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Abstract

GitHub projects can be easily replicated through the site’s fork
process or through a Git clone-push sequence. This is a problem for
empirical software engineering, because it can lead to skewed results or
mistrained machine learning models. We provide a dataset of 10.6 mil-
lion GitHub projects that are copies of others, and link each record with
the project’s ultimate parent. The ultimate parents were derived from
a ranking along six metrics. The related projects were calculated as
the connected components of an 18.2 million node and 12 million edge
denoised graph created by directing edges to ultimate parents. The
graph was created by filtering out more than 30 hand-picked and 2.3
million pattern-matched clumping projects. Projects that introduced
unwanted clumping were identified by repeatedly visualizing shortest
path distances between unrelated important projects. Our dataset
identified 30 thousand duplicate projects in an existing popular ref-
erence dataset of 1.8 million projects. An evaluation of our dataset
against another created independently with different methods found a
significant overlap, but also differences attributed to the operational
definition of what projects are considered as related.
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In theory, there is no difference
between theory and practice,
while in practice, there is.

Benjamin Brewster

1 Introduction

Anyone can create a copy of a GitHub project through a single effortless
click on the project’s fork button. Similarly, one can also create a repos-
itory copy with just two Git commands. Consequently, GitHub contains
many millions of copied projects. This is a problem for empirical software
engineering. First, when data containing multiple copies of a repository are
analyzed, the results can end up skewed [27]. Second, when such data are
used to train machine learning models, the corresponding models can behave
incorrectly [23] [2].

In theory, it should be easy to filter away copied projects. The project
details provided by the GitHub API contain the field fork, which is true
for forked projects. They also include fields under parent or source, which
contain data concerning the fork source.

In practice, the challenges of detecting and grouping together copied
GitHub repositories are formidable. At the computational level, they involve
finding among hundreds of millions of projects those that are near in a space
of billions of dimensions (potentially shared commits). The use of GitHub
for courses and coursework with hundreds of thousands of participants,lﬂ for
experimenting with version control systemsE| and for all kinds of frivolous
or mischievous activityﬂ further complicates matters.

In the following sections we present how we created a dataset identifying
and grouping together GitHub projects with shared ancestry or commits
(Sections [2| and , the data schema and availability (Section [4)), an evalu-
ation of data quality (Section @, indicative findings based on the dataset
(Section , related work (Section , and ideas for research and improve-
ments (Section [§).
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Figure 1: Overview of the dataset creation process



2 Dataset Creation

An overview of the dataset’s construction process is depicted in Figure
The projects were selected from GitHub by analyzing the GHTorrent [13], [11]
dataset (release 2019-06-01) by means of the simple-rolap relational online
analytical processing and rdbunit relational unit testing frameworks [14].
Following published recommendations [22], the code and primary data as-
sociated with this endeavor are openly available online[f] and can be used to
replicate the dataset or construct an updated version from newer data.

The GHTorrent dataset release we used contains details about 125 mil-
lion (125486 232) projects, one billion (1368235072) individual commits,
and six billion (6251898944) commits associated with (possibly multiple,
due to forks and merges) projects.

We first grouped shared commits to a single “attractor” project, which
was derived based on the geometric mean (Table all project mean metric—
125486 232 records—Listing of six quality attributesﬂ recency of the
latest commit (Table most recent commit—100 366 312 records—Listing [3)),
as well as the number of stars (Table project stars—10317662 records—
Listing , forks (Table project forks—6958551 records—Listing [5)), com-
mits (Table project ncommits—100 366 312 records—Listing [6]), issues (Ta-
ble project issues—9498 704 records—Listing [7]), and pull requests (Table
project pull requests—7 143 570 records—Listing. In addition, the project-
id was used as a tie-breaker. To avoid the information loss caused by zero
values [20], we employed the following formula proposed by del Cruz and
Kref [9]:

1 n
Gex(X) =exp (n Zlog (x; + (L)) — 0
i=1

with J, calculated to have the value of 0.001 for our data. We used a
query utilizing the SQL window functions in order to group together shared
commits (Table projects sharing commits—44 380204 records—Listing E[)
without creating excessively large result sets (see Listingin the appendix).

