
VERIFYING EXTERNAL DATA MEMORY INTERFACE
FOR H.263 VIDEO DSP WITH MEMORY SIMULATOR

J. Alakarhu, J. Niittylahti, T. Sihvo and J. Tanskanen

Digital and Computer Systems, Tampere University of Technology
P. O. Box 553, Tampere, FINLAND

{juha.alakarhu, jarkko.niittylahti, tero.sihvo, jarno.tanskanen}@tut.fi

ABSTRACT
In this paper, we present the simulator-based method to estimate
the time required by the external data memory accesses in the
H.263 video encoding. Different frame rates and picture
resolutions are considered. The Video DSP structure considered
here consists of several parallel on-chip DSP units and it is
optimized for the H.263 video encoding. Execution time is
coarsely divided between control/non-sequential processing,
parallel processing, and external data memory traffic. To
evaluate the performance in early design phase, one must find
out the time required by each part. The memory simulator
method described here gives an estimate of the time required by
the external memory accesses. With this estimate, one can also
make sure that the proposed partitioning between internal and
external data memories is correct and the required memory
bandwidth for the external data memory is not too high.

1. INTRODUCTION
Since video processing requires huge processing power and
evolving video coding standards have a need for more flexible
architecture, programmable on-chip parallel processor
architectures [1] are a very attractive solution. Fortunately, many
parts of the video coding algorithms can be easily processed in
parallel. E.g., the operations of the hybrid coding scheme (like
H.263) can be divided into low level tasks, medium level tasks,
and control operations [2]. The low-level tasks are
computationally intensive, regular operations with data-
independent function [3], thus lending themselves to the single
instruction multiple data (SIMD) type of parallel processing. The
low-level tasks have completely regular data and control flow,
but they require more than 85% of the overall computational rate
of the hybrid coding scheme [4]. Since the data flow is
predictable in video processing, low memory hierarchy can be
used [5]. To provide the high memory bandwidth required by the
parallel processors, parallel memory modules are usually used
[6-10]. A single frame to be processed may not fit into the fast
internal memory. Thus, a larger and slower external, frame
buffer is needed. The division between internal and external data
memories should be done properly, so that the required
bandwidth between them is realizable.

By using a high-level software model of the system we can
achieve a proposal of the division. After that, using a memory
simulator, we can verify that this division is fast enough. The
simulation-based method presented in this paper makes it
possible to do the division in early design phase before actual
implementation. The method is very quick, no clock cycle
accurate VHDL or Verilog models are needed. The simulator

also helps to select an optimal DRAM device for the external
memory.

2. SYSTEM ARCHITECTURE
We use a small, low-power, fixed point DSP core with 16-bit
data path as a building block of the system. Programmable
processor cores and the parallel memory establish the scalable
macroblock coding engine. Programmability makes it possible to
execute also other video coding applications than just H.263
encoding considered here. In the design phase, the number of the
cores (here 1, 2, 4 or 8) used for the SIMD processing can be
selected according to the required processing power, making the
architecture scalable. Using simple similar cores (instead of
dedicated HW-blocks) according to predefined system concept
may speed up the designing for different kind of video coding
applications.

 A block diagram of the proposed video DSP architecture is
shown in Figure 1. The architecture consists of n SIMD type
parallel processors, a control processor, a direct memory access
(DMA) controller, internal parallel data memory with m
memory modules, and external data memory or frame buffer. In
the following, only data memory is considered. The DMA
controller operates between the external memory and the internal
parallel memory. The DMA also loads the video sequence to be
encoded to the external memory. The input sequence is read to
the external memory macroblock by macroblock basis. The
encoded bitstream is not stored in the external memory. The
internal address space of the parallel memory is divided into
three areas for different coding purposes [10]. It is assumed that

Figure 1: The proposed video DSP architecture.

Parallel
program

PE0

PE1

PEn

.

.

.
.
.
.

DMA

MO

M1

M2

Mm

Control
program

External
memory
(DRAM)

Parallel
DMA
MUX

Addr.
calcu-
lation
 &
Cross-
bar

Control bus

Data bus

Internal parallel
 memories

Control
proces.

Se
q.

 in
(to

 D
R

AM
)

En
co

de
d

bi
ts

tre
am

two of the parallel memory areas can be accessed simultaneously
to increase the internal memory bandwidth. The control
processor controls SIMD parallel processors and the DMA
controller. In addition, the control processor is assumed to be
capable performing bit-stream parsing and variable length coding
(VLC). The tasks considered for the parallel processing are the
sum of absolute difference (SAD) calculation for 1616× blocks,
the calculations for choosing the coding mode for the
macroblock, interpolation of the macroblock, SAD for 1616×
blocks in half-pixel motion estimation (where the interpolated
search-area is used), macroblock subtraction and addition,
discrete cosine transform (DCT) and its inverse (IDCT), and
clipping function (for the macroblock after motion compensation
or IDCT).

