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Abstract—Nonlinear frequency division multiplexing (NFDM)
techniques encode information in the so called nonlinear spec-
trum which is obtained from the nonlinear Fourier transform
(NFT) of a signal. NFDM techniques so far have been applied to
the nonlinear Schrödinger equation (NLSE) that models signal
propagation in a lossless fiber. Conventionally, the true lossy
NLSE is approximated by a lossless NLSE using the path-
average approach which makes the propagation model suitable
for NFDM. The error of the path-average approximation depends
strongly on signal power, bandwidth and the span length. It
can degrade the performance of NFDM systems and imposes
challenges on designing high data rate NFDM systems. Pre-
viously, we proposed the idea of using dispersion decreasing
fiber (DDF) for NFDM systems. These DDFs can be modeled
by a NLSE with varying-parameters that can be solved with a
specialized NFT without approximation errors. We have shown in
simulations that complete nonlinearity mitigation can be achieved
in lossy fibers by designing an NFDM system with DDF if a
properly adapted NFT is used. We reported performance gains
by avoiding the aforementioned path-average error in an NFDM
system by modulating the discrete part of the nonlinear spectrum.
In this paper, we extend the proposed idea to the modulation of
continuous spectrum. We compare the performance of NFDM
systems designed with dispersion decreasing fiber to that of
systems designed with a standard fiber with path-average model.
Next to the conventional path-average model, we furthermore
compare the proposed system with an optimized path-average
model in which amplifier locations can be adapted. We quantify
the improvement in the performance of NFDM systems that use
DDF through numerical simulations.

Index Terms—Fiber-optic communication, nonlinear frequency
division multiplexing, nonlinear Fourier transform, dispersion
decreasing fiber.

I. INTRODUCTION

THE ability of the nonlinear Fourier transform (NFT) to
linearise the lossless nonlinear fiber-optic channel has

attracted much research in recent years. An optical pulse
propagates through an ideal optical fiber in a complicated
manner as dispersive and nonlinear effects act simultaneously
on it. This complicated propagation translates into simple
rotations in the nonlinear spectrum [1]. As the nonlinear
spectrum evolves linearly through nonlinear lossless fiber, the
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cross-talk among the spectral components is absent. This has
led to the emergence of new types of optical fiber transmission
technologies where fiber-nonlinearity is no longer seen as
an undesired element. Because of the immunity to nonlinear
cross-talk and simple equalization, NFT based transmission
techniques are seen as interesting approach to mitigate fiber-
nonlinearity [2], [3]. The propagation of a pulse in an ideal
optical fiber is modeled by the lossless NLSE, which belongs
to a certain class of evolution equations, known as integrable
evolution equations. The property of integrabilty of the lossless
NLSE makes it exactly solvable by NFT [1]. The NFT
decomposes a signal into a nonlinear spectrum which consists
of two parts: continuous and discrete spectrum. The continuous
part consists of continuous spectral functions representing
the radiative components of the signal. The discrete part
consists of a set of isolated points called eigenvalues and
their corresponding spectral values. The discrete part repre-
sents the solitonic components of the signal. The absence of
interference between these nonlinear spectral components (in
an ideal fiber) encourages the idea of encoding information on
them and new transmission techniques were proposed known
as nonlinear frequency division multiplexing (NFDM) [3].
NFDM systems face several challenges such as complicated
noise statistics [4], [5], numerical complexity, and the lack
of general efficient optical methods to (de-)multiplex several
users in the nonlinear frequency domain [6], [7]. Another,
fundamental issue is the loss in optical fibers. The fiber-loss
breaks the integrability property of NLSE and hence, the NFT
is not exactly applicable. Traditionally in NFDM systems, this
challenge is addressed with the path-average model [8], [9],
where the lossy propagation of the signal is approximated by
lossless propagation in an other fiber (with a path-averaged
nonlinear parameter). Many NFDM transmission results have
been demonstrated utilizing this model [10]–[14]. An improve-
ment in the accuracy of the path-average model was shown
by a shift in the amplifier locations in the link [15], [16].
However, the signal propagation described by the path-average
model always deviates from the actual propagation due to
the use of approximation. Perfect nonlinearity compensation
cannot be achieved even in absence of noise [11]. Further,
the approximation errors become stronger when signal power,
bandwidth and span length increase [9], [11], [16].