To cover holes in the coverage of shared commits, we complemented
the projects sharing commits table with projects related by GitHub project
forks, after removing a set of hand-picked and heuristic-derived projects that
mistakenly linked together unrelated clusters (Table blacklisted projects—
2341 896 records—Listing . In addition, we removed from the combined
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graph non-isolated nodes having between two and five edges, in order to
reduce unwanted merges between unrelated shared commit and fork clusters.
The method for creating the blacklisting table, along with the details behind
the denoising process, are explained in Section [3]

We subsequently converted projects with shared commits or shared fork
ancestry into an (unweighted) graph to find its connected components, which
would be the groups of related projects. We identified connected com-
ponents using the GraphViz [10] ccomps tool (Table acgroups—18 203053
records—Listing . The final steps involved determining the size of each
group (Table group size—2472 758 records—Listing , associating it with
each project (Table project group size—18203 053 records—Listing and
its metrics (Table project metrics—18 203 053 records—Listing , obtain-
ing the mean metric for the selected projects (Table project mean metric—
18203 053 records—Listing , and associating with each group the project
excelling in the metric (Table highest mean in group—7 553 705 records—
Listing . This was then used to create the deduplication table (Table
deduplicate by mean—10649 348 records—Listing by partnering each
project with a sibling having the highest mean value in the calculated met-
rics.

3 Down the Rabbit Hole

We arrived at the described process after numerous false starts, experiments,
and considerable manual effort. Some problems included the discovery that
in GHTorrent shared commits do not always lead to the same ancestral com-
mit, a query that exhausted 128GB of RAM, and a result set that exceeded
the maximum number of rows supported by PostgreSQL (four billion). Here
we provide details regarding the technical difficulties associated with the
dataset’s creation, the rationale for the design of the adopted processing
pipeline, and the process of the required hand-cleaning and denoising.

Our initial plan for reducing the problem’s high dimensionality involved
associating each commit with a parent-less ancestor. In theory, each graph
component of copied projects would have a unique such ancestor, allowing
us to easily group projects together. In practice, we found that the commit
history is incomplete, and that various projects share multiple ancestries.

Our next approach for finding shared commits was based on grouping
the records of the project and commit identifier table by the commit iden-
tifier, to identify projects with common commits. This process ran out of
memory on a 128 GB RAM machine. We tried to run a query to export



the data into a file, but this also failed with an error “PGresult cannot
support more than INT_MAX tuples”. In the end, we resorted to dumping
the commit and project identifier table with the database’s dump utility,
pg-dump, and filtering the output to obtain the required data. We sorted
the file by the commit identifier as the primary key (Unix sort can handle
arbitrary amounts of data by sorting in batches and then merge-sorting the
intermediate files), and then used a small awk script to create in memory (9
GB RAM) a set of projects sharing commits, thus reducing the amount of
downstream data.

Our manual verification of large graph components uncovered a mega-
component of projects with 4278791 members. Among the component’s
projects were many seemingly unrelated popular ones, such as the follow-
ing ten: FreeCodeCamp/FreeCodeCamp, facebook/react, getify /You-Dont-
Know-JS, robbyrussell/oh-my-zsh, twbs/bootstrap, Microsoft /vscode, github/git-
ignore, torvalds/linux, nodejs/node, and flutter/flutter.

We experimented with introducing weights to the graph, changing the
edge-creation algorithm to include only projects sharing at least two com-
mits. According to a percentile calculation of commits in GHTorrent, this
could have drastic consequences, because only the top 60% of projects or-
dered by the number of recorded commits have more than two commits.
The size of the mega-component was reduced, but it still contained 3 202 377
members. (The number of components also fell from 6 103 690 to 6 065 658.)
Given that weights did not break up the mega-component, we eventually
kept the graph unweighted.

We wrote a graph-processing script to remove from the graph all but
one edges from projects with up to five edges. We chose five based on the
average number of edges per node with more than one edge (3.8) increased
by one for safety. We also looked at the effect of other values. Increasing the
denoising limit up to ten edges reduced the size of the mega-component only
little to 2523 841. Consequently, we kept it at five to avoid removing too
many duplicate projects. This improved somewhat the situation, reducing
the size of the mega-component to 2881473 members.

