Conference paper Open Access
Douthwaite, Matthew; Garcıa-Redondo, Fernando; Georgiou, Pantelis; Das, Shidhartha
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/c6810290-0a72-4f94-82e7-1adfba599dde/A_Time_Domain_Current_Mode_pre_publication.pdf" }, "checksum": "md5:9a80bc46dfc3213c64aa6dfc975ef6f7", "bucket": "c6810290-0a72-4f94-82e7-1adfba599dde", "key": "A_Time_Domain_Current_Mode_pre_publication.pdf", "type": "pdf", "size": 402918 } ], "owners": [ 81807 ], "doi": "10.1109/BIOCAS.2019.8919190", "stats": { "version_unique_downloads": 109.0, "unique_views": 39.0, "views": 40.0, "version_views": 40.0, "unique_downloads": 109.0, "version_unique_views": 39.0, "volume": 44320980.0, "version_downloads": 110.0, "downloads": 110.0, "version_volume": 44320980.0 }, "links": { "doi": "https://doi.org/10.1109/BIOCAS.2019.8919190", "latest_html": "https://zenodo.org/record/3741945", "bucket": "https://zenodo.org/api/files/c6810290-0a72-4f94-82e7-1adfba599dde", "badge": "https://zenodo.org/badge/doi/10.1109/BIOCAS.2019.8919190.svg", "html": "https://zenodo.org/record/3741945", "latest": "https://zenodo.org/api/records/3741945" }, "created": "2020-04-06T16:03:47.901270+00:00", "updated": "2020-04-06T20:20:15.147772+00:00", "conceptrecid": "3741944", "revision": 2, "id": 3741945, "metadata": { "access_right_category": "success", "doi": "10.1109/BIOCAS.2019.8919190", "description": "<p>Flexible electronics is becoming more prevalent in a wide range of applications, particularly wearable biomedical<br>\ndevices. These devices would greatly benefit from in-built intelligence allowing them to process data and identify features,<br>\nin order to reduce transmission and power requirements. In this work, we present a novel time-domain multiply-accumulate<br>\n(MAC) engine architecture that can act as the basic block of an artificial analogue neural network. The design does not require<br>\nanalogue voltage buffers, making them easier to realise in flexible technologies and consumes less power than conventional methods. The research could be used in future to construct a low power classifier for a low cost, flexible wearable biomedical sensor.</p>", "language": "eng", "title": "A Time-Domain Current-Mode MAC Engine for Analogue Neural Networks in Flexible Electronics", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3741944" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3741945" } } ] }, "grants": [ { "code": "780215", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::780215" }, "title": "Computation-in-memory architecture based on resistive devices", "acronym": "MNEMOSENE", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "Flexible Electronics", "MAC Operation", "Neural Networks", "Analogue Signal Processing", "Wearable Sensors" ], "publication_date": "2019-10-19", "creators": [ { "affiliation": "Imperial College London", "name": "Douthwaite, Matthew" }, { "affiliation": "ARM Research", "name": "Garc\u0131a-Redondo, Fernando" }, { "affiliation": "Imperial College London", "name": "Georgiou, Pantelis" }, { "affiliation": "ARM Research", "name": "Das, Shidhartha" } ], "meeting": { "acronym": "BioCAS", "dates": "17-19 October 2019", "place": "Nara, Japan", "title": "2019 IEEE Biomedical Circuits and Systems Conference" }, "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" } } }
Views | 40 |
Downloads | 110 |
Data volume | 44.3 MB |
Unique views | 39 |
Unique downloads | 109 |