In order to avoid the approximation errors associated with
the path-average model, we investigated an idea from classi-
cal single soliton systems [17]. In these systems dispersion
decreasing fiber (DDF) was introduced to prevent soliton
broadening in lossy fiber [18]–[22]. These fibers are made
such that the balance between the dispersive and nonlinear
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effects is preserved along the fiber. Furthermore, it has been
shown in [23] that a DDF can be approximated efficiently
using a fiber with a stepwise dispersion profile. It was found in
the study that an n-fold stepwise dispersion profiling provides
an equivalent reduction in the errors due to the path-average
approximation as an n-fold decrease in the span length. Nev-
ertheless, if a fiber with desired dispersion decreasing profile
is designed then its propagation model is exactly integrable
and hence can be solved exactly with NFTs [24]. Thus in
an NFDM system designed with DDF, the nonlinear and
dispersive impairments in the signal introduced during the
noiseless propagation can be perfectly mitigated even though
there is fiber-loss. An NFDM transmission system designed
with DDF requires a suitably adapted NFT. We previously
demonstrated such an exact NFDM transmission over DDF
using the modulation of the discrete part of the nonlinear
spectrum [17].

In this paper, we extend our previous results when the
data is modulated on the continuous spectrum. Further, we
compliment the previous results of discrete spectrum modu-
lation by comparing the performance of an NFDM system
designed using DDF to an NFDM system designed using
constant dispersion fiber (CDF), where the parameters of the
CDF are chosen in the range of standard non-zero dispersion
shifted fiber. We furthermore include the performance of an
NFDM system designed using CDF when the location of
amplifiers are optimized in the transmission-link. The paper
is organized as follows. In Sec. II, we review the basics of
NFDM and the path-average model. In Sec. III, we discuss
the advantages of using DDF in designing NFDM system
in the presence of fiber-loss along with the corresponding
NFT. Then, in Sec. IV, we describe the simulation setups and
present results for discrete spectrum and continuous spectrum
modulation respectively. The paper is concluded in Sec. V.

II. BASICS OF NFDM

The propagation of an optical pulse Q(`, t) in an ideal
lossless single-mode fiber can be modeled by the NLSE [8,
Ch. 2.6.2]

∂Q

∂`
+ i

β2
2

∂2Q

∂t2
− iγ|Q|2Q = 0, (1)

where ` represents the propagation distance and t is retarded
time. The parameters β2 and γ are the dispersion and nonlinear
parameters respectively. Here, we consider the anomalous
dispersion case β2 < 0. The above equation is integrable and
can be solved exactly by NFTs. By a change of variables,

u =
Q√
P
, z =

`

LD
, τ =

t

T0
,

where LD =
T 2
o

|β2| , P = 1
γLD

and T0 is a free parameter,
(1) can be transformed into the normalized form

∂u

∂z
− i1

2

∂2u

∂τ2
− i|u|2u = 0, u = u(z, τ). (2)

The NFT of a vanishing signal u(z, τ) with respect to (2)
is obtained by the solution of the so-called Zakharov-Shabat

scattering problem [1]

∂

∂τ

(
ϑ1(z, τ)
ϑ2(z, τ)

)
=

(
−jλ u (z, τ)

−u∗ (z, τ) jλ

)(
ϑ1(z, τ)
ϑ2(z, τ)

)
(3)

with the boundary condition(
ϑ1(z, τ)
ϑ2(z, τ)

)
→
(

1
0

)
exp (−jλτ) for τ → −∞. (4)

The Jost scattering coefficients are defined as

a (λ, z) = lim
τ→+∞

ϑ1(z, τ) exp (jλτ) ,

b (λ, z) = lim
τ→+∞

ϑ2(z, τ) exp (−jλτ) . (5)

The NFT of u(z, τ), for fixed z, consists of two parts:
1) Continuous spectrum: For λ ∈ R, now onward denoted

by ξ, consisting of spectral functions ρc(ξ) = b(ξ)/a(ξ).
2) Discrete spectrum: For λ ∈ C+, consisting of eigenval-

ues λj and their corresponding discrete spectral values ρd,j ,(
λj , ρd,j := b(λj)/

da

dλ
(λj)

)
,

where the eigenvalues are the zeros of a(λ, z) with respect to
λ in the complex upper half-plane.