Studying the mega-component we observed that many attractor projects
were personal web sitesEHﬂ Focusing on them we found that apparently many
clone a particular personal style builder, build on it, force push the commits,
and then repeat the process with another builder project. For example,

SFigure [2{ and G1.

"The referenced graph images GN are distributed with the paper’s replication package.
All but one are also included in this note’s appendix as zoomable figures. The yellow-
colored nodes are the ones belonging in the set of top-ranked projects.



it seems that through this process, wicky-info/wicky-info.github.io shares
commits with 139 other projects.

Based on this insight we excluded projects with names indicating web
sites (all ending in github.io), and also removed from the graph nodes hav-
ing between two and five edges, considering them as adding noise. This re-
duced considerably the mega-component size in the graph of projects with
shared commits, to the point where the largest component consisted mostly
of programming assignments forked and copied thousands of times (jtleek/-
datasharing — 199k forks, rdpeng/ProgrammingAssignment2 — 119k, rd-
peng/RepData_Peer Assessment1 — 32.3k).

We also joined the generation of the fork tree and the common com-
mit graph to reduce their interference, applying the denoising algorithm to
both. This reduced the clusters to very reasonable sizes, breaking the mega-
component to only include a few unrelated projectsﬁ which was further
improved by blacklisting a couple of Android Open Source Project reposi-
tories

We manually inspected the five projects with the highest mean ranking
in each of the first 250 clusters, which comprise about 1.6 million projects.
The most populous component (Linux) had 175184 members and the last,
least populous, component (vim) had 1912 members. Many cases of several
high-ranked projects in the same component involved genuine forks. This
is for example the case of MariaDB/server linking percona/percona-server,
mysql/mysql-server, and facebook/mysql-8.0, among othersm Where these
referred to different projects, we drew a map of shortest path between the
49 top-ranked projects and the first or 50th one, and blacklisted low-ranked
projects that were linking together unrelated repositories.

Resolved examples include the linking of Docker with GOE Django with
Ruby on RailsB Google projects with zlibB Diaspora with Arduinoﬂ
Elastic Search with PandaSE Definitely Types with RxJ SE Ansible with
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PuppetE PantomJS with WebKit and QtE OpenStack pro jectsH Puppet
modules@ documentation pro jects@ Docker registry with others@ Drupal
with Backdropﬁ Python and Clojure koans@ Vimium with Hubotﬁ as
well as several ASP.NET projectsm

For some clusters that failed to break up we repeated the exercise, looking
at paths in the opposite direction, removing additional projects such as those
linking Linux with Daggerﬂ Ruby with JRuby, oh-my-zsh, Capistrano, and
git-sem 5| and Laravel with Fuel P

In some cases the culprits were high-ranked projects, such as boost-
org/spirit, which links together more than ten Boost repositoriesm apache/hadoop,
which links with Intel-bigdata/SSM*!| Definitely Typed /Definitely Typed, which
links to Reactive-Extensions/RxJS}**| ReactiveX /RxJava, which links sev-
eral Netflix repositories@ jashkenas/underscore, which links with lodash/lo-
dashﬂ jsbin/jsbin linking to cdnjs/ cdnjsﬁ ravendb/ravendb linking to Sig-
nalR/ SignalRE Kibana linked with Grafanam CartoDB/carto linked with
less/less.js% Other projects, such as Swift and LLVME or Docker with
Containerd[*| were too entangled to bring apart.

We also looked at the number of edges of each node in the component,
reasoning that a single project was somehow acting as a hub, gluing all
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disparate projects together. We indeed found a project (jlord/patchwork)
with a very large number of edges (11 735), but these were consistent with
the number of its forks (31449), and also connections between unrelated
projects were not passing through it.

To further investigate what brings the component’s projects together, we
selected from the component one popular project with relatively few forks
(creationix/nvm), and applied Dijkstra’s shortest path algorithm to find how
other projects got connected to it. We drew paths from that project to 30
other popular projects belonging to the same component, and started verify-
ing each one by hand. We looked at the shared commits between unrelated
projects that we found connected, such as yui-knk/rails and seuros/django.

