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In Brief
High-grade ovarian cancer ac-
counts for higher mortality rates
because of ineffective biomark-
ers for early diagnosis. Deep
proteome profiling of the mi-
crovesicles from a total of 187
liquid biopsies of Utero-tubal
Lavage, combined with support
vector machine algorithms, ex-
tracted a 9-protein classifier with
high accuracy. The signature
predicted all the early stage le-
sions, and outperformed the
known markers CA125 and HE4
with 70% sensitivity and 76.2%
specificity. Our study reveals
UtL-microvesicle proteomics as
the potential biomarker source
for early diagnosis of HGOC.

Graphical Abstract

Highlights

• Microvesicle proteomics of 187 utero-tubal lavage samples for early diagnosis of HGOC.

• Machine learning-based classification of a 9-protein signature with high predictive power.

• Signature has 70% sensitivity and 76.2% specificity, predicting stage I lesions.
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Microvesicle Proteomic Profiling of Uterine
Liquid Biopsy for Ovarian Cancer Early
Detection*□S

Georgina D. Barnabas‡���, Keren Bahar-Shany§���, Stav Sapoznik§,
Limor Helpman¶�‡‡‡‡, Yfat Kadan¶, Mario Beiner¶, Omer Weitzner**, Nissim Arbib**,
Jacob Korach�‡‡, Tamar Perri�‡‡, Guy Katz‡‡, Anna Blecher‡‡, Benny Brandt‡‡,
Eitan Friedman�§§, David Stockheim�¶¶, Ariella Jakobson-Setton���, Ram Eitan���,
Shunit Armon‡‡‡, Hadar Brand§�, Oranit Zadok§§§, Sarit Aviel-Ronen§§§¶¶¶,
Michal Harel‡, Tamar Geiger‡���¶¶¶¶, and Keren Levanon§�¶¶¶���§§§§

High-grade ovarian cancer (HGOC) is the leading cause
of mortality from gynecological malignancies, because of
diagnosis at a metastatic stage. Current screening options
fail to improve mortality because of the absence of early-
stage-specific biomarkers. We postulated that a liquid
biopsy, such as utero-tubal lavage (UtL), may identify lo-
calized lesions better than systemic approaches of se-
rum/plasma analysis. Further, while mutation-based as-
says are challenged by the rarity of tumor DNA within
nonmutated DNA, analyzing the proteomic profile, is ex-
pected to enable earlier detection, as it reveals perturba-
tions in both the tumor as well as in its microenvironment.
To attain deep proteomic coverage and overcome the
high dynamic range of this body fluid, we applied our
method for microvesicle proteomics to the UtL samples.
Liquid biopsies from HGOC patients (n � 49) and controls
(n � 127) were divided into a discovery and validation
sets. Data-dependent analysis of the samples on the
Q-Exactive mass spectrometer provided depth of 8578
UtL proteins in total, and on average �3000 proteins per
sample. We used support vector machine algorithms for
sample classification, and crossed three feature-selec-
tion algorithms, to construct and validate a 9-protein
classifier with 70% sensitivity and 76.2% specificity. The
signature correctly identified all Stage I lesions. These
results demonstrate the potential power of mi-
crovesicle-based proteomic biomarkers for early cancer
diagnosis. Molecular & Cellular Proteomics 18: 865–
875, 2019. DOI: 10.1074/mcp.RA119.001362.