The evolution of the signal in the nonlinear Fourier domain
with respect to the standard lossless NLSE (2) is given by [1]

ρc(ξ, z) = ρc(ξ, 0)e2iξ
2z,

ρd,j(λj , z) = ρd,j(λj , 0)e2iλ
2
jz, (6)

λj(z) = λj(0).

Eq. (6) implies that the impairments due to the dispersive
and nonlinear effects acting simultaneously on a signal can
be equalized easily in the nonlinear Fourier domain. Further,
the cross-talk due to fiber-propagation is absent among the
nonlinear spectral components (6). In NFDM techniques, these
spectral components are utilized as data-carriers.

So far, we have considered a lossless fiber but real fibers
have non-negligible loss, which can be accounted in (1) by a
loss parameter α [8],

∂Q

∂`
+ i

β2
2

∂2Q

∂t2
− iγ|Q|2Q = −α

2
Q. (7)

The above equation is not integrable, hence it is not suitable
for NFDM. One way to address this issue is by using the path-
average model [9]. In the path-average model, the variation in
the signal power due to loss is transformed into variations in
the nonlinear parameter. Then, by approximating the varying
nonlinear parameter with its average value over a span, a
lossless fiber model is obtained.

NFDM techniques can be applied to the fiber model ob-
tained using the path-average approach. However, as the model
has been derived with an approximation, errors are introduced
and complete nonlinearity compensation cannot be achieved
even in absence of noise [11]. In the next section, we discuss
how by using a suitably designed fiber exact nonlinearity
compensation can be achieved even in the presence of loss,
assuming that higher order effects in the fiber such as third
order dispersion or scattering are negligible.
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III. DISPERSION DECREASING FIBER AND MODIFIED NFT

In order to preserve the integrability property in presence
of loss, a fiber can be designed with varying dispersion and/or
nonlinear parameter profile [18]. As these two parameters are
linked with the effective core radius of fiber, a fiber with a
desired profile can be manufactured practically by tapering the
optical fiber during the draw process [8, Ch. 9.3.1], [20], [21].
In this paper, we assume a simplified approximate relation
between the effective core radius r (in µm) and the dispersion
parameter β2 that was given in [18],1

r(β2) = (−β2/κ+ 20)/8, (8)

where κ = λ20/2πc × 10−6 and λ0 and c are the wavelength
and speed of light in free space respectively. The nonlinear
parameter depends on the effective core radius as follows [8,
Ch. 2.6.2]1

γ = 2n2/(λ0r
2), (9)

where n2 is the nonlinear-index coefficient. Hence, by con-
trolling the radius r, a fiber with variable dispersion param-
eter β2(`) = β2(0)D(`) and a variable nonlinear parameter
γ(`) = γ(0)R(`) can be designed. The propagation of an
optical pulse Q(`, t) in such a fiber is then given by [24]

∂Q

∂`
+ i

β2(0)D(`)

2

∂2Q

∂t2
− iγ(0)R(`)|Q|2Q = −α

2
Q. (10)

The above equation can be transformed as before, but with
LD =

T 2
o

|β2(0)| and P = 1
γ(0)LD

, into the normalized form

∂q

∂z
− iD(z)

2

∂2q

∂τ2
− iR(z)|q|2q = −αLD

2
q. (11)

It was shown in [24] that the above equation can be solved
exactly via NFT if

αLD = −R(z)D′(z)−R′(z)D(z)

R(z)D(z)
, (12)

where the prime denotes differentiation.
The NFT of q(z, τ) with respect to (11) is now defined as

the conventional NFT of the signal u(z, τ) =
√

R(z)
D(z)q(z, τ).