Some (very few) commits appear to be shared by an inordinate num-
ber of projects. At the top, three commits are shared by 100683 projects,
another three by 67280, and then four by 53312. However, these num-
bers are not necessarily wrong, because there are five projects with a cor-
respondingly large number of forks: 125491 (jtleek/datasharing), 124326
(rdpeng/ProgrammingAssignment2), 111 986 (octocat/Spoon-Knife), 70 137
(tensorflow/tensorflow), and 66 066 (twbs/bootstrap). The first two com-
mits are associated with many (now defunct) projects of the user dvescon-
nectortest (missingcommitsfixproof, missingcommitstest, and then missing-
commitstest_250-1393252414399) for many different trailing numbers. How-
ever, the particular user is associated with very few commits, namely 1240,
so it is unlikely that these commits have poisoned other components through
transitive closure.

We later on improved the denoising to incorporate components that
could be trivially determined for isolation, by looking at just the neigh-
boring nodes. The algorithm we employed is applied to all nodes n having
between two and five edges; the ones we used to consider as noise. It sums
up as s being the number of edges of all nodes n’ that were directly con-
nected to n. If s is equal to the edges leading to n, then n and its immediate
neighbors form a component, otherwise it is considered as adding noise and
is disconnected from its neighbors. For a graph with edges E the condition
for a node n being considered as noise, can be formally described as

((n,)[(nn) € B[ # > [{(',n")|(n',n") € E}|

vn/|(n,n/)EE

Applying this algorithm (Listing [1|) decreased the number of ignored “noise
projects” marginally from 37 660040 to 37333 119, increasing, as expected,
the number of components by the same amount, from 2 145 837 to 2472 758,



#!/usr/bin/gvpr -cf

#
# Remove nodes having between 2 and N edges writing their names
# to the file reports/noise_projects.txt.
# The removal reduces unwanted merges between shared commit and
# fork clusters.
#
# N is specified as an argument with -a
# gvpr -f denoise.gvpr -a 5
#
BEGIN {
int nf = openF("reports/noise_projects.txt", "w");
int noise_ceiling = ARGV[O];
}
N {

int d = degree0f($G, $);

if (d > 1 && d <= noise_ceiling) {
/*
* Iterate through edges to sum the degrees of their nodes
* If this equals the number of edges, then this clique is
* disjoined and cannot join together other cliques.

*/
int degree_sum = O;
edge_t e;

for (e = fstedge($); e; e = nxtedge(e, $))
degree_sum += degree0f ($G, opp(e, $));
if (degree_sum > d) {
printf(nf, "%s\n", $.name);
delete (3G, $);
}

Listing 1: Final implementation of denoising algorithm
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and also increasing the number of projects considered as clones by about
double that amount, from 9879677 to 10649 348.

4 Dataset Overview

The dataset is provided@ as two files identifying GitHub repositories using
the login-name/project-name convention. The file deduplicate_names con-
tains 10649 348 tab-separated records mapping a duplicated source project
to a definitive target project. The file forks_clones_noise_names is a 50 324 363
member superset of the source projects, containing also projects that were
excluded from the mapping as noise.

The files are to be used as follows. After selecting some projects for
conducting an empirical software engineering study with GitHub projects,
the first file should be used to map potentially duplicate projects into a set
of definitive ones. Then, any remaining projects that appear in the second
file should be removed as these are likely to be low-value projects with a
high probability of undesirable duplication.

5 Duplication in Existing Datasets

As an example of use of our dataset, we deduplicated the Reaper dataset [31],
which contains scores concerning seven software engineering practices for
about 1.8 million (1853205) GitHub projects. The study has influenced
various subsequent works [35] [6l [T, [§] through the provided recommenda-
tions and filtering criteria for curating collected repositories. The authors
have excluded deleted and forked projects, considering the latter as near
duplicates.