Overall survival of patients with high-grade ovarian cancer
(HGOC)1 correlates with disease stage at diagnosis: whereas
patients with stage I disease have �90% 5-year overall
survival, rates for stage IV disease are extremely low. Regret-
tably, �75% of HGOC cases are diagnosed at late-stage
regardless of adherence to testing recommendations (1). Ear-
ly-detection of HGOC among high-risk population, such as
germline BRCA1/2 mutation carriers, is of exceptional impor-
tance. These women are currently counseled to undergo pro-
phylactic removal of the ovaries and fallopian tubes (risk
reducing bilateral salpingo-oophorectomy, RRBSO) at age
�40, therefore there is an urgent unmet need for a personal-
ized risk-assignment modality to guide RRBSO timing and
alleviate unnecessary morbidity of early menopause (2, 3).
This grim reality stems primarily from the lack of effective
screening methods and of early-stage biomarkers. A multi-
tude of biomarkers have been proposed and tested over the
years, however even the most established markers, namely
serum CA125 and HE4, have not proven to be effective in
improving survival (4–8). Several recent large-scale screening
trials based on blood CA125-based monitoring, with or with-
out transvaginal ultrasound, showed insignificant stage shift
among high-risk population and low specificity and sensitivity
(9–11). Recently, blood-miRNA signatures have been pro-
posed as highly sensitive and specific biomarkers, though the
technicalities and their utility for early detection are not yet
established (12–14).
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Blood-based testing for most biomarkers has limited effi-
cacy because of their association with tumor burden, which
results in late diagnosis at the metastatic stage. In contrast,
intraluminal body fluids are expected to contain the putative
biomarkers at an earlier disease stage. High grade serous
papillary carcinoma, the most common histological subtype
of HGOC, arises from precursor lesions that develop in the
epithelium of the fallopian tube fimbriae (FTE, the distal end of
the fallopian tube, adjacent to the ovaries) (15–17). Therefore,
sampling the cells of the fimbriae or their secreted biological
products (via liquid aspirated from the gynecological tract)
may reveal markers of the initial lesions. Several gyneco-
logic liquid biopsy methods were recently described, pri-
marily for examining circulating mutant p53 DNA (18–21). All
of these showed very low sensitivity (33–60%). Despite
technical and conceptual limitations, proteomics may be
superior to genomic assays for the specific context of de-
tection of very small tumors, because it is able to capture
the expression perturbation of both tumor cells and their
complex microenvironment.

The challenge of proteomics-based biomarker discovery
lies in the high dynamic range of most body fluids. High levels
of extracellular proteins, primarily plasma proteins, mask the
proteins secreted from tumor cells, and therefore hamper
biomarker identification. To overcome this challenge, as we
have previously published, we performed deep proteomic
analysis of plasma microvesicles, which allowed us to reach

thousands of protein identification in single runs (22). Mi-
crovesicles (100 nm-1 �m) form by outward budding of the
plasma membrane and are released into body fluids from all
cell types (23, 24). Thus, microvesicles can serve as a reser-
voir of diagnostic biomarkers, which sets the foundations for
the development of an assay that could be used as a screen-
ing or monitoring tool (25). Because these are largely devoid
of highly abundant plasma proteins, their analysis overcomes
masking of the potential protein biomarkers. In the current
study, we adapted the plasma microparticle analysis to utero-
tubal lavage (UtL) samples. We combine the virtues of state-
of-the-art MS-based proteomics with minimally invasive sam-
pling method, and extract a proteomic signature, as a first
step toward early HGOC diagnostics.

EXPERIMENTAL PROCEDURES

Cohort Design and Assembly—All samples were collected in ac-
cordance with approvals of the institutional ethics review boards at
Chaim Sheba Medical Center, Rabin Medical Center and Meir Med-
ical Center, Israel (ClinicalTrials.gov identifier: NCT03150121). In-
formed consent was obtained from each participant. Recruited pa-
tients underwent gynecological surgical procedures under general
anesthesia, including hysteroscopy, hysterectomy and/or RRBSO.
Eligible indications included HGOC (primary or interval debulking),
suspicious ovarian mass, risk reduction, or various other benign
gynecological disorders (Table I and supplemental Table S1). Patients
with endometrial and cervical carcinoma were excluded, as well as
patients with non-HG serous ovarian tumors. Sample processing was
performed in six technical batches; each included both patients and
controls, and all three centers. MS analysis was then performed in a
blinded manner for each batch. Altogether, we collected 187 UtL
samples, and eleven of those were excluded because of missing
information. Of the remaining 176 samples, 24 were selected to the
discovery set (12 HGOC patients and 12 representative controls),

1 The abbreviations used are: HGOC, high-grade ovarian cancer;
RRBSO, risk-reducing bilateral salpingo-oophorectomy; UtL, utero-
tubal lavage; RFE, recursive feature elimination.