The reader is referred to Appendix A for a detailed description.
The evolution of the signal in the nonlinear Fourier domain
with respect to (11) is given by

ρc(ξ, z) = ρc(ξ, 0)e2iξ
2
∫ z
0
D(ζ)dζ ,

ρd,j(λj , z) = ρd,j(λj , 0)e2iλ
2
j

∫ z
0
D(ζ)dζ , (13)

λj(z) = λj(0).

The above relation enables us to recover the signal impaired
simultaneously with loss, dispersion and nonlinearity. In order
to satisfy (12), the required dispersion profile has to satisfy

β2(`)

γ(`)
= ae−α`, (14)

where a = β2(0)
γ(0) . By combining (8), (9) and (14), we arrive

at1

8r3(`)κ− 20κr2(`) +
2an2
λ0

e−α` = 0. (15)

1Equation (15) above differs slightly from the results reported in [17]
because there were typos in the equations (2), (3) and (8) of [17].
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Fig. 1: DDF parameters for a single span as used in the
simulations.

If equation (15) is written as

c3 r
3 + c2 r

2 + c1 r + c0 = 0. (16)

Then for our case (κ > 0 and a < 0), the coefficients are
real and c3 = 8κ > 0, c2 = −20κ < 0, c1 = 0, c0 =
2an2/λ0 < 0 and discriminant ∆ = 18c3c2c1c0 − 4c32c0 +
c22c

2
1 − 4c3c

3
1 − 27c23c

2
0 < 0. Thus, the equation will always

have one real root and two complex conjugate roots [25]. The
real root is positive and corresponds to the radius that satisfies
equation (15). The real-valued solution at different ` provides
us the distance dependent effective core radius. Once the radius
r(`) is known we can find β2(`) and γ(`) from (8) and (9)
respectively.

We chose realistic values of fiber parameters and controlled
the effective core radius to achieve the desired profile for
fiber-loss of 0.2 dB/km as shown in Fig. 1. The value
for the nonlinear-index coefficient n2 and λ0 was taken as
2.52×10−20 m2/W and 1.55 µm respectively. The dispersion
parameter β2 is varied from -25 ps2/km to -2.17 ps2/km,
while the nonlinear parameter is varied from 1.3 W−1km−1

to 4.4 W−1km−1. Here, the effective core radius of fiber
is decreased slowly over 80 km length so that the radiation
losses are expected to be negligible [26]. Third order dis-
persion was not implemented since realistic values around
β3 = 0.05 ps3/km are expected to be insignificant in our case
due to the high average dispersion parameter and nanosecond
pulse durations [26].
It must be noted that the integrability of the channel is still
preserved in a link designed using DDF where each span
consists of DDF followed by an noiseless amplifier with its
gain equal to span-loss. In such a link, at an amplifier not only
the gain is added, but also the fiber parameters (β2, γ) change
as a new span starts. In the normalized domain, these two
effects cancel each other and the integrability of the channel
is preserved.

IV. SIMULATION SETUP AND RESULTS

In this section, we numerically compare the performance
of NFDM systems in DDF to that in CDF. The parameters
of the DDF are shown in Fig. 1 as described earlier. Due to
the different fiber characteristics, it is not obvious how fair the
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two setups can be compared. The parameters of the CDF were
chosen in such a way that both systems have the same power,
bandwidth and time duration at the transmitter2. This requires
that the time-scale parameter T0 and power-scale parameter P ,
which scales the normalized signal before transmission should
be the same for both systems. The obtained CDF parameters
are summarized in Table I and are very close to realistic
parameters of standard non-zero dispersion shifted fibers. It
is worth mentioning that for the DDF case, the normalization
length LD is smaller and the overall dispersion and nonlin-
earity is higher. The simulations were carried out with the

TABLE I: Fiber parameters used in simulations.

