Journal article Open Access

Double-heterodyne probing for ultra-stable laser based on spectral hole burning in a rare-earth doped crystal

Galland, N.; Lučić, N.; Zhang, S.; Alvarez-Martinez, H.; Le Targat, R.; Ferrier, A.; Goldner, P.; Fang, B.; Seidelin, S.; Le Coq, Y.

We present an experimental technique for realizing a specific absorption spectral pattern in a rare-earth-doped crystal at cryogenic temperatures. This pattern is subsequently probed on two spectral channels simultaneously, thereby producing an error signal allowing frequency locking of a laser on the said spectral pattern. Appropriate combination of the two channels leads to a substantial reduction of the detection noise, paving the way to realizing an ultra-stable laser for which the detection noise can be made arbitrarily low when using multiple channels. We use such technique to realize a laser with a frequency instability of 1.7 × 10−15 at 1 second, not limited by the detection noise but by environmental perturbation of the crystal. This is comparable with the lowest instability demonstrated at 1 second to date for rare-earth doped crystal stabilized lasers.

Files (611.9 kB)
Name Size
OL.pdf
md5:3bd0f730318216aa9bb3458f4fc7eeb7
611.9 kB Download
55
26
views
downloads
Views 55
Downloads 26
Data volume 15.9 MB
Unique views 52
Unique downloads 26

Share

Cite as