Conference paper Open Access
Douthwaite, Matthew; Garcıa-Redondo, Fernando; Georgiou, Pantelis; Das, Shidhartha
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3741945</identifier> <creators> <creator> <creatorName>Douthwaite, Matthew</creatorName> <givenName>Matthew</givenName> <familyName>Douthwaite</familyName> <affiliation>Imperial College London</affiliation> </creator> <creator> <creatorName>Garcıa-Redondo, Fernando</creatorName> <givenName>Fernando</givenName> <familyName>Garcıa-Redondo</familyName> <affiliation>ARM Research</affiliation> </creator> <creator> <creatorName>Georgiou, Pantelis</creatorName> <givenName>Pantelis</givenName> <familyName>Georgiou</familyName> <affiliation>Imperial College London</affiliation> </creator> <creator> <creatorName>Das, Shidhartha</creatorName> <givenName>Shidhartha</givenName> <familyName>Das</familyName> <affiliation>ARM Research</affiliation> </creator> </creators> <titles> <title>A Time-Domain Current-Mode MAC Engine for Analogue Neural Networks in Flexible Electronics</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>Flexible Electronics</subject> <subject>MAC Operation</subject> <subject>Neural Networks</subject> <subject>Analogue Signal Processing</subject> <subject>Wearable Sensors</subject> </subjects> <dates> <date dateType="Issued">2019-10-19</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3741945</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/BIOCAS.2019.8919190</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Flexible electronics is becoming more prevalent in a wide range of applications, particularly wearable biomedical<br> devices. These devices would greatly benefit from in-built intelligence allowing them to process data and identify features,<br> in order to reduce transmission and power requirements. In this work, we present a novel time-domain multiply-accumulate<br> (MAC) engine architecture that can act as the basic block of an artificial analogue neural network. The design does not require<br> analogue voltage buffers, making them easier to realise in flexible technologies and consumes less power than conventional methods. The research could be used in future to construct a low power classifier for a low cost, flexible wearable biomedical sensor.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/780215/">780215</awardNumber> <awardTitle>Computation-in-memory architecture based on resistive devices</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 40 |
Downloads | 110 |
Data volume | 44.3 MB |
Unique views | 39 |
Unique downloads | 109 |