Fiber type CDF DDF
α (dB/km) 0.2 0.2
β2 (ps2/km) -6.75 -25 to -2.17
γ (1/W/km) 1.3 1.3 to 4.4

open-source software environment NFDMlab [27], which uses
FNFT [28], a software library to compute NFTs and INFTs.
We compare the performance between the NFDM systems
designed with the two fibers, CDF and DDF. First we evaluate
the NFDM systems using discrete spectrum modulation and
later using continuous spectrum modulation.

1) NFDM with discrete spectrum modulation: We consid-
ered the multi-soliton transceiver presented in [12], in which
the spectral values ρd,j of seven eigenvalues λj were modu-
lated independently with QPSK. The system parameter were
kept the same as presented in [12] unless otherwise stated.
The simulation setup is shown in Fig. 2. At the transmitter,
randomly generated QPSK symbols were modulated on the
discrete spectral values of the corresponding seven eigenvalues
given in [12] and shown in Fig. 3. Then the time-domain multi-
soliton pulse was obtained with the inverse NFT (INFT) oper-
ation. The duration of the normalized multi-soliton pulse was
set to 18π in order to avoid truncation effects and pulse-overlap
during propagation. The normalized multi-soliton pulse is then
scaled using the fiber parameters and time-scale parameter T0.
T0 controls the duration of de-normalized pulse and hence
the transmit power. A train of 1023 pulses was transmitted
through the link for each evaluation. For the case of NFDM
system designed using CDF, we considered two types of link
configurations. Fig. 2(b) shows the transmission link for the
first configuration (referred as CDF–PA). In this transmission
link, each span in the link consists of 80 km fiber followed
by an Erbium-doped fiber amplifier (EDFA) to compensate
the span-loss of 16 dB. The same link configuration was
used for the NFDM system designed with DDF. The second
configuration of link, shown in Fig. 2(c), is same as the first
one except for the first and the last spans which have different
lengths (referred as CDF–PA+Amp-shift). The lengths of the
first and the last span were optimized according to the analysis
in [16]. It was shown in [16] that the approximation error of
path-average model is minimized at those optimal lengths. The

2It may be interesting to see a comparison of these systems designed in
other possible ways. In our prior work [17], a different comparison was carried
out.
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Fig. 2: Simulation setup of NFDM system with discrete
spectrum modulation.

transmit power in the second configuration refers to the power
at the amplifier outputs. The noise figure of the EDFAs was set
to 6 dB in both link configurations. The fiber propagation was
simulated using a split-step Fourier method. At the receiver
(shown in Fig. 2(d)), the signal was filtered to remove out of
band noise. After normalization, the signal was then equalized
in the nonlinear Fourier domain using (6) for CDF and (13) for
DDF. The QPSK symbols were demodulated from the spectral
values of the eigenvalues. Finally, performance is measured
in terms of the error vector magnitudes (EVMs) of received
symbols.
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noiseless transmission at 2.82 dBm transmit power (left) and
4.7 dBm transmit power (right).
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Fig. 5: Signal after 16×80 km transmission over different link-
configurations (at transmit power of 2.8 dBm). The pulses
spread more for the case of DDF, resulting into interference
among them.

Fig. 3 shows the 7-eigenvalues transmitted over noiseless
640 km link and the corresponding received eigenvalues for the
case of NFDM systems designed using DDF and CDF. We can
see that in the absence of noise the NFDM system designed
using DDF is exact and preserves the eigenvalues while there
is fluctuation in the received eigenvalues of the NFDM system
designed using CDF due to the involved path-average approx-
imation. Fig. 4 shows EVM over transmit power for 16×80
km noiseless transmission. In the low transmit power region,
the performance of the NFDM system designed using DDF is
limited only by the accuracy of the numerical approximations.
The performance of the NFDM systems designed using CDF
(the other two cases) is mainly limited by errors due to the
path-average approximation. We also observe that the NFDM
system with CDF (PA + Amp. shift) configuration performs
very close to the performance of the NFDM system designed
using DDF. However, EVM for NFDM system with CDF (PA
+ Amp. shift) configuration is rising with increase in power.
The EVM for the NFDM system designed using DDF is rising
very slowly and then there is a sudden steep rise. This steep
rise happens at higher powers (shorter pulse durations) where
pulses start to overlap for DDF case due to the following
reason.
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Fig. 6: Discrete spectrum modulation : EVM over transmit
power for different transmission distances.