Around 30 thousand (30095) duplicate projects were identified in the
Reaper dataset using deduplicate_names. The first ten components with
the most recurrences involve the following ultimate parents and repetitions:
torvalds/linux (2614), gatsbyjs/gatsby (545), boxen/our-boxen (229), back-
drop/backdrop (121), publify/publify (110), boostorg/boost (109), llvm-
mirror/llvm (108), laravel/framework (98), universal-ctags/ctags (89), saas-
book/hw3_rottenpotatoes (87). In addition, the deduplication of the 800
hand-picked projects used in the classifiers’ training and validation pro-
cesses unveiled only nine duplicate instances in the organization dataset,
one in the utility, and none in the validation. These include aspnet/Mve

“"https://doi.org/10.5281/zenodo. 3653920
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Table 1: Dataset Comparison

Dataset
Metric CCFSC CDSC
Number of repositories 10649348 116265607
Number of independent projects 2470126 63829733
Size of largest cluster 174919 244707
Average cluster size 4.3 1.8
Cluster size standard deviation 169 44
Reaper duplicates 30095 80079

(7), apache/flink (2), mozilla/bedrock (2), and bitcoin/bitcoin (2) in the
organization, and torvalds/linux (2) in the utility. Further investigation is
required to measure any potential impact of the ten duplicate projects on
the classification outcome. Nevertheless, researchers selecting projects from
Reaper for their work can benefit from our dataset to filter out duplicate
occurrences, to further improve the quality of selected projects and avoid
the problems outlined in Section

6 Evaluation

We evaluated this dataset, which was constructed by identifying connected
components based on forks and shared commits (CCFSC), through a quan-
titative and qualitative comparison with a similar dataset constructed using
community detection of shared commits (CDSC) [30]. An overview of the
basic characteristics of the two datasets appears in Table[I] The two datasets
share a substantial overlap both in terms of source projects (8 157317) and
in terms of cluster leaders (5513580). On the other hand, it is clear that
CDSC is considerably more comprehensive than CCFSC in order of magni-
tude, covering more repositories. An important factor in its favor is that it
covers other forges apart from GitHub, and therefore its population is a su-
perset of CCFSC’s. However, if one also considers the projects that CCFSC
considers as noise (personal projects or projects with conflicting affiliations),
the overlap swells to 40338421, covering about a third of the total. Fur-
thermore, the fact that the increase in the Reaper dataset duplication in the
CDSC dataset is only about double that of the CCFSC dataset indicates
that the increased coverage of CCFSC may not be relevant for some empir-
ical software engineering studies. These factors validate to some extent the

12



dataset’s composition.

To get a better understanding of where and how the two datasets vary,
we also performed a qualitative evaluation. For this we selected a subgraph
induced by the 1000 projects with the highest geometric mean score, and
visualized the common and non-common elements of the 431 clusters that
contained different nodes In 301 cases the clusters shared at least one
common element. The patterns we encountered mainly concern the follow-
ing cases: CCFSC links more (and irrelevant) clusters compared to CDSC
(e.g. FreeCodeCamp/FreeCodeCamp, gatsbyjs/gatsby, robbyrussell /oh-my-
zsh); the converse happens (e.g. leveldb); CCFSC clusters related projects
that CDSC does not cluster (e.g. tgstation/tgstation, bitcoin/bitcoin); the
converse happens (e.g. hdl_gfs, t-s/blex); there is considerable agreement
between the two (e.g. Homebrew/homebrew-core with afb/brew); there is
considerable agreement but CDSC includes more related projects (e.g. asp-
net/Mvc with h2h/Mvc). In general, we noticed that CDSC appears to be
more precise at clustering than CCFSC, but worse at naming the clusters.

7 Related Work

In distributed version control and source code management platforms, such
as GitHub, developers usually collaborate using the pull request develop-
ment model [16] 12, [15] [17], according to which repositories are divided into
base and forked [25]. This constitutes one of the perils of mining GitHub: a
repository is not necessarily a project [25], with commits potentially differing
between the associated repositories.

Code duplication in GitHub was studied by Lopes et al. [27] through file-
level and inter-project analysis of a 4.5 million corpus of non-forked projects.
The overlap of files between projects, as given by the files’ token hashes, was
computed for certain thresholds and programming languages. JavaScript
prevails with 48% of projects having at least 50% of files duplicated in other
projects, and 15% of projects being 100% duplicated. Project-level dupli-
cation includes appropriations that could be addressed by Git submodules,
abandoned derivative development, forks with additional non-source code
content, and unorthodox uses of GitHub, such as unpushed changes. Code
duplication can hamper the statistical reasoning in random selections of
projects, and skew the conclusions of studies performed on them, because
the observations (projects) are not independent, and diversity may be com-
promised. For the converse problem of obtaining similar GitHub repositories

“Figure [34 and G33.
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see the recent work by Phuong Nguyen and his colleagues [33] and the ref-
erences therein.