2.1 Modeling the system architecture
The encoder model used here is based on the H.263 [11] encoder
source code version 2.0 from Telenor. For simplicity, all the
optional coding modes were discarded. The code was modified
so that the tasks to be processed in parallel by the SIMD
processors were capsulated to their own functions. These
functions process only data in defined two-dimensional tables.
The tables represent internal memory areas. External memory is
modeled with a file. In our source code, DMA operations were
modeled by DMA functions, which take care of the references
between the two-dimensional tables and the reserved frame
storage file. The referred addresses from these parts of the code
were stored in to a file, which acts as the input file for the
memory simulator.

Internal parallel memory has 7168 16-bit memory locations.
The search area [-15, 15] for the motion estimation and some
macroblocks fit into the parallel memory at the same time. The
parallel memory consists of dual-port memory blocks, allowing
simultaneous DMA and parallel processing operations. The
external memory contains four frames. The frames are stored in a
row by row order starting from the upper left corner of the
picture and ending to the lower right corner. In each frame, the
luminance picture comes first and the two corresponding
chrominance pictures after that. Space is allocated for the frame
being currently processed, for the next frame to be processed, for
the previously processed frame, and for the frame being currently
reconstructed.

There were at most five different locations in encoding chain
where the transfers between the two-dimensional tables and the
frame storage file were needed:
A. storing the reconstructed macroblock to the frame storage

(384 bytes),
B. storing the macroblock to be coded to the frame storage

(384 bytes),
C. loading the chrominance blocks corresponding to the best

matching luminance block from the frame storage (we
decided to interpolate also the chrominance blocks and
needed 20010101010 =×+× bytes instead of just

1288888 =×+× bytes),
D. loading the search-area from the frame storage for the

motion estimation (the number of bytes depends on the size
and the location of the search area),

E. loading the macroblock from the frame storage for the
encoding (384 bytes).

Memory transfers are all block transfers. Items expressed
with capital letters in the list above will be referred in the rest of
this paper. In Figure 2, scheduling and overlapping according to
different dependencies of considered functions is shown. Parallel
processing is assumed to run all the time. Parallel functions are
executed sequentially and it is beneficial, if there is not much
delay between them. Thus, e.g., the listed DMA operations
should take at most the same time as scheduled for the parallel
functions.

3. MEMORY SIMULATOR
A simulator capable to evaluate the performance of dynamic
RAMs has been created. The problem with this memory type is
that its performance may vary dramatically depending on the
memory references being accessed. Therefore, simulations are
required to find out the achievable bandwidth in the application.
This kind of executable simulator does not require any external
simulator environment, needed when using, e.g., VHDL-models.
It makes it easy to test various design alternatives.

The memory simulator yields the time and the clock cycles
spent by the external memory traffic. This information
• helps to make sure in early phase of design that memory

traffic between internal and external memory is tolerable,
• helps in scheduling the external memory transfers with

processing, when also the time spent in control/sequential
processing and parallel processing is known.

There are three memory architecture families supported by
the simulator. The first one is the asynchronous DRAMs (FPM,
EDO) and the others for synchronous DRAMs (SDRAM,
SGRAM, DDR-SDRAM) and Rambus DRAMs (Concurrent,
Base, Direct). The simulator can be used to select the most
suitable architecture and device for the given application.
Dynamic RAMs are modeled using 15-18 parameters depending
on the architecture. The parameters assign information about the
address mapping, the cell-size, the bus, and the timing of the
DRAM device being simulated.

The simulation is based on an address trace. It is given in a
file that contains the address and direction (read or write) of each
access. Using the address trace as input for the simulation makes
the simulator very general purpose in nature for various kinds of
applications. The simulator is able to calculate the average
bandwidth, the average write and read latencies, and the total
time required to execute all the addresses.

The VHDL and Verilog models provided by DRAM
manufacturers were used to verify the accuracy of the simulator.

Figure 2: The scheduling of functions for intra / inter MB coding.
Capital letters in DMA row refer to the list mentioned.

We found that the error is a few percents at maximum. This is
satisfactory for this purpose.