Remark: The magnitude of the dispersion parameter of the
DDF (|β2(0)|) at the beginning of the span is larger than
the corresponding value of the CDF. Thus, the normalization
length (LD = T 2

0 /|β2(0)|) of the NFDM system designed
using DDF is smaller compared to the other two NFDM
systems for a given transmit power. This means that the
multi-soliton pulses transmitted over DDF evolves over a
longer normalized distance (link length/LD). This results into
the spreading of the individual pulses beyond its allocated
duration at 16×80 km as shown in Fig. 5, causing interference
with neighbouring pulses. This interference is the reason for
the degraded performance in the NFDM system designed
using DDF at higher power (smaller pulse-duration). However,
the other two NFDM systems will also face the inter-pulse
interference at longer transmission distances or higher power.

In order to visualize the error due to the path-average
approximation in presence of noise, the EVM is plotted in
terms of the transmit power for different transmission distances
in Fig. 6. For the NFDM system designed using CDF that uses
the configuration CDF–PA, the EVM initially decreases with
transmit power due to increase in effective signal to noise
power ratio (SNR). But after a threshold transmit power, the
approximation error due to the path-average model dominates
and hence, the EVM starts rising with transmit power. For
the NFDM system with CDF–PA+Amp-shift configuration, we
did not observe any rise in the EVM in the simulated power
range. The NFDM scheme that uses DDF performs slightly
better than the NFDM scheme that uses CDF–PA+Amp-
shift configuration except for the 16×80 km transmission.
For 16×80 km transmission in DDF case, the pulses start
overlapping at higher powers due to the reason explained
earlier. We observe a large gain of up to ≈ 3 dB in the
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Fig. 7: Simulation setup of NFDM system with continuous
spectrum modulation. The transmission link is the same as
described before in Fig. 2(b), (c).

EVM for 640 km transmission over DDF in comparison to the
NFDM system designed with CDF–PA configuration. We also
observe that the NFDM system designed with CDF–PA+Amp-
shift configuration performs as good as the system designed
with DDF in this example, which however has been designed
to keep the path-average approximation error small. In the next
example we observe much higher gains in the NFDM system
designed with DDF.

2) NFDM with continuous spectrum modulation: We con-
sidered the NFDM system with b-modulation presented in
[29] to modulate continuous spectrum. In b-modulation, the
information is modulated on the b-coefficient (5) instead of
spectral function ρc(ξ). One advantage of b-modulation is that
it is easier to control the signal duration using b-modulation in
comparison to spectral function ρc(ξ) modulation [29], [30].
Another advantage is that the noise impact on the b-coefficient
is less severe than the reflection coefficient [31]. The simula-
tion setup of NFDM system is shown in Fig. 7. The nonlinear
spectrum consists of nine flat-top shaped b(ξ) carriers with
carrier spacing of 15 (in the normalized NFT domain). The
average energy of each carrier is controlled by an energy
per carrier parameter Ed, which in turn controls the transmit
power. Each carrier is modulated with randomly generated
QPSK symbols. Then, the INFT operation is performed to
obtain time-domain signal with a normalized duration of 4.5.
The time-domain pulse is then de-normalized using the fiber
parameters and a time scale parameter T0 of 1.25 ns. A train
of 127 pulses is then transmitted through the link. The net data
rate and signal bandwidth were 3.2 Gb/s and approximately
40 GHz respectively. The transmission link configurations are
the same as described earlier in the case of discrete spectrum
modulation and are shown in Fig. 2(b), (c). At the receiver, the
signal is filtered and normalized. After the NFT operation the
b-coefficients are obtained, which are then equalized using (6)
for CDF and (13) for DDF. Finally, the symbols are detected
from the b(ξ) carriers and EVMs were computed for different
transmission lengths and transmit powers controlled by Ed. It
must be noted that as the magnitude of b-coefficient cannot be
greater than one, we have an upper limit on the carrier energy
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Fig. 8: Continuous spectrum modulation: EVM over transmit
power for 16×80 km noiseless transmission.
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Fig. 9: Continuous spectrum modulation : EVM over transmit
power for different transmission distances.

