state and it is

characterized by 4 minima at ∼ ±30◦ and ∼ ±150◦, connected by relatively low

barriers. On the contrary, since in S1 inter-ring conjugation increases, only two

planar cis and trans minima exist and are separated by a very large barrier.

Figure 7: Left panel: QM vs FF computed vibrational frequencies; all vibrational frequencies
for S0 (left) and S1 (right) are displayed (bottom) for QM (solid circles) and FF (empty squares),
while the overlap between the QM and the FF normal modes (top) is displayed as a histogram.
Right panel:QM vs FF computed energy torsional profiles for the δ dihedral for both states

The QMD-FFs parametrized for S0 and S1 states describe the aforementioned

torsion with periodic potential terms. Both ground and excited state parameter-

izations were performed with the same choice of redundant internal coordinates.

Beside the flexible torsion δ, it includes all possible bond lengths and angles, the

“stiff” dihedrals, which rule the planarity of each aromatic ring, and the ”star-like”

(see Figure S9 in the SI) dihedrals governing the out-of-plane H vibrations. The

final standard deviation was 8·10−3 and 2·10−1 kJ/mol, for S0 and S1 respectively.

The analysis of the vibrational frequencies computed though the MM Hessian and

at QM level is shown in the left panel of Figure 7, while in the right panel the

QM vs MM torsional profiles are displayed. It appears that the flexible torsion

δ tunes the coplanarity of the two rings with remarkably different energy profiles

in the ground and excited electronic states. As a consequence, this rotation has a
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notable impact on both the absorption and emission spectra, as indicated by the

dependence of vertical energy and oscillator strength on δ (Figure S10 of the SI).

Therefore in the following we simulate both the spectra in ethanol, exploiting

the fact that our Ad−MD|gV H protocol is general and can be applied on equal

foot to absorption and emission processes. The only difference is the state (i.e.

the QMD-FF) on which the initial classical MD is performed. Since for T2 and

ethanol no strong specific solute-solvent interaction is expected, for computational

convenience we run the MD constraining the T2 stretching modes with LINCS.95

MD simulations in S0 easily overcome the barrier along δ, which ensured a proper

sampling of this coordinate. By integrating along the MD trajectory the distribu-

tion obtained for the inter-ring torsion, we found that in S0 the ratio between the

populations of trans and cis is 4:1. In S1, however, the interconversion between the

trans and cis isomers is not viable at room temperature, and we thus conducted

one simulation per conformer, labelled as S1cis and S1trans, respectively. In this

context it is worthy to notice that actually the S1 PES in the region of the cis

side of the high barrier is made rather complicated by accessible photochemical

pathways that can lead to the opening of the ring.100

In order to generate the reduced space to compute the vibronic contributions,

we project out the inter-ring torsion δ (see expression (26) in the SI for defini-

tion). Also in this case, the pyramidalization of the carbon atoms involved in the

C–C bond linking the two thiophene groups can be flexible enough to challenge

the model harmonic PESs used in the vibronic calculation, and it can be more

convenient to remove them from the corresponding coordinate space. Concretely,

we remove the aforementioned pyramidalizations, by projecting out the improper

dihedrals ζ1 and ζ2, as defined in equation (27) of the SI. The normal mode analysis

for T2 for snapshots along S0 and S1 trajectories, included in Table 1, shows the
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existence of a non-negligible number of imaginary frequencies occurring even when

the δ torsion is removed, mostly for structures obtained with the S1cis sampling.

Interestingly, when the ζ1 and ζ2 pyramidalization coordinates are also projected

out, most of those imaginary frequencies vanish. On these grounds, the emission

lineshapes are computed adopting the rm[Tors+Pyr] reduced dimensionality space

along the S1trans and S1cis samplings. For consistency, the same vibrational space

rm[Tors+Pyr] is used to simulate the absorption lineshape from the S0 sampling.

Figure 8: Vibronic spectra computed for each individual snapshot along T2 MD trajectories
of the solvated dye in its ground (right panel) or excited in cis and trans conformation, left and
middle panel, respectively. The averaged spectrum is also plotted with a black dashed line.

