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ABSTRACT

The paper introduces new subspace based frequency es-
timation methods. The techniques are based on es-
timating the noise or signal subspace from the sam-
ple spatial sign autocovariance matrix. The theo-
retical motivation for the techniques is shown under
the white Gaussian noise assumption. A simulation
study is performed to demonstrate the robust per-
formance of the algorithms both in Gaussian and
non-Gaussian noise. The results imply that when
the noise is Gaussian, the proposed methods have
similar good performance as the standard subspace
methods (MUSIC, ESPRIT). When the noise is
heavy-tailed, the proposed methods outperform the
standard subspace techniques.

1 INTRODUCTION

Many subspace methods for frequency estimation have
been developed in the signal processing research com-
munity (see e.g., [1]). Most of these techniques employ
the autocovariance matrix of the assumed signal model
and in particular its eigendecomposition, in �nding the
frequencies. In the algorithms, the autocovariance ma-
trix is estimated using the sample autocovariance ma-
trix. The sample autocovariance matrix is an accurate
estimator if the noise is assumed to be white Gaussian
distributed.
A drastic degradation in performance is experienced

when the noise is non-Gaussian. It is well known that
in non-Gaussian noise, the sample autocovariance ma-
trix may give strongly misleading estimation results.
The perturbations caused by such noise may change the
eigenvalue spectrum and the directions of the eigenvec-
tors signi�cantly.
This paper introduces new robust subspace frequen-

cy estimation methods. These methods are highly
eÆcient, i.e., they have almost optimal performance at
nominal conditions (Gaussian noise). Moreover, they
work reliably in wide range of di�erent noise conditions
including the case of heavy-tailed noise where the second
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order moments do not exist. The proposed techniques
stem from multivariate nonparametric statistics.

The paper is organized as follows. In section 2, we
de�ne the theoretical concepts from multivariate non-
parametric statistics needed in the paper. The signal
model and the theoretical basis for subspace algorithms
are introduced in section 3. New algorithms for fre-
quency estimation are proposed in section 4 and section
5 deals with the estimation of the number of complex
exponentials. The simulation results are given in section
6. Finally, section 7 concludes the paper.

2 SPATIAL SIGN AUTOCOVARIANCE MA-

TRIX

We begin with some de�nitions. For a complex M � 1
vector y; the spatial sign function S is de�ned as

S(y) =

�
y

jjyjj ; y 6= 0

0; y = 0;

where jjyjj = (yHy)1=2. For a time series x1; : : : ; xN ,
the sample spatial Sign Autocovariance Matrix (SAM)
of size M �M is

RS =
1

N �M + 1

N�M+1X
i=1

S(zi)S
H (zi); (1)

where

zi = [xi; : : : ; xi+M�1]
T ; i = 1; : : : ; N �M + 1:

Note that the usual estimate for the M �M autoco-
variance matrix is the sample covariance matrix of the
zis.

3 SUBSPACE FREQUENCY ESTIMATION

In this paper we deal with the following complex expo-
nentials in white noise model:

x(n) =

pX
i=1

Aie
jn!i + v(n); (2)



where !i, i = 1; : : : ; p, are the frequencies (!l 6= !k for
k 6= l) and v(n) is the complex valued circular white
noise. The complex amplitudes Ai are given by

Ai = jAijej�i ;
where �i is the phase.
Let z(k) = [x(k); : : : ; x(k +M � 1)]T ; M > p, a =

[A1; : : : ; Ap]
T and v(k) = [v(k); : : : ; v(k+M � 1)]T : We

can now write

z(k) = BD(k)a+ v(k);

where

B =

2
6664

1 1 � � � 1
ej!1 ej!2 � � � ej!p

...
...

. . .
...

ej(M�1)!1 ej(M�1)!2 � � � ej(M�1)!p

3
7775

and D(k) = diag[ejk!1 ; : : : ; ejk!p ]. If the initial phases
�i are independent and uniformly distributed on [��; �],
the M �M autocovariance matrix of x(n) is

� = Efz(k)z(k)Hg = B�aB
H + �2I: (3)

where �2 is the noise variance and �a =
diagfjA1j2; : : : ; jApj2g. It then follows that the
M � p smallest eigenvalues of the matrix � are equal
to the noise variance �2 and the corresponding eigen-
vectors are orthogonal to the columns of the matrix
B. These eigenvectors span the noise subspace and the
eigenvectors corresponding to the p largest eigenvalues
span the signal subspace.
The subspace frequency estimation algorithms are

then based on the di�erent properties of these two sub-
spaces. The MUSIC algorithm, for example, uses the
orthogonality property. In this algorithm, the frequen-
cy estimates are chosen to be the p largest peaks in the
pseudospectrum