Ed [29], and thus on the transmit power [32]. It was shown
theoretically in [32] that the system in [29] cannot exceed a
finite power limit. Fig. 8 shows EVM over transmit power
for 16×80 km noiseless transmission. We see that EVM for
the NFDM system that uses DDF is significantly lower than
the other two NFDM systems. In all three NFDM systems,
the EVM increases with increase in transmit power. However,
the rise in the EVMs for the NFDM systems that use CDF
is steeper, which is mainly due to the errors from the path-
average approximation. The rise in EVMs for the NFDM
system designed using DDF is purely from the accuracy of
numerical approximations. At higher power, we get closer to
the aforementioned finite power limit and numerical errors
occur which is visible for the case of DDF. The b-modulator
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Fig. 10: EVMs over transmission reach at optimal transmit
powers.

is prone to breakdown in this region. Fig. 9 shows EVM over
transmit power for the case of transmission in the presence of
noise. The additive noise increases signal power slightly during
transmission. Close to the power bound, this increase in signal
power due to the noise is enough to push the received signal
outside the range of the b-modulator (in this case the energy
gets transferred into discrete spectrum that are not accounted
for in the receiver). Thus, the impact of noise becomes severe
in the higher power region when the signal approaches the
aforementioned finite power limit. This results in the rise in
the EVMs of all the considered NFDM systems in the high
power region. In Fig. 9, the errors due to the path-average
approximation are clearly visible. We can see that for 8×80 km
transmission, EVM improves with increasing transmit power
but after a threshold the EVM for CDF starts degrading, as the
path-average error increased at higher power. Further, we see
that approximation error in the path-average model is reduced
by the amplifier-shift, hence the NFDM system that uses
CDF–PA+Amp-shift configuration has better performance than
CDF–PA. The performance of DDF improves with transmit
power till -5 dBm, thereafter EVM degrades which is a result
of the b-saturation effect. A similar trend is observed for the
case of 16×80 km transmission. Fig. 10 shows the minimum
EVMs obtained at the corresponding distances for all of the
three NFDM systems. We obtained EVM gains of approx.
3.8 dB and 1.5 dB at 640 km with respect to path-average
without amplifier-shift and path-average with amplifier-shift
respectively. At 1280 km, these gains reduce to 2.5 dB and 1
dB respectively.
In this section, we compared NFDM systems in order to high-
light potential advantages of using DDF in NFDM systems.
The systems were designed to ensure the system parameters
such that the transmitter requirements (bandwidth, power
and burst duration) are identical for all three systems. Our
comparisons thus isolate and highlight the differences arising
solely from choosing DDF instead of CDF. For the chosen
system parameters, we also observe that time-spreading of
bursts is smaller for the NFDM systems designed using CDF
in comparison to the NFDM systems designed using DDF.
This difference in time-spreading comes from the fact that the
dispersion and nonlinear parameters of CDF and DDF are dif-

ferent. Thus, a smaller guard time interval could be allocated
for the NFDM systems designed using CDF, resulting in higher
spectral efficiency. A comparison between NFDM systems
designed using DDF and CDF independently optimized to
maximize performance (bit rate/spectral efficiency) would be
an interesting next step.