In Figure 8 we report the vibronic spectra computed for all snapshots and their

average. It can be noticed that the resulting spectra are different for position and

shape. Differences are less marked in the emission from S1 trans. S1 cis show

some very broad spectra, too few to have substantial statistical effect and likely

connected with configurations where the PES is very anharmonic due to the nearby

existence of the ring-opening pathways.100 For absorption we do not notice such

large differences in the shape of the spectra. However, due to the flat shape of

the PES (see Figure 7) inter-ring torsion may acquire remarkable deviations from

the minima toward 90 degrees and, due to the steepness of the S1 PES, these

configurations correspond to spectra significantly blueshifted. This phenomenon
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makes absorption spectrum broader than emission (see below).

In Figure 9, we compare the results provided by our protocol with the experi-

mental ones at room temperature. Emission spectra in ethanol were taken from ref.

Figure 9: Absorption and emission spectra simulated with the Ad−MD|gV H and the CEA-
VE approaches. In the latter method, the individual VEs arising form the snapshots have been
broadened with a phenomenological Gaussian curve with HWHM=0.05 eV. For emission, the
spectra arising from the trans and cis trajectories have been weighted with their relative weights
(see text). Notice that the second band observed in the experiment is not reproduced by our
calculations since we only considered transitions to the lowest excited state.

101, where however absorption was only reported in dioxane. In order to perform

a more direct comparison, the absorption spectrum in ethanol has been recorded

again at University of Málaga. For emission the trans and cis contributions have

been weighted with the S0 populations (4:1), assuming that the radiative process

is faster than photoisomerization. The agreement with experiment is perfect for

absorption and still excellent for emission although some fine details of the exper-

imental shape are not fully captured. In particular we nicely reproduce (with a

slight overestimation) the larger width of the absorption with respect to emission.

The full width at half maximum for absorption and emission is 0.61 and 0.52 eV,

respectively, to be compared with the experimental data 0.59 and 0.54 eV. Com-
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parison with the predictions of the standard CEA-VE procedure shows that the

latter strongly underestimates the spectral widths and is remarkably outperformed

by the new Ad−MD|gV H method.

4.4 Cyanidin

Cyan molecule in water is the most challenging test for the applicability of our

Ad−MD|gV H protocol, because it is a charged species characterized by several

flexible torsions, including the one around the C–C bond that connects the two

rings and the five hydroxyl groups, H-bonded to solvent molecules. The numerous

hydroxyl groups can be also easily deprotonated, creating a mixture of different

species that clearly has an effect on the spectrum. For this reason we decided to

focus on the comparison with the experimental spectrum in water at pH 1, where

the Cyan dye is expected to be fully protonated. Different studies point out that

in very acidic solutions the flavylium cation of Cyan is the only chemical species

present,102 whereas at larger pH some new structures appears by deprotonation or

hydrolysis.103 All the intra-molecular QMD-FF parameters for Cyan were taken

from ref. 52, where a detailed comment of the quality of the results can be found.

As already mentioned and discussed in Section S3.5 of the SI, Cyan is not a neutral

species, hence RESP charges were used instead of the original CM5 ones. Moreover,

since the simulations in Ref. [ 52] were carried out in ethanol, MD runs in water

were purposely performed in this work. In order to better describe the dynamics

of the several expected solute-solvent H-bonds, we run a full unconstrained MD

trajectory, adopting for the water solvent the flexible SPC-Fw model.104 Finally, it

should be mentioned that, to reach electro-neutrality of the whole solvated systems,

a Cl− counterion was included in the simulations: in all selected snapshots, such

counterion was always found in the large sphere treated with EE scheme but never
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in the first-neighbor shell, therefore the Cl contribution to the different spectra

was always treated within the EE scheme.