While it is common sense to select a sample that is representative of
a population, the importance of diversity is often overlooked, yet as im-
portant [4]. Especially in software engineering, where processes of empirical
studies often depend on a large number of relevant context variables, general
conclusions are difficult to extract [7]. According to Nagappan et al. [32], to
provide a good sample coverage, selected projects should be diverse rather
than similar to each other. Meanwhile, increasing the sample size does not
necessarily increase generality when projects are not carefully selected.

Markovtsev and Kant in their work regarding topic modeling of pub-
lic repositories using names in source code [29], recognized that duplicate
projects contain few original changes and may introduce noise into the over-
all names distribution. To exclude them and accelerate the training time of
the topic model, they applied Locality Sensitive Hashing [26] on the bag-
of-words model. According to the analysis, duplicate repositories usually
involve web sites, such as github.io, blogs and Linux-based firmwares, which
align with our observations.

A duplication issue was also identified by Irolla and Dey [23] in the
Drebin dataset [5], which is often used to assess the performance of malware
detectors [34, [I8] and classifiers [19, 38]. Half of the samples in the dataset
have other duplicate repackaged versions of the same sequence of opcode.
Consequently, a major part of the testing set may also be found in the
training, inflating the performance of the designed algorithms. Experiments
on classification algorithms trained on the Drebin dataset by including and
excluding duplicates suggested moderate to strong underrated inaccuracy,
and variation in the performance of the algorithms.

Similarly, Allamanis examined the adverse effects of code duplication
in machine learning models of code [2]. By comparing models trained on
duplicated and deduplicated code corpora, Allamanis concluded that per-
formance metrics, from a user’s perspective, may be up to 100% inflated
when duplicates are included. The issue mainly applies to code comple-
tion [37, 28], type prediction [21], 36] and code summarization [24, 3], where
models provide recommendations on new and unseen code.

8 Research and Improvement Ideas

The main purpose of the presented dataset is to improve the quality of
GitHub project samples that are used to conduct empirical software en-

14



gineering studies. It would be interesting to see how such duplication af-
fects published results by replicating existing studies after deduplicating the
projects by means of this dataset. In addition, the dataset can be used
for investigating the ecosystem of duplicated projects in terms of activ-
ity, duplication methods (forks vs commit pushes), tree depth, currency, or
trustworthiness.

The dataset can be further improved by including projects from other
forges and by applying more sophisticated cleaning algorithms.
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Appendix: Key SQL Queries and Representa-
tive Graphs

Listing 2: SQL query for deriving the table all project mean metric

—-- Mean metric of each project

create table forkproj.all_project_mean_metric AS
select project_id,

-- Geometric mean of (value + 0.001) ~ 5
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-- See delta.py for the calculation of 0.001
(stars + .001) *
(forks + .001) *
(commits + .001) *
(issues + .001) *
(recency + .001) *
(pull_requests + .001) *
-- Tie breaker with a value lower than 1, based on project_id
-— Earlier projects score higher
(.1 - project_id / 10. / (select max(id) from projects)) as
mean_metric
from forkproj.all_project_metrics;

create index on forkproj.all_project_mean_metric(project_id);

Listing 3: SQL query for deriving the table most recent commit

—-- The most recent commit for each project

CREATE TABLE forkproj.most_recent_commit AS
select project_commits.project_id as project_id,
max (created_at) as most_recent
from commits
inner join project_commits
on project_commits.commit_id = commits.id
group by project_commits.project_id;

create unique index on forkproj.most_recent_commit(project_id);

Listing 4: SQL query for deriving the table project stars

—-- Number of stars per project

create table forkproj.project_stars AS
select repo_id as id, count(*) as stars
from watchers
group by repo_id;

create index on forkproj.project_stars(id);
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Listing 5: SQL query for deriving the table project forks