TABLE I
Patient characteristics for UtL samples included in the proteomic analysis

Clinical Characteristics
Discovery set Validation set

No. (%) Age (ave.) No. (%) Age (ave.)

Entire cohort 24 57.4 152 53
Patient cohort: 12 100 60.6 37 100 62.3
Type of surgery:

Primary debulking 12 100 60.6 15 40.5 59
Interval debulking 0 0 NA 22 59.5 64.5

Stage:
Early stage (STIC-I-II) 3 25 57 1 2.7 48
Late stage (III-IV) 9 75 61.8 36 97.3 62.3

BRCA status:
Germline mutation 0 0 NA 10 24.3 54.1
No mutation 6 50 58.5 12 35.1 63.3
Unknown 6 50 62.7 15 40.5 66.9

Control cohort: 12 100 54.2 115 100 50.1
Indication for surgery:

Benign ovarian mass 6 50 46 28 23.9 54.8
Endometrial polyp 3 25 61.7 9 7.7 61.7
Menometrorrhagia 0 0 NA 12 10.3 49.8
Uterine prolapse 1 8 74 14 12 62.4
Leiomyomatous uterus 0 0 NA 10 8.5 45.2
Risk reducing BSO 0 0 NA 20 17.1 46.8
Gestational residua 0 0 NA 10 8.5 30.8
Normal Endometrium 2 6.8 58 6 5.1 50.8
Other 0 0 NA 8 6.8 36.9
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whereas subsequent samples were regarded as a validation set
(n � 152) and analyzed independently in a blinded manner. Addi-
tional information can be found in Fig. 1A, Table I, and supplemen-
tal Table S1.

UtL Collection—UtL samples were collected before surgery, after
induction of anesthesia, by surgeons in the participating centers. An
intrauterine insemination catheter (InsemiTM-Cath, Cook Inc. Bloom-
ington, IN) or rigid pipelle uterine sampler (Endosampler, MedGyn,
Addison, IL) was inserted into the endometrial space through the
cervical canal. Ten ml of saline were flushed into the uterine cavity
and fallopian tubes and immediately retrieved (at an average volume
of 4.6 ml per patient).

Isolation of UtL Microvesicles—Microvesicle isolation was per-
formed as previously described (22). Briefly, the UtL samples were
immediately centrifuged at 480 � g for 15 min to eliminate cells, and
supernatants were stored at �80 °C. Subsequently, processing and
analysis was performed in several batches as follows: 1 ml UtL
samples were centrifuged at 1000 � g for 20 min to remove cell
debris, followed by microvesicle precipitation by centrifugation at
20,000 � g for 60 min at 4 °C. Pellets were then washed with 1 ml
ice-cold PBS and centrifuged again at 20,000 � g for 60 min at 4 °C.

In-solution Digestion and LC-MS/MS Analysis—Microvesicle pel-
lets were solubilized in 8 M urea in 100 mM Tris-HCl (pH 8.5), reduced
with 1 mM dithiothreitol (DTT) at RT for 30 min and alkylated with 5 mM

iodoacetamide (IAA) for 30min in the dark. The lysates were diluted
4-fold with 50 mM ammonium bicarbonate, followed by overnight
digestion with Trypsin/Lys-C mix (MS grade Promega, Madison, WI;
1:100 enzyme to protein ratio) and sequencing grade modified trypsin
(Promega, 1:50 enzyme to protein ratio). Resulting peptides were
acidified with trifluoroacetic acid (TFA), purified on C18 StageTips (3 M

Empore™, St. Paul, MN) and vacuum dried (26). The dried peptides
were resuspended in 2% acetonitrile/0.1% TFA before the LC-
MS/MS analysis.