Table 1 shows that for more than 20% of the snapshots, a harmonic expansion

of the PES is characterized by at least an imaginary frequency if the vibrational

analysis is performed in Full space. Due to the flexibility of the molecule this

result was expected. As a first step to apply our Ad −MD|gV H method, we

moved the soft torsions δ1 to δ6 (see expressions (28)-(33) in the SI for definition)

in the classical set. In the rmTors space the number of imaginary frequencies is

strongly reduced, but still for 6% of the snapshots the local PES expansions on S0

features an imaginary frequency. As it was already shown for T2, also for Cyan

the flexibility associated to the inter-ring torsion is actually more complex than the

simple rotation described by the flexible dihedral δ6. In fact, further vibrational

analysis on the off-equilibrium structures along MD sampling shows modes with

imaginary frequencies with strong contributions from the pyramidalization of the

Carbon atoms defining the rotatable bond. The ζ1 and ζ2 DoFs have been removed

adopting the definitions given in equation (34) if the SI. Within this reduced space

(rm[Tors+pyr]), the number of problematic snapshots is very limited (1 for S0 and

2 for S1) and can be safely discarded in the calculation. This example shows that

the Ad−MD|gV H approach can be successfully applied even in these challenging

cases.

The spectra computed for all snapshots are plotted in Figure 10, showing that

as for MQ and T2, they all exhibit pronounced vibronic progressions and both

their shape and position depend on the specific snapshots. The smearing out of

the vibronic peaks (which are not observed in the experiment), naturally arises

considering their average, without the need for any phenomenological broadening.

Figure 11 compares the Ad−MD|gV H spectrum with the experimental one mea-
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sured in water at pH 1.105 In line with the results achieved for MQ and T2, a

good agreement with experiment appears also for Cyan, with a slight underesti-

mation of the tail at higher energies. Yet, the improvement of the Ad−MD|gV H

approach with respect to the standard CEA-VE procedure is still evident and both

the width and the asymmetry of the experimental band are better reproduced.

A second band is visible in the blue wing of the experimental spectrum. There-

fore we applied our Ad −MD|gV H approach also to the S0→S2 transition. A

larger percentage of snapshots (∼ 40 %) exhibited imaginary frequencies and were

discarded, signaling that the more the states are excited the more they can suffer

from anhmaronic effects, or inter-state couplings that challenge the straightforward

Figure 10: Vibronic spectra for the S0→S1 transition, computed for each individual snapshot
along Cyan MD trajectory. The average spectrum is also plotted (black dashed line). Similar
results were obtained for the S0→S2 transition (data not shown).
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Figure 11: The absorption spectrum simulated for Cyan with the Ad −MD|gV H approach
presented in this work is compared to the experimental spectrum measured in water at pH 1.105

A simpler simulation of the spectrum obtained with the standard CEA-VE approach, broadened
with a phenomenological Gaussian curve with HWHM=0.05 eV, in analogy with what done by
some of us in Ref52 is also shown.

application of our method. This notwithstanding, Figure 11 shows that inclusion

of S0→S2 contribution significantly improves the agreement with experiment. Yet,

minor differences remain and they mainly concern the underestimation of: (i) the

relative intensity of the blue-side shoulder, and (ii) the intensity between the two

bands. The statistical analysis of the different snapshots reported in section S6

of the SI shows that when the oscillator strength of S1 decreases, the one of S2

increases, this occurring more frequently when the two states are closer in energy.

This finding clearly suggests that the two states are coupled. The distance be-

tween the maximum and the blue-side shoulder is also slightly overestimated in
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our computations. It is therefore plausible that an electronic method able to better

reproduce this gap would also predict a stronger coupling between the two states

and, therefore, a larger relative intensity of the blue-side shoulder, which would

improve both points (i) and (ii). Moreover, a significant coupling between the

two states should be accounted explicitly with a nonadiabatic Hamiltonian, like a

LVC or a QVC model.25 We have recently shown that one of the main effects of

inter-state couplings is to increase the relative intensity between the two coupled

bands.27

5 Discussion and Conclusions

In this contribution we presented a general mqc method, that we named Ad −

MD|gV H, to compute the shape of electronic spectra of a flexible molecule in

condensed phase. Ad − MD|gV H is the result of a long-lasting project and

builds up on previous steps we reported in recent papers, like the demonstration

of the necessity of QMD-FF for spectroscopic accuracy,7 and the description of

the VH model in curvilinear internal coordinates.70 It shares the basic idea of

the classical/quantum partition within an adiabatic approximation with the few-

classical-coordinates models we presented in refs.62,106 Its main innovation is the

introduction of a coherent scheme to combine MD sampling and vibronic calcu-

lations which allows to treat all the flexible coordinates of the solute and all the

environment explicitly, and a generalization of the projectors to separate soft and

fast coordinates. In this way, while in its current applications we considered dyes

solvated in simple solvents, the method is ready to be extended to deal also with

heterogeneous media, like proteins and surfaces.

