Conference paper Open Access
Douthwaite, Matthew; Garcıa-Redondo, Fernando; Georgiou, Pantelis; Das, Shidhartha
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://zenodo.org/record/3741945"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3741945</dct:identifier> <foaf:page rdf:resource="https://zenodo.org/record/3741945"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Douthwaite, Matthew</foaf:name> <foaf:givenName>Matthew</foaf:givenName> <foaf:familyName>Douthwaite</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Imperial College London</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Garcıa-Redondo, Fernando</foaf:name> <foaf:givenName>Fernando</foaf:givenName> <foaf:familyName>Garcıa-Redondo</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>ARM Research</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Georgiou, Pantelis</foaf:name> <foaf:givenName>Pantelis</foaf:givenName> <foaf:familyName>Georgiou</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Imperial College London</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Das, Shidhartha</foaf:name> <foaf:givenName>Shidhartha</foaf:givenName> <foaf:familyName>Das</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>ARM Research</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>A Time-Domain Current-Mode MAC Engine for Analogue Neural Networks in Flexible Electronics</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued> <dcat:keyword>Flexible Electronics</dcat:keyword> <dcat:keyword>MAC Operation</dcat:keyword> <dcat:keyword>Neural Networks</dcat:keyword> <dcat:keyword>Analogue Signal Processing</dcat:keyword> <dcat:keyword>Wearable Sensors</dcat:keyword> <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/780215/"/> <schema:funder> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier> <foaf:name>European Commission</foaf:name> </foaf:Organization> </schema:funder> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-10-19</dct:issued> <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/> <owl:sameAs rdf:resource="https://zenodo.org/record/3741945"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3741945</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <owl:sameAs rdf:resource="https://doi.org/10.1109/BIOCAS.2019.8919190"/> <dct:description><p>Flexible electronics is becoming more prevalent in a wide range of applications, particularly wearable biomedical<br> devices. These devices would greatly benefit from in-built intelligence allowing them to process data and identify features,<br> in order to reduce transmission and power requirements. In this work, we present a novel time-domain multiply-accumulate<br> (MAC) engine architecture that can act as the basic block of an artificial analogue neural network. The design does not require<br> analogue voltage buffers, making them easier to realise in flexible technologies and consumes less power than conventional methods. The research could be used in future to construct a low power classifier for a low cost, flexible wearable biomedical sensor.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.1109/BIOCAS.2019.8919190"/> <dcat:byteSize>402918</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/3741945/files/A_Time_Domain_Current_Mode_pre_publication.pdf"/> <dcat:mediaType>application/pdf</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/780215/"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">780215</dct:identifier> <dct:title>Computation-in-memory architecture based on resistive devices</dct:title> <frapo:isAwardedBy> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier> <foaf:name>European Commission</foaf:name> </foaf:Organization> </frapo:isAwardedBy> </foaf:Project> </rdf:RDF>
Views | 40 |
Downloads | 112 |
Data volume | 45.1 MB |
Unique views | 39 |
Unique downloads | 111 |