Conference paper Open Access

Self-Restoring Video User Experience in 5G Networks Based on a Cognitive Network Management Framework

Pablo Salva-Garcia; Jose M. Alcaraz-Calero; Qi Wang; Maria Barros; Anastasius Gavras


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3741342">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3741342</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3741342"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Pablo Salva-Garcia</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of the West of Scotland</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Jose M. Alcaraz-Calero</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of the West of Scotland</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Qi Wang</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of the West of Scotland</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Maria Barros</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Eurescom GmbH</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Anastasius Gavras</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Eurescom GmbH</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Self-Restoring Video User Experience in 5G Networks Based on a Cognitive Network Management Framework</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dcat:keyword>5G; Artificial Intelligence; Video.</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/761913/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-04-06</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3741342"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3741342</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3741341"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/5g-ppp"/>
    <dct:description>&lt;p&gt;Video applications such as streaming are expected to dominate the traffic of the incoming Fifth generation (5G) networks. It is essential for 5G service video providers and/or network operators to provide assurances for both the overall status of the network and the quality of their video transmissions in order to meet the final users&amp;rsquo; expectations. In this contribution, we propose a video optimisation scheme which is implemented as a Virtualised Network Function (VNF), which in turn, facilitates its on-demand deployment in a flexible way&lt;br&gt; in response to an intelligent analysis of the current network traffic conditions. We leverage a cognitive network management framework to analyse both network status metrics and video stream requirements to evaluate if any optimisation action is required. The testing and evaluation focus on the functional tests and scalability evaluation of the proposed scheme. Moreover, the bandwidth saving is assessed to demonstrate the significant benefit in traffic reduction for a 5G system that adopts the proposed approach.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3741342">https://doi.org/10.5281/zenodo.3741342</dcat:accessURL>
        <dcat:byteSize>380849</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3741342/files/Self-Restoring Video User Experience in 5G Networks Based on a Cognitive Network Management Framework.pdf">https://zenodo.org/record/3741342/files/Self-Restoring Video User Experience in 5G Networks Based on a Cognitive Network Management Framework.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/761913/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">761913</dct:identifier>
    <dct:title>End-to-End Cognitive Network Slicing and Slice Management Framework in Virtualised Multi-Domain, Multi-Tenant 5G Networks</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
56
36
views
downloads
All versions This version
Views 5656
Downloads 3636
Data volume 13.7 MB13.7 MB
Unique views 4747
Unique downloads 2929

Share

Cite as