—-— Number of forks per project

create table forkproj.project_forks AS
select
projects.forked_from as id,
count (x) as forks
from projects
where forked_from is not null
group by forked_from;

create index on forkproj.project_forks(id);

Listing 6: SQL query for deriving the table project ncommits

—-- Number of commits per project

create table forkproj.project_ncommits AS
select project_id as id, count(project_id) as commits
from project_commits
group by project_id;

create index on forkproj.project_ncommits(id) ;

Listing 7: SQL query for deriving the table project issues

—-— Number of project issues per project

create table forkproj.project_issues AS
select repo_id as id, count(*) as issues
from issues
group by repo_id;

create index on forkproj.project_issues(id);

Listing 8: SQL query for deriving the table project pull requests

—-- Number of pull requests per project

create table forkproj.project_pull_requests AS
select base_repo_id as id, count(*) as pull_requests
from pull_requests
group by base_repo_id;

create index on forkproj.project_pull_requests(id);

22



Listing 9: SQL query for deriving the table projects sharing commits

-— Projects sharing commits with linked to the project with
-- the highest metric
-- metric(pl) > metric(p2)

create table forkproj.projects_sharing_commits as
select distinct pl, p2 from (
select project_commits.project_id as p2,
first_value(project_commits.project_id) over (
partition by commit_id
-- Link all with the oldest project
order by mean_metric desc) as pl
from project_commits
inner join forkproj.all_project_mean_metric
on all_project_mean_metric.project_id =
project_commits.project_id
) as shared_commits
where pl != p2;

Listing 10: SQL query for deriving the table blacklisted projects

-- Project ids of personal sites

create table forkproj.blacklisted_projects AS
select id from projects where name like ’%.github.io’ or
substr(url, 30) in (
’illacceptanything/illacceptanything’,

’github/gitignore’,

’android/platform_build’, -- Links to Dagger and Simple
Gallery

’Reese-D/my_emacs’, -- Links oh-my-zsh, flydeck, magit,

’destructuring/junas’, -- Links capistrano, janus, git-scm

’yosadchuk/git-scm.com’, -- Links git-scm with progit

’carsomyr/rbenv-ubuntu’, -- Links ruby, jruy, pyenv

’explOratory/.vim’, -- Links oh-my-zsh, vim-airline,

’scrooloose/syntastic’, -- Links YouCompleteMe,

’ jbarros/checkbook’, -- Links Laravel with Fuel

’bogner/llvm-zipper-prototype’, -- LLVM monorepo with 612k
commits, joining swift, klee, LLVM

’TurboROM/MERGE_test’, -- Deleted; brings flutter

’AdrianDC/aosp_development_sony8960_o_mrl’, -- Archived; join
v8 with other C

’AdrianDC/aosp_development_sony8960_p’, -- See above

’Lineage0S/android_packages_apps_WallpaperPicker’, -- 2 stars;

joins LLVM w. Android
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’cmars/tools’, -- Links Docker with glide, vcs

’cmars/oo’, —-- Links Docker with golang/*

’seuros/django’, -- Links Django with Rails
’phantom9999/folly’, -- Links diverse Google projects, zlib,

’chriswingler/Simulator’, -- Links diaspora with Arduino
’gfyoung/elasticsearch’, -- Links elasticsearch with Pandas
’Inuits/ensible’, -— Links ansible with Puppet
’chapuni/llvm-project’, -- Joins Swift and Klee
’dotnet-maestro-bot/Common’, -- Joins several aspnet projects
’dotnet-maestro-bot/AspNetCore’, -- See above
’lodejard/AllNetCore’, -- See above
’Vitallium/phantomjs-qt5°, -- PhantomJS, Qt, WebKit
’derekhiggins/delorean-specs’, -- Joins several OpenStack
projects
’kscherer/puppet-modules’, -- Join Puppet modules
’akeif/compucorp-taskl-envs’, -- Join Puppet modules
’harikt/docs’, —- Joins several documentations
’saltlakeryan/archived-projects’, -- Docker-registry,
microHTTPD,
’ jenlampton/badcamp2014’, -- Backdrop with Drupal
’tokyo-jesus/university’, -- PYthon and clojure koans
’decaffeinate-examples/vimium’, -- Links vimium with hubot
’octocat/Spoon-Knife’); -- Sever hundred k forks for training

create index on forkproj.blacklisted_projects(id);

