Working paper Open Access

Exact derivation of Kirchhoff's integral theorem and diffraction formula using high-school math

Putland, Gavin Richard


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3745897</identifier>
  <creators>
    <creator>
      <creatorName>Putland, Gavin Richard</creatorName>
      <givenName>Gavin Richard</givenName>
      <familyName>Putland</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4757-6341</nameIdentifier>
    </creator>
  </creators>
  <titles>
    <title>Exact derivation of Kirchhoff's integral theorem and diffraction formula using high-school math</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>wave optics, diffraction, obliquity factor, inclination factor, spatiotemporal dipoles, Huygens' principle, Huygens-Fresnel, Huygens-Kirchhoff, Fresnel-Kirchhoff, Helmholtz-Kirchhoff, saltus problem, Maggi-Rubinowicz, Poisson's spot, Arago's spot</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-04-09</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Working paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3745897</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3659325</relatedIdentifier>
  </relatedIdentifiers>
  <version>4</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;A theory of diffraction is developed from three premises: causality (including the assumption that the wave function had a beginning), superposition, and the form of the wave function due to a monopole source. It is shown that the wave function in a region &lt;em&gt;R&lt;/em&gt;, due to sources outside &lt;em&gt;R&lt;/em&gt; (that is, in &lt;em&gt;R&amp;#39;&lt;/em&gt;), is identical to that due to a distribution of spatiotemporal dipole (STD) sources on the surface &lt;em&gt;S&lt;/em&gt; separating &lt;em&gt;R&amp;#39;&lt;/em&gt; and &lt;em&gt;R&lt;/em&gt;, facing &lt;em&gt;R&lt;/em&gt;, with a strength density given by the original wave function on &lt;em&gt;S&lt;/em&gt; (divided by 4&lt;em&gt;&amp;pi;&lt;/em&gt;, under the adopted definition of strength). The Kirchhoff integral theorem and consequent diffraction formulae are obtained by superposing the elemental wave functions due to the sources on &lt;em&gt;S&lt;/em&gt;. Whereas D.A.B. Miller (1991) justified the STDs by comparison with Kirchhoff&amp;#39;s integral, I derive the integral (with a near-primary-source correction to Miller&amp;#39;s form) solely from the STDs. Diffraction by an aperture in an opaque screen is modeled by assuming that we retain only the sources on that part of &lt;em&gt;S&lt;/em&gt; which spans the aperture. This assumption avoids the notorious inconsistency in Kirchhoff&amp;#39;s boundary conditions (1882), but gives the same diffraction integral. It also yields the consistent saltus conditions of Kottler (1923) and a more direct saltus description of the aperture, giving the same solution in &lt;em&gt;R&lt;/em&gt;. Finally, the diffraction integral for a monopole primary source is transformed to a geometrical-optics term plus an integral along the edge of the aperture, and applied to the Poisson-Arago spot. The transformation (due to Maggi and Rubinowicz) is first derived from a far-field/short-wavelength assumption, but later re-derived exactly for general time-dependence, and shown to be a valid approximation for a weakly directional primary source.&lt;/p&gt;</description>
  </descriptions>
</resource>
1,482
1,523
views
downloads
All versions This version
Views 1,482873
Downloads 1,523498
Data volume 681.4 MB263.8 MB
Unique views 1,330816
Unique downloads 1,388453

Share

Cite as