PM (!) =
1

bH(!)V̂ V̂ Hb(!)
;

where b(!) = [1; ej!; : : : ; ej(M�1)! ]T and V̂ =
[v̂p+1; : : : ; v̂M ] is the matrix of the eigenvectors corre-
sponding to theM�p smallest eigenvalues of the sample
autocovariance matrix.
We now prove, assuming Gaussian noise, that the sig-

nal and noise subspaces can be convergently estimated
using the SAM of the observations. The obtained esti-
mates for the signal and noise subspace basis vectors,
i.e. the eigenvectors of the SAM, can therefore be used
in any subspace frequency estimation method.

Theorem 1 Assume fx(1); : : : ; x(N)g (N > p) dis-
tributed as given in (2) with deterministic or stochastic
initial phases �1; :::; �p and assume the noise v(n) to be
i.i.d. Gaussian and independent of the phases. Denote
the M �M (M > p) sample SAM of the data by RS.
Then:

(i) The M�p smallest eigenvalues of EfRSg are equal
and the corresponding eigenvectors are orthogonal
to the columns of the matrix B.

(ii) As N !1,

RS � EfRSg w:p:1! 0:

Proof. See the Appendix.

The eÆciency and robust performance of the SAM
based subspace techniques, also in non-Gaussian noise,
is shown using simulations in section 6.

4 SUBSPACE ALGORITHMS

We are now ready to give two algorithms illustrating
the usage of the SAM in frequency estimation. The �rst
algorithm is a MUSIC-type noise subspace algorithm
SAM-MUSIC

1. Calculate the RS in (1) of the size M �M for the
data x1; : : : ; xN .

2. Choose the frequency estimates to be the p highest
peaks in the pseudospectrum

PS(!) =
1

bH(!)V̂S V̂ H
S b(!)

;

where V̂S is the matrix of the eigenvectors of RS

corresponding to the M � p smallest eigenvalues
and b(!) is given above.

The second algorithm is based on estimating the sig-
nal subspace from the SAM.
SAM-TLS-ESPRIT

1. Calculate the RS in (1) of the size M �M for the
data x1; : : : ; xN . Set Ŝ to be the M � p matrix
of the eigenvectors of RS corresponding to the p
largest eigenvalues.

2. Calculate the total least squares estimate �̂ for

Ŝ1�̂ � Ŝ2;

where Ŝ1 = [IM�1 0]Ŝ and Ŝ2 = [0 IM�1]Ŝ.

3. The frequency estimates are �arg(�̂k), where

�̂1; : : : ; �̂p are the eigenvalues of �̂.

5 ESTIMATING THE NUMBER OF COM-

PLEX EXPONENTIALS

If the number of the complex exponentials in (2) is not
known, it has to be estimated from the data. A popular
method for this kind of tasks is a method based on the
Minimum Description Length (MDL) principle. In the
MDL based approach, the estimate for the number of



complex exponentials is an integer k 2 f0; 1; : : : ;M�1g
which minimizes the criterion

MDL(k) = � log

0
B@
�QM

i=k+1 �̂i

�1=(M�k)

1
M�k

PM
i=k+1 �̂i

1
CA

(M�k)N

+
1

2
k(2M � k) logN; (4)

where �̂i; i = 1; : : : ;M , are the eigenvalues of the sample
autocovariance matrix. The above criterion was intro-
duced for number of signals estimation in array signal
processing [2]. The �rst term of the criterion compares
the equality of the eigenvalues related to the noise sub-
space eigenvectors and the second term is a penalty
term.
It follows from Theorem 1 that when the noise is

Gaussian, the noise subspace eigenvalues of RS will be
equal with probability 1. Therefore, we can estimate
the number of the complex exponentials also by using
the eigenvalues of the RS and the above criterion. In
section 6, we show that this method performs reliably
in Gaussian and non-Gaussian noise.

