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ABSTRACT 
In this paper, we present the simulator-based method to estimate 
the time required by the external data memory accesses in the 
H.263 video encoding. Different frame rates and picture 
resolutions are considered. The Video DSP structure considered 
here consists of several parallel on-chip DSP units and it is 
optimized for the H.263 video encoding. Execution time is 
coarsely divided between control/non-sequential processing, 
parallel processing, and external data memory traffic. To 
evaluate the performance in early design phase, one must find 
out the time required by each part. The memory simulator 
method described here gives an estimate of the time required by 
the external memory accesses. With this estimate, one can also 
make sure that the proposed partitioning between internal and 
external data memories is correct and the required memory 
bandwidth for the external data memory is not too high. 

1. INTRODUCTION 
Since video processing requires huge processing power and 
evolving video coding standards have a need for more flexible 
architecture, programmable on-chip parallel processor 
architectures [1] are a very attractive solution. Fortunately, many 
parts of the video coding algorithms can be easily processed in 
parallel. E.g., the operations of the hybrid coding scheme (like 
H.263) can be divided into low level tasks, medium level tasks, 
and control operations [2]. The low-level tasks are 
computationally intensive, regular operations with data-
independent function [3], thus lending themselves to the single 
instruction multiple data (SIMD) type of parallel processing. The 
low-level tasks have completely regular data and control flow, 
but they require more than 85% of the overall computational rate 
of the hybrid coding scheme [4]. Since the data flow is 
predictable in video processing, low memory hierarchy can be 
used [5]. To provide the high memory bandwidth required by the 
parallel processors, parallel memory modules are usually used 
[6-10]. A single frame to be processed may not fit into the fast 
internal memory. Thus, a larger and slower external, frame 
buffer is needed. The division between internal and external data 
memories should be done properly, so that the required 
bandwidth between them is realizable.  

By using a high-level software model of the system we can 
achieve a proposal of the division. After that, using a memory 
simulator, we can verify that this division is fast enough. The 
simulation-based method presented in this paper makes it 
possible to do the division in early design phase before actual 
implementation. The method is very quick, no clock cycle 
accurate VHDL or Verilog models are needed. The simulator 

also helps to select an optimal DRAM device for the external 
memory. 

2. SYSTEM ARCHITECTURE 
We use a small, low-power, fixed point DSP core with 16-bit 
data path as a building block of the system. Programmable 
processor cores and the parallel memory establish the scalable 
macroblock coding engine. Programmability makes it possible to 
execute also other video coding applications than just H.263 
encoding considered here. In the design phase, the number of the 
cores (here 1, 2, 4 or 8) used for the SIMD processing can be 
selected according to the required processing power, making the 
architecture scalable. Using simple similar cores (instead of 
dedicated HW-blocks) according to predefined system concept 
may speed up the designing for different kind of video coding 
applications. 

 A block diagram of the proposed video DSP architecture is 
shown in Figure 1. The architecture consists of n  SIMD type 
parallel processors, a control processor, a direct memory access 
(DMA) controller, internal parallel data memory with m  
memory modules, and external data memory or frame buffer. In 
the following, only data memory is considered. The DMA 
controller operates between the external memory and the internal 
parallel memory. The DMA also loads the video sequence to be 
encoded to the external memory. The input sequence is read to 
the external memory macroblock by macroblock basis. The 
encoded bitstream is not stored in the external memory. The 
internal address space of the parallel memory is divided into 
three areas for different coding purposes [10]. It is assumed that 

Figure 1: The proposed video DSP architecture. 
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two of the parallel memory areas can be accessed simultaneously 
to increase the internal memory bandwidth.  The control 
processor controls SIMD parallel processors and the DMA 
controller. In addition, the control processor is assumed to be 
capable performing bit-stream parsing and variable length coding 
(VLC). The tasks considered for the parallel processing are the 
sum of absolute difference (SAD) calculation for 1616×  blocks, 
the calculations for choosing the coding mode for the 
macroblock, interpolation of the macroblock, SAD for 1616×  
blocks in half-pixel motion estimation (where the interpolated 
search-area is used), macroblock subtraction and addition, 
discrete cosine transform (DCT) and its inverse (IDCT), and 
clipping function (for the macroblock after motion compensation 
or IDCT). 

2.1 Modeling the system architecture 
The encoder model used here is based on the H.263 [11] encoder 
source code version 2.0 from Telenor. For simplicity, all the 
optional coding modes were discarded. The code was modified 
so that the tasks to be processed in parallel by the SIMD 
processors were capsulated to their own functions. These 
functions process only data in defined two-dimensional tables. 
The tables represent internal memory areas. External memory is 
modeled with a file. In our source code, DMA operations were 
modeled by DMA functions, which take care of the references 
between the two-dimensional tables and the reserved frame 
storage file. The referred addresses from these parts of the code 
were stored in to a file, which acts as the input file for the 
memory simulator.  