The soft/stiff classical/quantum partition is a key of the Ad − MD|gV H
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method. It is made on the grounds of chemical knowledge to predict flexible

coordinates and is supported by the computational analysis to parameterize the

QMD-FF and by the analysis of the MD. Moreover, it is finally revised with the

goal to not include modes with imaginary frequencies in the quantum set. On this

respect, it is noteworthy that the model computations in the SI on a reference

harmonic models suggest that the shift of few coordinates with sufficiently low fre-

quency between the two sets do not alter the quality of the results since, actually,

both quantum and classical modes contribute to the shape and width of the com-

puted spectra. Clearly, the Ad−MD|gV H method cannot reproduce individual

vibronic peaks of the soft modes, therefore it is tailored for spectra whose frequency

resolution is less that the typical vibrational spacing of these modes. For these

spectra however, it allows to approximately account for the effects of the coupling

between the classical and quantum modes introducing, in a non-phenomenological

way, both the broadening and the modulation of the quantum spectral shapes due

to the soft modes.

Considering the computational cost of the whole Ad−MD|gV H protocol, some

steps are in common with a standard CEA-VE calculation, namely the parameter-

ization of the QMD-FFs with Joyce program, which is rather automatized and

for non-difficult cases can be planned and concluded in 1-2 days and the typical

times to run a few nanoseconds MD. The additional cost of Ad−MD|gV H method

comes from the QM:MM computations of the ground and excited states gradients

and Hessians, mostly the latter, which depending on the system and the level of

theory selected has ranged from some minutes (MQ) to few hours (Cyan) on 16-

cores Xeon CPUs. This operation must be repeated for the number of snapshots

necessary to obtain a converged average. On this respect, in Section S7 of the SI

we show that for MQ and T2 the spectra are fully converged even considering half
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of the 200 initial snapshots, and that for Cyan adopting only 50 of the computed

100 snapshots leads to only small discrepancies. It is noteworthy that alternative

protocols to drastically reduce the computational cost are conceivable and their

performance will be investigated in future work.

In these first applications of Ad−MD|gV H, we computed absorption and emis-

sion spectra, but in principle the method is suited for any other electronic spec-

troscopy like electronic circular dichroism, magnetic circular dichroism, circularly

polarized luminescence, Resonance Raman, non-resonant two-photon absorption

and others, for those systems for which couplings among the electronic states are

negligible or can be accounted for perturbatively, within HT theory. When elec-

tronic couplings are strong it is conceivable to extend the Ad−MD|gV H method

substituting the gV H engine with LVC or QVC models in reduced dimensionality.

In the implementation adopted here, we made a number of computational

choices regarding the MD, the adopted FFs, the electronic method and the em-

bedding scheme in QM/MM calculations that are not fundamental for the Ad −

MD|gV H method. The latter in fact is in principle versatile enough and ready

to be combined with alternative settings. In the MD, for the solute we used a

QMD-FF, fitted against data obtained at the same level of theory adopted to gen-

erate harmonic PESs for vibronic calculations. This ensures that the procedure

is consistent and that, along the MD, the system does not visit unrealistic con-

figurations where also the data needed for vibronic models might be biased and

unreliable. Similar problems have been encountered several times with standard

empirical FFs, which do not guarantee spectroscopic precision. They have been

cured with different strategies, like a re-optimization of the solute at each snap-

shot,107 which however reduces the conformational sampling and might introduce

unreliable solute-solvent configurations. The problems arising from structures ex-
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tracted with inaccurate FFs, already seen on vertical transitions,7 would be even

more important in Ad −MD|gV H, where higher-order properties of the PESs,

like energy gradients and Hessians, are needed.