4. SIMULATION RESULTS
Two test sequences were encoded to estimate the time consumed
by the external memory. We used the memory simulator to
evaluate the performance with Micron MT48LC8M8A2-8E
SDRAM [15] and Micron MT4LC8M8E1_8M-6 FPM DRAM
[14], which have an eight bits wide external data bus. Moreover,
a memory interface with a 16 bits wide interface has been
examined. MT4LC1M16E5_1Mx16-7 SDRAM [13] and
MT4LC1M16C3_1Megx16-7 FPM [12] from the same
manufacturer were used for this purpose. SDRAMs use 100 MHz
bus and FPMs 66 MHz bus. FPM DRAM is one of the oldest and
slowest DRAM architectures available at present. Its results
present the worst case in this sense. On the other hand, SDRAM
presents a modern mass-production DRAM.

The first test sequence (Dancer) contains 100 subsequent
352x288 common intermediate format (CIF) frames. Encoding
this, using the full-search [-15,15] motion estimation algorithm,
produces 137783032 external eight bits wide memory accesses.
69410016 memory references were generated when using 16 bits
wide words. The other sequence (Claire) contains 100
subsequent 176x144 quarter CIF (QCIF) frames. This sequence
lead to 33006600 references with eight bits wide words and
16679920 references with 16 bits wide words (full-search [-
15,15] motion estimation algorithm). Also the three-step [-7,7]
motion estimation algorithm was tested. In this case, the Dancer
sequence lead to 91491320 (8-bit) and 46366580 (16-bit)
external memory references. On the other hand, encoding Claire
lead to 22412808 (8-bit) and 11383644 (16-bit) DRAM
references. A new search-area was loaded for each macroblock.
This causes loading a lot of the same data. Optimizing this could
lead to significant savings in memory references.

Figures 3 and 4 coarsely show the results obtained by
simulating the DRAM accesses. If the desired frame rate is 30
fps, the maximum time for the accesses is 3.33 s, because there
are 100 frames to be encoded. This is provided that the DMA is
able to operate totally concurrently with the other tasks.
According to our study, this is a relevant presumption. An
example of simulations verifying this is shown in Figure 5. First
ten frames of the Claire sequence were encoded using the three-
step algorithm. In this case, the number of the SIMD processors
was assumed to be four. With a 100 MHz clock frequency, they
seem to be able to code more than 30 QCIF frames per second.
Clock cycles for the parallel functions were obtained with a
DSP’s instruction set simulator. Assembler code was compiled
from our C-model and partly hand-optimized. Since the
simulator does not support simulating of parallel cores, we
verified the functionality of the code for a single DSP core and
scaled the cycle counts of parallel functions for different number
of processors. The scaling factors were obtained from the
different simulations of the parametrizable (according to the
number of processors) hand written assembler codes.

As one can see, the performance of SDRAM is adequate in
all of the simulated cases. It can be used with an eight bits wide
data bus. Then, in the worst case, the DRAM accesses take about
half of the maximum allowed time. Also a lower frequency can
be considered to raise the bus utilization and decrease the power

consumption. Instead, FPM DRAM seems to be too slow in some
cases. The time consumed for the DRAM accesses by this
architecture using full search [-15,15] is about double to what is
allowed. This architecture could be suitable with a 16 bits wide
data bus, especially with the three-step [-7,7] algorithm. The
larger search area used with the full-search algorithm causes
more memory traffic. Therefore, the memory bandwidth
requirement with it is higher.

The SDRAM architecture has much better performance than
FPM in this application. Modern DRAMs indeed achieve much
better bandwidth than their older counterparts with this kind of
application (a lot of regular accesses). The performance of the
external memory depends mostly on the bandwidth. The
somewhat poor latency of the new architectures is not a problem.
One should also notice how well the wider data bus could be
exploited. The total DRAM time almost halved with the 16 bits
wide data bus. Again, this happens due to the regular accesses to
large areas in the memory space.

5. CONCLUSIONS
The performance of modern DRAMs is sensitive to the memory
trace. Therefore, it is important to test their performance in the
application before the implementation. The memory simulator
method described here proved to be very useful. We could make
sure that the required performance for the external memory
devices is not too high in general. Moreover, it makes it easy to
select the most suitable DRAM architecture and configuration.
However, although the simulator can be considered very fast, the
simulation time is an order of an hour with traces containing over
hundred million accesses. This limits experiments slightly. It

Encoding 100 frames (full-search [-15,15])

0
2
4
6
8

C
la

-
8b C
la

-
16

b

D
an

-
8b D
an

-
16

bTo
ta

l D
R

AM
 ti

m
e

(s
)

SDRAM
FPM

Figure 4: Total DRAM time when encoding 100 frames with
full-search motion estimation algorithm

Encoding 100 frames (three-step [-7,7])

0
1
2
3
4
5

C
la

-
8b C
la

-
16

b

D
an

-
8b D
an

-
16

bTo
ta

l D
R

AM
 ti

m
e

(s
)

SDRAM
FPM

Figure 3: Total DRAM time when encoding 100 frames with
three-step motion estimation algorithm

may be a good idea to make a lot of trials with shorter traces.
Then, select the most suitable ones and simulate them with
longer traces.