Listing 11: SQL query for deriving the table acgroups

—-— Import connected components of all forked projects

create table forkproj.acgroups (
cc_id BIGINT not null,
project_id BIGINT not null,
primary key(project_id, cc_id)
);

\copy forkproj.acgroups from ’reports/ac_groups.csv’ CSV;

create unique index on forkproj.acgroups(project_id) ;
create index on forkproj.acgroups(cc_id);
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Listing 12: SQL query for deriving the table group size

—-— Number of group members per group

create table forkproj.group_size AS
select cc_id as id, count(cc_id) as n_group_members
from forkproj.acgroups
group by cc_id
having count(*) > 1;

create index on forkproj.group_size(id);

Listing 13: SQL query for deriving the table project group size

—— Number of members in each project’s group

create table forkproj.project_group_size AS
select forkproj.acgroups.project_id as id, n_group_members
from forkproj.acgroups
left join forkproj.group_size
on group_size.id = acgroups.cc_id;

create index on forkproj.project_group_size(id);

Listing 14: SQL query for deriving the table project metrics

—-- Number of stars, forks, commits, group members per project with
clones

create table forkproj.project_metrics AS

select forkproj.acgroups.project_id,
forkproj.acgroups.cc_id as group_id,
all_project_metrics.stars,
all_project_metrics.forks,
all_project_metrics.commits,
all_project_metrics.issues,
all_project_metrics.recency,
all_project_metrics.pull_requests,
n_group_members

from forkproj.acgroups

inner join forkproj.all_project_metrics

on forkproj.all_project_metrics.project_id =

forkproj.acgroups.project_id
left join forkproj.project_group_size
on forkproj.project_group_size.id = forkproj.acgroups.project_id;
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create index on forkproj.project_metrics(project_id);
create index on forkproj.project_metrics(group_id);

Listing 15: SQL query for deriving the table project mean metric

—-- Project mean metric for each project in the group

create table forkproj.project_mean_metric AS
select cc_id as group_id, acgroups.project_id, mean_metric
from forkproj.acgroups
inner join forkproj.all_project_mean_metric
on forkproj.all_project_mean_metric.project_id =
forkproj.acgroups.project_id;

create index on forkproj.project_mean_metric(project_id);

Listing 16: SQL query for deriving the table highest mean in group

-- Project for each group excelling in its metrics

create table forkproj.highest_mean_in_group AS

select group_id, project_id from (

select project_id, group_id,

rank() over (partition by group_id
order by mean_metric desc) as mean_rank

from forkproj.project_mean_metric

) as ranked

where mean_rank = 1;

create index on forkproj.highest_mean_in_group(group_id);

Listing 17: SQL query for deriving the table deduplicate by mean

—-- Partner each project with the sibling with the highest mean value
-- in the calculated metrics.
-- Each source project is to be mapped to the corresponding target.

create table forkproj.deduplicate_by_mean AS

select project_metrics.project_id as source_id,
highest_mean_in_group.project_id as target_id

from forkproj.project_metrics

left join forkproj.highest_mean_in_group
on highest_mean_in_group .group_id = project_metrics.group_id

where project_metrics.project_id !=

highest_mean_in_group.project_id;
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create index on forkproj.deduplicate_by_mean(source_id);
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Figure 5: Links associated with mariadb
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Figure 6: Links associated with docker

Figure 7: Links associated with django-rails
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Figure 11: Links associated with Definitely-Typed-RxJS

Figure 12: Links associated with Ansible-Puppet

Figure 13: Links associated with qt
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Figure 16: Links associated with docs
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Figure 19: Links associated with python-clojure-koans

30



Figure 22: Links associated with linux
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Figure 25: Links associated with hadoop-ssm
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Figure 32: Links associated with Swift-LLVM
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Figure 33: Links associated with docker-containerd
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Figure 34: Links associated with disagreements

33



	Introduction
	Dataset Creation
	Down the Rabbit Hole
	Dataset Overview
	Duplication in Existing Datasets
	Evaluation
	Related Work
	Research and Improvement Ideas
	Appendix: Key SQL Queries and Representative Graphs