Alternative strategies might be implemented in the sameAd−MD|gV H scheme,

like QM/MM trajectories, taking care that the propagation time is long enough for

an accurate spanning of the configurational space, or refinements of the samplings

with short QM/MM trajectories, run at selected configurations obtained with a

classical FF, to ensure that faster modes do oscillate around reasonable geome-

tries.108 A further possible development in the classical MD is to use QMD-FFs

also for the solute-environment parameters, along the lines recently proposed by

some of us.109

It is noteworthy that some steps of Ad−MD|gV H method, namely the MD

simulation followed by the computation of harmonic PES of the stiff coordinates,

specific for each configuration, shares analogies with what proposed by Lee et al.63

for computing spectral densities of chromophores in complex environments. In fact

they obtain such density by the excited state gradient at the optimized geometries

of the chromophore in a number of environmental configurations (our soft modes).

Advantages of our method are the explicit inclusion of quadratic differences of

initial and final state PESs, and the larger flexibility in defining soft and stiff

modes. Always concerning the sampling, in the future it will be interesting to

try to combine our approach to more elaborated samplings, like those adopted by

Rosa et al.110

As far as the embedding scheme is considered, we adopted an ONIOM QM:MM

model. It is possible in principle to couple our method with more sophisticated

polarizable embedding schemes.107,111–113 or with the cost-effective Perturbation

Matrix Method (PMM).114 On this respect, we mention that a very recent contri-
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bution introduced an hybrid approach based on a clustering technique that adopts

ONIOM/EE for a representative structure of each cluster and the faster PMM ap-

proach for local fluctuations in each cluster.115 It will be interesting to investigate

in future works effective ways to combine this approach with vibronic calculations

and the effect of clustering techniques on the reproduction of the solute-solvent

broadening effects of the electronic spectra. Finally, while we adopted a classical

MD, the combination of Ad−MD|gV H with a path-integral MD, able to account

for NQEs along the lines proposed refs. 55 and 66, is doable and would be surely

of large interest.
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(44) Sabin, J. R.; Brändas, E. E. Combining Quantum Mechanics and Molecu-

lar Mechanics. Some Recent Progresses in QM/MM Methods, Advances in

Quantum Chemistry ; Elsevier, 2010.

(45) Murugan, N. A.; Rinkevicius, Z.; Ågren, H. Modeling solvatochromism of
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sis and extension of the Hirshfeld atoms in molecules. J. Chem. Phys. 2007,

126, 144111.

60



(92) Jorgensen, W. L.; Maxwell, D. S.; Tirado-rives, J. Development and Test-

ing of the OPLS All-Atom Force Field on Conformational Energetics and

Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 7863, 11225–11236.

(93) Damm, W.; Frontera, A.; Tirado-Rives, J.; Jorgensen, W. L. OPLS all-atom

force field for carbohydrates. J. Comp. Chem. 1997, 18, 1955–1970.

(94) Jorgensen, W. L.; Tirado-Rives, J. Potential Energy Functions for Atomic-

Level Simulations of Water and Organic and Biomolecular Systems. Proc.

Natl. Acad. Sci. USA 2005, 102, 6665–70.

(95) Hess, B.; Bekker, B.; Berendsen, H.; J.G.E.M., F. LINCS: A linear constraint

solver for molecular simulations. J. Comp. Chem. 1997, 18, 1463 – 1472.

(96) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity

rescaling. J. Chem. Phys. 2007, 126, 014101.

(97) Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A

new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190.

(98) Prampolini, G.; Ingrosso, F.; Cerezo, J.; Iagatti, A.; Foggi, P.; Pastore, M.

Short- and Long-Range Solvation Effects on the Transient UV–Vis Absorp-

tion Spectra of a Ru(II)–Polypyridine Complex Disentangled by Nonequi-

librium Molecular Dynamics. J. Phys. Chem. Lett. 2019, 10, 2885–2891.

(99) Miyamoto, S.; Kollman, P. SETTLE: An analytical version of the SHAKE

and RATTLE algorithms for rigid water models. J. Comp. Chem. 1992, 13,

952 – 962.

(100) Schnappinger, T.; Marazzi, M.; Mai, S.; Monari, A.; González, L.; de Vivie-
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