Peptides were analyzed by liquid-chromatography using the EASY-
nLC1000 HPLC (Thermo Fisher Scientific) coupled to the Q-Exactive
(QE) Plus or Q-Exactive HF mass spectrometers (Thermo Fisher Sci-
entific, Bremen, Germany). Peptides were separated on 75 �m i.d. �
50 cm long EASY-spray PepMap columns (Thermo Fisher Scientific)
packed with 2 �m, C18 material with 100Å pore size. The peptides
were loaded with Buffer A (0.1% formic acid) and eluted with a
gradient of 7–28% Buffer B (80% acetonitrile/0.1% formic acid), at a
flow rate of 300 nl/min, over a gradient of 210 min. MS acquisition was
performed in a data-dependent manner, positive-ion mode with se-
lection of the top 10 peptides from each MS spectrum for fragmen-
tation and MS/MS analysis. Full MS spectra were acquired at a
resolution of 70,000 (QE-Plus) or 60,000 (QE-HF), m/z range of 300–
1800 Th, with AGC target of 3E�06 ions and maximal injection time
of 20 ms (QE-Plus) or 100 ms (QE-HF). Peptides were isolated for
fragmentation with an isolation window of 1.6 m/z. Higher-energy col-
lisional dissociation (HCD) fragmentation was performed with normal-
ized collisional energy of (NCE) 25 (QE-Plus) or 27 (QE-HF). MS/MS
spectra were acquired at a resolution of 17,500 (QE-Plus) or 30,000
(QE-HF), with AGC target of 1E�05 (QE-Plus) or 5E�04 (QE-HF) and
maximal injection time of 60 ms (QE-Plus) or 50ms (QE-HF). Dynamic
exclusion was set to 30 s. Raw files of all the samples are available via
ProteomeXchange with identifier PXD009655. Spectra for single-pep-
tide based protein identification are added in the supplementary
material.

Experimental Design and Statistical Rationale for Proteomic analy-
sis—Raw MS files were analyzed in the MaxQuant software (version
1.5.2.18) and the Andromeda search engine (27, 28). Separate analyses
were performed for the discovery cohort (n � 24) and the validation
cohort (n � 152) using the same parameters. MS/MS spectra were
searched against the Uniprot database (version Apr2014 with 92,179

entries), a decoy, reverse database of the same size, and a list of
common contaminants (245 entries). The peptide search included car-
bamidomethyl-cysteine as a fixed modification, and N-terminal acety-
lation and methionine oxidation as variable modifications. MaxQuant
search parameters for the initial mass recalibration of the precursors
were 20 ppm, and in the main search, the mass tolerance for precursor
and fragment ions was 4.5 and 20 ppm, respectively. Trypsin was the
specified protease and the maximal number of missed cleavages al-
lowed was two. The minimal peptide length was set to seven amino
acids and a minimum of one razor peptide per protein. The search
results were filtered with false discovery rate of 0.01 for peptide-spec-
trum matches and 0.01 for protein identifications. The label-free
quantification algorithm (LFQ) in MaxQuant was used for relative
quantification, and the “match between runs” feature was enabled.
All proteins that could not be discriminated based on the identified
peptides were merged into a single protein group.