Internal parallel memory has 7168 16-bit memory locations. 
The search area [-15, 15] for the motion estimation and some 
macroblocks fit into the parallel memory at the same time. The 
parallel memory consists of dual-port memory blocks, allowing 
simultaneous DMA and parallel processing operations. The 
external memory contains four frames. The frames are stored in a 
row by row order starting from the upper left corner of the 
picture and ending to the lower right corner. In each frame, the 
luminance picture comes first and the two corresponding 
chrominance pictures after that. Space is allocated for the frame 
being currently processed, for the next frame to be processed, for 
the previously processed frame, and for the frame being currently 
reconstructed.   

There were at most five different locations in encoding chain 
where the transfers between the two-dimensional tables and the 
frame storage file were needed: 
A. storing the reconstructed macroblock to the frame storage 

(384 bytes), 
B. storing the macroblock to be coded to the frame storage 

(384 bytes), 
C. loading the chrominance blocks corresponding to the best 

matching luminance block from the frame storage (we 
decided to interpolate also the chrominance blocks and 
needed 20010101010 =×+×  bytes instead of just 

1288888 =×+×  bytes), 
D. loading the search-area from the frame storage for the 

motion estimation (the number of bytes depends on the size 
and the location of the search area), 

E. loading the macroblock from the frame storage for the 
encoding (384 bytes).                                                                                                                        

Memory transfers are all block transfers. Items expressed 
with capital letters in the list above will be referred in the rest of 
this paper. In Figure 2, scheduling and overlapping according to 
different dependencies of considered functions is shown. Parallel 
processing is assumed to run all the time. Parallel functions are 
executed sequentially and it is beneficial, if there is not much 
delay between them. Thus, e.g., the listed DMA operations 
should take at most the same time as scheduled for the parallel 
functions.  

3. MEMORY SIMULATOR 
A simulator capable to evaluate the performance of dynamic 
RAMs has been created. The problem with this memory type is 
that its performance may vary dramatically depending on the 
memory references being accessed. Therefore, simulations are 
required to find out the achievable bandwidth in the application. 
This kind of executable simulator does not require any external 
simulator environment, needed when using, e.g., VHDL-models. 
It makes it easy to test various design alternatives. 

The memory simulator yields the time and the clock cycles 
spent by the external memory traffic. This information    
• helps to make sure in early phase of design that memory 

traffic between internal and external memory is tolerable, 
• helps in scheduling the external memory transfers with 

processing, when also the time spent in control/sequential 
processing and parallel processing is known. 

There are three memory architecture families supported by 
the simulator. The first one is the asynchronous DRAMs (FPM, 
EDO) and the others for synchronous DRAMs  (SDRAM, 
SGRAM, DDR-SDRAM) and Rambus DRAMs (Concurrent, 
Base, Direct). The simulator can be used to select the most 
suitable architecture and device for the given application. 
Dynamic RAMs are modeled using 15-18 parameters depending 
on the architecture. The parameters assign information about the 
address mapping, the cell-size, the bus, and the timing of the 
DRAM device being simulated. 

The simulation is based on an address trace. It is given in a 
file that contains the address and direction (read or write) of each 
access. Using the address trace as input for the simulation makes 
the simulator very general purpose in nature for various kinds of 
applications. The simulator is able to calculate the average 
bandwidth, the average write and read latencies, and the total 
time required to execute all the addresses. 

The VHDL and Verilog models provided by DRAM 
manufacturers were used to verify the accuracy of the simulator. 

Figure 2: The scheduling of functions for intra / inter MB coding. 
Capital letters in DMA row refer to the list mentioned. 



We found that the error is a few percents at maximum. This is 
satisfactory for this purpose. 

4. SIMULATION RESULTS  
Two test sequences were encoded to estimate the time consumed 
by the external memory. We used the memory simulator to 
evaluate the performance with Micron MT48LC8M8A2-8E 
SDRAM [15] and Micron MT4LC8M8E1_8M-6 FPM DRAM 
[14], which have an eight bits wide external data bus. Moreover, 
a memory interface with a 16 bits wide interface has been 
examined. MT4LC1M16E5_1Mx16-7 SDRAM [13] and 
MT4LC1M16C3_1Megx16-7 FPM [12] from the same 
manufacturer were used for this purpose. SDRAMs use 100 MHz 
bus and FPMs 66 MHz bus. FPM DRAM is one of the oldest and 
slowest DRAM architectures available at present. Its results 
present the worst case in this sense. On the other hand, SDRAM 
presents a modern mass-production DRAM. 