6 SIMULATION RESULTS

In this section, we compare the behavior of the proposed
algorithms to conventional methods. The noise model
considered is the family of complex isotropic symmet-
ric �-stable (S�S) distributions [3]. The characteristic
function of S�S distribution is

�(!) = exp(�
j!j�):
The smaller the characteristic exponent � 2 [0; 2], the
heavier the tails of the density (the case � = 2 corre-
sponds to Gaussian distribution). The positive valued
scalar 
 is the dispersion of the distribution. The dis-
persion plays a role analogous to that of the variance for
second order processes.
In our simulations, we use the following signal model:

x(n) =

4X
i=1

p
50e!in+�i + v(n);

where !1 = 91=72�, !2 = 89=72�, !3 = 14=18�, !4 =
13=18� and �i, i = 1; : : : ; 4 are uniformly distributed
on [��; �]. The number of observations is N = 300 and
the size of the matrices (number of lags) used in the
algorithms is M = 30. In all experiments, the value for
the dispersion is 
 = 1.
We �rst compare the MUSIC and SAM-MUSIC al-

gorithms. Figure 1 shows �ve realizations of the pseu-
dospectrums for the cases � = 2 and � = 1. As can be
seen from this �gure, the estimation methods perform
equally in the Gaussian noise (� = 2). When the noise
is heavy-tailed (� = 1), SAM-MUSIC �nds the correct
frequency peaks reliably, whereas MUSIC often fails.
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Figure 1: Five realizations of the frequency estimation
results for �-stable noise. First column: MUSIC. Second
column: SAM-MUSIC. First row: � = 2. Second row:
� = 1. The number of observations is N = 300 and the
number of lags is M = 30.

Figure 2 shows histograms for the estimation results
obtained from 200 Monte-Carlo realizations using TLS-
ESPRIT and SAM-TLS-ESPRIT algorithms. Similarly
to the previous simulation, the performance of the two
methods is almost identical when the noise is Gaussian.
When the noise is non-Gaussian (� = 1), the SAM-TLS-
ESPRIT estimates the frequencies signi�cantly better
than the TLS-ESPRIT.
In the �nal simulation we compare the two methods

for number of complex exponentials estimation intro-
duced in section 5, when � is varied from 1 to 2. The
performance criterion is the relative proportion of cor-
rect estimation results and the number of Monte-Carlo
realizations is 500. The results are presented in Figure
3. The method based on the sample autocovariance ma-
trix performs poorly for small values of �. On the other
hand, the characteristic exponent does not seem to have
a signi�cant in
uence to the estimation method based
on the SAM.

7 CONCLUSION

In the paper we propose new subspace methods for fre-
quency estimation. The simulation results imply that
the proposed methods perform reliably regardless of the
noise distribution, whereas the conventional subspace
methods are sensitive to the deviations from Gaussian
noise. At the end, it seems worthwhile to mention that
the calculation of the SAM is straightforward and there-
fore the methods require approximately same computa-
tional load as the conventional subspace methods.
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Figure 2: Histograms of the estimation results from 200 Monte-Carlo realizations for TLS-ESPRIT and SAM-TLS-
ESPRIT algorithms. The number of observations is N = 300 and the number of lags is M = 30.
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APPENDIX: PROOF OF THEOREM 1

For proving the result we need the following Lemma:

Lemma 1 Assume x(n) = Gs(n)+v(n); n = 1; : : : ; N ,
where G is a M � p (M > p) matrix with full col-
umn rank. Moreover, assume that the deterministic
p-vectors s(1); : : : ; s(N) span a p-dimensional subspace
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Figure 3: Number of complex exponentials estimation
using MDL-criterion.

and the distribution of the M-vector v(n) is complex
spherically symmetric 8n. Then the M � p small-
est eigenvalues of EfN�1

PN
n=1 S(x(n))S

H (x(n))g are
equal and the corresponding eigenvectors are orthogonal
to the columns of the matrix G.

Proof. See [4].

We can now proceed with the proof. Assume �rst that
the initial phases are deterministic. The distribution of
the noise vector is complex Gaussian with the covari-
ance matrix �2I and therefore belongs to the family of
complex spherically symmetric distributions. To prove
the �rst part, it is therefore enough to prove that the
vectorsD(1)a; : : : ; D(p)a span a p-dimensional subspace
i.e. the matrixW = [D(1)a; : : : D(p)a] is of rank p. This
is done by writing

W =

2
64
A1e

j!1 0
. . .

0 Ape
j!p

3
75

2
6664

1 � � � ej(p�1)!1

1 � � � ej(p�1)!2

...
. . .

...

1 � � � ej(p�1)!p

3
7775

= FL:

Because LT is a p � p Vandermonde matrix it follows
that L is of rank p. By noting that F is of full rank
we get that rank of W is p. Lemma 1 now implies
that the M � p smallest eigenvalues of EfRSg are e-
qual and the corresponding eigenvectors are orthogonal
to the columns of the matrix B. The second part of the
Theorem follows from Theorem 1.8.E in [5].
The proof is completed by noting that if the initial

phases are stochastic, the results are true for every re-
alization of f�igpi=1, and therefore hold generally.