All statistical analyses were performed with the Perseus software
(1.5.1.16) (29). Initially, we filtered out proteins identified in the decoy
database, proteins identified only based on the variable modification
site, potential contaminants and immunoglobulins. The “protein
groups” and the “peptide” output tables from the separate MaxQuant
analyses for the discovery and validation cohort are available as
supplemental Tables S2–S5. Bioinformatic analysis of the discovery
cohort was performed on the log2-LFQ- intensities. Data were filtered
to include proteins with valid values in at least 75% of the samples.
Missing values were then imputed by replacing them with random,
low intensity values that form a normal distribution with a width of
30%, and downshift of 1.8 standard deviations of the general data
distribution. The imputed LFQ intensities of the discovery cohort are
provided in supplemental Table S6. Machine learning was performed
on the imputed LFQ intensities of the discovery cohort. Support
vector machines (SVM) algorithm using linear kernel function was
employed to extract a predictive signature that can discriminate be-
tween the control and ovarian cancer patients. We combined three
feature selection algorithms: recursive feature elimination (RFE)-SVM,
SVM and ANOVA (30). In each of these processes, cross validation
was performed on the discovery set with 250 iterations of random
sampling of 85% of the samples as test and 15% as validation. The
optimal number of overlapping features of these three analytic meth-
ods was calculated to provide highest predictive accuracy with the
lowest possible error rates in the discovery set. Filtration and impu-
tation of the validation set was performed in the same manner as for
the discovery set. The performance of the extracted classifier was
then blindly examined on the (log2) LFQ intensities of the 9-signature
proteins in the validation cohort (supplemental Table S7). ROC curve
and the AUC calculations were performed in MATLAB. Hierarchical
clustering was performed on the z-scored log2 intensities using Eu-
clidean distances between averages. The FDR of the signature pro-
teins was estimated by permuting the sample labels of the discovery
cohort 100 times, followed by the same SVM classification and fea-
ture selection procedures. FDR calculation was based on the number
of times the protein reached the top 15 ranks out of the 100
permutations.

RNA Extraction and RT-PCR—Fresh-frozen HGOC tumors and
fresh grossly benign FT fimbriae were obtained from the Chaim Sheba
Institutional Tumor Bank. H&E staining was performed to ensure
�80% tumor cellularity. The fimbriae were processed as previously
described (31, 32). Total RNA was extracted from primary fresh frozen
HGOC tumors and dissociated normal FTE cells using QIAzol reagent
(Qiagen, Valencia, CA) followed by RNeasy clean-up kit (Qiagen)
according to manufacturer’s protocol. Gene expression was as-
sessed using FastStart Universal SYBR Green Master (ROX) (Sigma-
Aldrich, St. Louis, MO). Primers for the signature-genes are listed in
supplemental Table S8 (Sigma-Aldrich).
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Immunohistochemistry—Archival tissues were retrieved from the
Department of Pathology at the Chaim Sheba Medical Center with the
appropriate ethical review board approvals. We constructed TMAs of
30 representative cases (in duplicates) of morphologically benign
fimbriae of patients that were removed and submitted to pathological
evaluation as part of surgery for the following diagnoses: (1) normal
FT adjacent to HGOC (median age � 60, range: 40–74), (2) tubal
ectopic pregnancy (EP, median age � 33, range: 20–45), (3) leiomyo-
matous uterus (LM, benign condition of the uterus which does not
involve the fallopian tube epithelium, median age � 52, range: 38–
67), and (4) Risk reducing bilateral salpingo-oophorectomy (RRBSO,
prophylactic removal of the ovaries and fallopian tubes because of
germ-line BRCA mutation, median age � 43, range: 35–66). TMA of
46 HGOC tumors (median age � 62, range 30–88) was also con-
structed. All slides were simultaneously stained and scored for stain-
ing intensity and distribution, on a scale of 0–3 (0 - no staining or faint
staining in �10% of cells, 1 - faint staining in �10% of cells, 2 -
moderate staining of �10% of cells, and 3 - strong staining of �10%
of cells).

Primary antibodies used: (1) anti-SERPINB5 (HPA020136, 1:200,
positive control: keratinocytes) and (2) anti-S100A14 (HPA027613,
1:1000, positive control: keratinocytes) (Sigma-Aldrich).

Statistical Analysis—Statistical significance (p � 0.05) was as-
sessed by Student t test for RT-PCR data or by Fisher exact test for
IHC intensity scores. Binomial model analysis was used to evaluate
the correlation of actual diagnosis, age and menopausal status con-
founders with the prediction. Pearson correlation test was used to
examine the correlation of individual protein expression with age, and
Chi square test was used to test the correlation of individual protein
expression with menopause.