The first test sequence (Dancer) contains 100 subsequent 
352x288 common intermediate format (CIF) frames.  Encoding 
this, using the full-search [-15,15] motion estimation algorithm, 
produces 137783032 external eight bits wide memory accesses. 
69410016 memory references were generated when using 16 bits 
wide words. The other sequence (Claire) contains 100 
subsequent 176x144 quarter CIF (QCIF) frames. This sequence 
lead to 33006600 references with eight bits wide words and 
16679920 references with 16 bits wide words (full-search [-
15,15] motion estimation algorithm). Also the three-step [-7,7] 
motion estimation algorithm was tested. In this case, the Dancer 
sequence lead to 91491320 (8-bit) and 46366580 (16-bit) 
external memory references. On the other hand, encoding Claire 
lead to 22412808 (8-bit) and 11383644 (16-bit) DRAM 
references. A new search-area was loaded for each macroblock. 
This causes loading a lot of the same data. Optimizing this could 
lead to significant savings in memory references.     

Figures 3 and 4 coarsely show the results obtained by 
simulating the DRAM accesses. If the desired frame rate is 30 
fps, the maximum time for the accesses is 3.33 s, because there 
are 100 frames to be encoded. This is provided that the DMA is 
able to operate totally concurrently with the other tasks. 
According to our study, this is a relevant presumption. An 
example of simulations verifying this is shown in Figure 5. First 
ten frames of the Claire sequence were encoded using the three-
step algorithm. In this case, the number of the SIMD processors 
was assumed to be four. With a 100 MHz clock frequency, they 
seem to be able to code more than 30 QCIF frames per second. 
Clock cycles for the parallel functions were obtained with a 
DSP’s instruction set simulator. Assembler code was compiled 
from our C-model and partly hand-optimized. Since the 
simulator does not support simulating of parallel cores, we 
verified the functionality of the code for a single DSP core and 
scaled the cycle counts of parallel functions for different number 
of processors. The scaling factors were obtained from the 
different simulations of the parametrizable (according to the 
number of processors) hand written assembler codes.     

As one can see, the performance of SDRAM is adequate in 
all of the simulated cases. It can be used with an eight bits wide 
data bus. Then, in the worst case, the DRAM accesses take about 
half of the maximum allowed time. Also a lower frequency can 
be considered to raise the bus utilization and decrease the power 

consumption. Instead, FPM DRAM seems to be too slow in some 
cases. The time consumed for the DRAM accesses by this 
architecture using full search [-15,15] is about double to what is 
allowed. This architecture could be suitable with a 16 bits wide 
data bus, especially with the three-step [-7,7] algorithm. The 
larger search area used with the full-search algorithm causes 
more memory traffic. Therefore, the memory bandwidth 
requirement with it is higher. 

The SDRAM architecture has much better performance than 
FPM in this application. Modern DRAMs indeed achieve much 
better bandwidth than their older counterparts with this kind of 
application (a lot of regular accesses). The performance of the 
external memory depends mostly on the bandwidth. The 
somewhat poor latency of the new architectures is not a problem. 
One should also notice how well the wider data bus could be 
exploited. The total DRAM time almost halved with the 16 bits 
wide data bus. Again, this happens due to the regular accesses to 
large areas in the memory space. 

5. CONCLUSIONS 
The performance of modern DRAMs is sensitive to the memory 
trace. Therefore, it is important to test their performance in the 
application before the implementation. The memory simulator 
method described here proved to be very useful. We could make 
sure that the required performance for the external memory 
devices is not too high in general. Moreover, it makes it easy to 
select the most suitable DRAM architecture and configuration. 
However, although the simulator can be considered very fast, the 
simulation time is an order of an hour with traces containing over 
hundred million accesses. This limits experiments slightly. It 
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Figure 4: Total DRAM time when encoding 100 frames with 
full-search motion estimation algorithm 

Encoding 100 frames (three-step [-7,7])
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Figure 3: Total DRAM time when encoding 100 frames with 
three-step motion estimation algorithm  



may be a good idea to make a lot of trials with shorter traces. 
Then, select the most suitable ones and simulate them with 
longer traces. 

 We discovered that modern DRAMs perform very well in 
this kind of application that contains a lot of regular accesses to 
somewhat large memory area. Here the relatively long time to 
start a burst does not have very notable effect on the total 
performance of the memory system. 

We have presented a video DSP architecture and verified that 
its performance is adequate for H.263 video encoding with 30 
QCIF frames per second. The verification is based on models of 
parallel processing, sequential processing, and DRAMs. The 
models allow performance evaluation in an early design phase. 
This way it is possible to make sure that the architecture is 
suitable before the implementation. 
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Parallel ME function in inter  
coding and A, B  DMA operations 

Parallel Mode function in inter  
coding and  C  DMA operation 

D, E  DMA operations and corresponding in 
inter coding parallel functions 

Figure 5. An example of simulations results for parallel functions and DMA operations. Ten frames from the beginning of sequence 
Claire were coded (results for first intra are not shown). In figures  curve 0. corresponds parallel function(s) and other curves DMA 
operations with different DRAM memory types ; 1. FPM - 8 b , 2. FPM - 16 b, 3. SDRAM - 8 b, and 4. SDRAM - 16 b.  


