Conference paper Open Access

A Time-Domain Current-Mode MAC Engine for Analogue Neural Networks in Flexible Electronics

Douthwaite, Matthew; Garcıa-Redondo, Fernando; Georgiou, Pantelis; Das, Shidhartha


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/c6810290-0a72-4f94-82e7-1adfba599dde/A_Time_Domain_Current_Mode_pre_publication.pdf"
      }, 
      "checksum": "md5:9a80bc46dfc3213c64aa6dfc975ef6f7", 
      "bucket": "c6810290-0a72-4f94-82e7-1adfba599dde", 
      "key": "A_Time_Domain_Current_Mode_pre_publication.pdf", 
      "type": "pdf", 
      "size": 402918
    }
  ], 
  "owners": [
    81807
  ], 
  "doi": "10.1109/BIOCAS.2019.8919190", 
  "stats": {
    "version_unique_downloads": 109.0, 
    "unique_views": 39.0, 
    "views": 40.0, 
    "version_views": 40.0, 
    "unique_downloads": 109.0, 
    "version_unique_views": 39.0, 
    "volume": 44320980.0, 
    "version_downloads": 110.0, 
    "downloads": 110.0, 
    "version_volume": 44320980.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/BIOCAS.2019.8919190", 
    "latest_html": "https://zenodo.org/record/3741945", 
    "bucket": "https://zenodo.org/api/files/c6810290-0a72-4f94-82e7-1adfba599dde", 
    "badge": "https://zenodo.org/badge/doi/10.1109/BIOCAS.2019.8919190.svg", 
    "html": "https://zenodo.org/record/3741945", 
    "latest": "https://zenodo.org/api/records/3741945"
  }, 
  "created": "2020-04-06T16:03:47.901270+00:00", 
  "updated": "2020-04-06T20:20:15.147772+00:00", 
  "conceptrecid": "3741944", 
  "revision": 2, 
  "id": 3741945, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1109/BIOCAS.2019.8919190", 
    "description": "<p>Flexible electronics is becoming more prevalent in a wide range of applications, particularly wearable biomedical<br>\ndevices. These devices would greatly benefit from in-built intelligence allowing them to process data and identify features,<br>\nin order to reduce transmission and power requirements. In this work, we present a novel time-domain multiply-accumulate<br>\n(MAC) engine architecture that can act as the basic block of an artificial analogue neural network. The design does not require<br>\nanalogue voltage buffers, making them easier to realise in flexible technologies and consumes less power than conventional methods. The research could be used in future to construct a low power classifier for a low cost, flexible wearable biomedical sensor.</p>", 
    "language": "eng", 
    "title": "A Time-Domain Current-Mode MAC Engine for Analogue Neural Networks in Flexible Electronics", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3741944"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3741945"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "780215", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::780215"
        }, 
        "title": "Computation-in-memory architecture based on resistive devices", 
        "acronym": "MNEMOSENE", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Flexible Electronics", 
      "MAC Operation", 
      "Neural Networks", 
      "Analogue Signal Processing", 
      "Wearable Sensors"
    ], 
    "publication_date": "2019-10-19", 
    "creators": [
      {
        "affiliation": "Imperial College London", 
        "name": "Douthwaite, Matthew"
      }, 
      {
        "affiliation": "ARM Research", 
        "name": "Garc\u0131a-Redondo, Fernando"
      }, 
      {
        "affiliation": "Imperial College London", 
        "name": "Georgiou, Pantelis"
      }, 
      {
        "affiliation": "ARM Research", 
        "name": "Das, Shidhartha"
      }
    ], 
    "meeting": {
      "acronym": "BioCAS", 
      "dates": "17-19 October 2019", 
      "place": "Nara, Japan", 
      "title": "2019 IEEE Biomedical Circuits and Systems Conference"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }
  }
}
40
110
views
downloads
Views 40
Downloads 110
Data volume 44.3 MB
Unique views 39
Unique downloads 109

Share

Cite as