V. CONCLUSION

We have presented numerical results for exact NFDM trans-
mission by discrete and continuous spectrum modulation over
lossy fiber. We have shown that by using a suitably designed
fiber together with an adapted NFT, the approximation error
from the path-average model can be avoided. We applied
this approach for the case of fiber-links with EDFA based
amplification. For discrete spectrum modulation, the NFDM
system designed with DDF has EVM gains of up to 3 dB and
2 dB at 640 km and 1280 km respectively in comparison to
the NFDM system with path-average model. The EVM per-
formance of the NFDM system with path-average model and
amplifier shifts was close to performance of NFDM system
with DDF. For the continuous spectrum modulation case, by
using DDF, we obtained EVM improvements of approximately
3.8 dB and 2.5 dB for 640 km and 1280 km transmission
respectively in comparison to CDF with path-average model.
By shifting the amplifiers to optimum locations for the path-
average approximation, the gain obtained is approximately 1.5
dB and 1 dB respectively. We observed through simulations
that in the presence of fiber-loss, the NFDM systems designed
using DDF have clear performance advantage over the NFDM
systems designed using CDF for the case of discrete as well
as continuous spectrum modulation. It must be noted that
the performance-gain obtained in an NFDM system designed
with DDF depends on system design parameters. An NFDM
system which uses a path-average model will have degraded
performance at higher transmit power, bandwidth and longer
span, and hence, the gains of employing DDF increase further.

APPENDIX A
NONLINEAR FOURIER TRANSFORM FOR DDF

It was shown in [24, Sec. 3] that if (12) is satisfied, the
propagation model given by (11) can be solved with suitable
NFTs. In order to compute and evolve the NFT with respect
to (11), the following set of linear equations have to be solved
[24]

ϑτ =

 −jλ
√

R(z)
D(z)q

−
√

R(z)
D(z)q

∗ jλ

ϑ, (17)

ϑz=

(
−jD(z)λ2 + jR(z)

2 |q|
2
√
R(z)D(z)(λq + j

2qτ )√
R(z)D(z)(λq∗ + j

2q
∗
τ ) jD(z)λ2 − jR(z)|q|2

)
ϑ.

(18)
where q = q(z, τ), λ is an eigenvalue and ϑ is an eigenvector
of the eigenvalue problem (17). Here, the subscript denotes
differentiation with the corresponding variable.

From (3), (17) and [2, equation (16)], it is clear that
computing the NFT with respect to (11) is same as computing
the conventional NFT (with respect to (2)) with the potential
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q(z, τ) scaled by a factor of
√

R(z)
D(z) . The evolution of the

nonlinear spectrum is described with respect to (18). Following
[2, equation (24)], one finds that the evolution of nonlinear
spectrum is given by the rotation described in (13).
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[5] H. Bülow, V. Aref and L. Schmalen, ”Modulation on Discrete Nonlin-
ear Spectrum: Perturbation Sensitivity and Achievable Rates,” in IEEE
Photonics Technology Letters, vol. 30, no. 5, pp. 423-426, 1 March1,
2018.

[6] J. Koch, S. Li and S. Pachnicke, ”Transmission of Higher Order Solitons
Created by Optical Multiplexing,” Journal of Lightwave Technology, vol.
37, no. 3, pp. 933-941, 1 Feb.1, 2019.

[7] E. Bidaki and S. Kumar, ”Nonlinear Fourier transform using multistage
perturbation technique for fiber-optic systems,” Journal of Optical Society
of America B 35, 2286-2293 (2018)

[8] G. P. Agrawal, Fiber-Optic Communication Systems, 4th edn. John-Wiley
and sons, Inc., New York, 2010.

[9] A. Hasegawa and Y. Kodama, ”Guiding-center soliton in optical fibers,”
Opt. Lett., vol. 15, pp. 1443-1445, 1990.

[10] J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, S. K. Turitsyn,
”Nonlinear Inverse Synthesis and Eigenvalue Division Multiplexing in
Optical Fiber Channels,” Phys. Rev. Lett, 113, pp. 013901, 2014.

[11] S. T. Le, J. E. Prilepsky, S. K. Turitsyn, ”Nonlinear inverse synthesis
technique for optical links with lumped amplification,” Opt. Express, vol.
23, pp. 8317-8328, 2015.
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