 We discovered that modern DRAMs perform very well in
this kind of application that contains a lot of regular accesses to
somewhat large memory area. Here the relatively long time to
start a burst does not have very notable effect on the total
performance of the memory system.

We have presented a video DSP architecture and verified that
its performance is adequate for H.263 video encoding with 30
QCIF frames per second. The verification is based on models of
parallel processing, sequential processing, and DRAMs. The
models allow performance evaluation in an early design phase.
This way it is possible to make sure that the architecture is
suitable before the implementation.

ACKNOWLEDGEMENTS
We would like to thank VLSI-Solution for their co-operation and
support.

REFERENCES
[1] K. K. Parhi and T. Nishitani, editors, Digital Signal

Processing for Multimedia Systems, Signal Processing
Series. Marcel Dekker, Inc., New York, Basel, U.S.A.,
1999.

[2] K. Gaedke, H. Jeschke, and P. Pirsch, “A VLSI based
MIMD architecture of a multiprocessor system for real-time
video processing applications,” Journal of VLSI Signal
Processing, vol. 5, nos. 2/3, pp. 159-169, April 1993.

[3] S. Y. Kung and Y.-K. Chen, “On architectural styles for
multimedia signal processors,” in Proc. 1st IEEE Workshop
on Multimedia Signal Processing, Princeton, NJ, U.S.A.,
June 1997, pp. 427-432.

[4] P. Pirsch and T. Wehberg, “VLSI architecture of a
programmable real-time video signal processor,” in Proc. of
SPIE Conf. Digital Image Processing and Visual
Communication Technologies in the Earth and Atmospheric
Sciences, SPIE vol. 1301, 1990, pp. 2-12.

[5] S. Dutta, W. Wolf, and A. Wolfe, “A Methodology to
Evaluate Memory Architecture Design Tradeoffs for Video
Signal Processors,” IEEE Trans. Circuits Syst. Video
Technol., vol. 8, no. 1, pp. 36-53, Feb. 1998.

[6] K. Rönner and J. Kneip, “Architecture and applications of
the HiPAR video signal processor,” IEEE Trans. on
Circuits Syst. Video Technol., vol. 6, no. 1, pp. 56-66, Feb.
1996.

[7] J. Kneip, K. Rönner, and P. Pirsch, “A data path array with
shared memory as core of a high performance DSP,” in
Proc. Int. Conf. Applicat. Specific Array Processors, San
Francisco, U.S.A., Aug. 1994, pp. 271-282.

[8] H. Yamauchi, Y. Tashiro, T. Minami, and Y. Suzuki,
“Architecture and implementation of a highly parallel
single-chip video DSP,” IEEE Trans. on Circuits Syst.
Video Technol., vol. 2, no. 2, pp. 207-220, June 1992.

[9] M. Gössel, B. Rebel, and R. Creutzburg, Memory
Architecture & Parallel Access, Elsevier, Amsterdam, 1994.

[10] J. Tanskanen and J. Niittylahti, "Parallel Memories in Video
Encoding," in Proc. 1999 IEEE Data Compression
Conference, Snowbird, Utah, U.S.A., pp. 552, March, 1999.

[11] Draft ITU-T Recommendation H.263. Line transmissions of
non-telephone signals. Video coding for low bitrate
communication, May 1996.

[12] Micron, Inc., 1 MEG x 16 FPM DRAM, Datasheet, 1999.
[13] Micron, Inc., 1 MEG x 16 SDRAM, Datasheet, 1999.
[14] Micron, Inc., 8 MEG x 8 FPM DRAM, Datasheet, 1999.
[15] Micron, Inc., 64 Mb: x4, x8, x16 SDRAM, Datasheet, 1999.

Parallel ME function in inter
coding and A, B DMA operations

Parallel Mode function in inter
coding and C DMA operation

D, E DMA operations and corresponding in
inter coding parallel functions

Figure 5. An example of simulations results for parallel functions and DMA operations. Ten frames from the beginning of sequence
Claire were coded (results for first intra are not shown). In figures curve 0. corresponds parallel function(s) and other curves DMA
operations with different DRAM memory types ; 1. FPM - 8 b , 2. FPM - 16 b, 3. SDRAM - 8 b, and 4. SDRAM - 16 b.