RESULTS

Our approach to identify early-stage biomarkers with high
sensitivity and specificity combines liquid biopsies from the
lumen of the gynecologic tract, with deep microvesicles pro-
teomics of the samples. To profile the proteome of the com-
plex utero-tubal body fluid and extract diagnostic biomarkers,
we adapted the previously described method for micropar-
ticle proteomics, which overcomes masking by highly abun-
dant proteins, and followed with high-resolution MS analysis
(22). Briefly, we isolated microvesicles from 1 ml of UtL liquid
biopsy samples by high-speed centrifugation, and followed
by urea-based denaturation and in-solution digestion (Fig.
1B). Peptides were analyzed on the Q-Exactive Plus or Q-
Exactive HF MS, and proteins were quantified using the label-
free algorithm in MaxQuant. Patient cohorts included samples
from HGOC patients and controls (with nonmalignant gyne-
cological conditions) from three medical centers.

Initial data analysis included all samples, in a combined
MaxQuant analysis, to evaluate the data quality, and examine
whether there are any technical artifacts associated with the
sample origin and batch. Combined analysis identified a total
of 8760 proteins. Among them, we found known lineage
markers of FTE/HGOC, such as MUC16 (CA125), WFDC2
(HE4), and OVGP1 (MUC9), as well as very low-abundance
proteins, including cytokines and growth factors, such as
IGF1, CXCL12, IL18, and HGF (Fig. 1C). The dynamic range of
relative abundance of the microvesicle proteome spanned
eight orders of magnitude. In agreement with our previous

results (31), the amounts of lineage markers CA125 (MUC16),
HE4 (WFDC2), and OVGP1 (MUC9) did not discriminate be-
tween HGOC patients and control samples (Fig. 1D). More-
over, the concentration of CA125 in unfractionated UtL sam-
ples was measured with a commercial assay (Access
Immunoassay OV Monitor, Beckman Coulter), and demon-
strated no significant difference between patients and con-
trols (data not shown). Next, we examined potential “batch
effect” or differences in composition of samples (surrogate for
UtL sampling technique variations and analysis batches).
Principal component analysis (PCA) showed no clear separa-
tion between the groups of samples, implying low technical
variation between the batches and between the three medical
centers (supplemental Fig. S1A and S1B). Additionally, corre-
lation analysis between samples showed an average correla-
tion of 0.67 within each center and correlation of 0.66 be-
tween centers. Reassuringly, we found higher correlations
between controls from different centers, than between pa-
tients and controls from the same center (supplemental Fig.
S1C). We therefore concluded that the batch effects and
inter-institutional differences are negligible and did not require
any correction. We then investigated whether we can identify
significantly different proteins between patients and controls.

Diagnostic UtL-Based Proteomic Classifier—Aiming to
identify diagnostic markers, we divided the data into a dis-
covery set and a validation set. To eliminate any dependence
between the discovery and the validation cohorts, we ana-
lyzed each of these sets separately in MaxQuant. A discovery
cohort, including a total of 24 patients and controls, was used
to construct a protein classifier for HGOC diagnosis. It was
designed to include patients from all three medical centers,
exclude any previously treated patients and BRCA carriers,
and have equal numbers of cases and controls. MaxQuant
analysis of these samples identified a total of 5565 UtL mi-
crovesicle proteins, and an average number of �2500 pro-
teins per sample (range: 1100–3600; supplemental Fig. S2A–
S2B, supplemental Table S2). To obtain a signature of minimal
number of proteins with highest accuracy and robustness, we
tested three feature selection algorithms: Support vector ma-
chine (SVM), recursive feature elimination (RFE)-SVM and
ANOVA. The entire analytical workflow was embedded in a
cross validation procedure to reduce over-fitting. To minimize
the dependence on the feature selection algorithm, we tested
the performance of several sets of top-ranked overlapping
signatures, ranging in size from 6 to 19 features (Fig. 2A and
2B). Optimal sensitivity, specificity, and area under the curve
(AUC) of Receiver Operating Characteristic (ROC) curve of
sensitivity versus 1-specificity were obtained with a 9-protein
classifier, 6 of which were higher in the HGOC patients, and 3
that were higher in controls (Fig. 2C, supplemental Fig. S2C,
and Table II). t test showed that five of the signature proteins
(S100A2, S100A14, SERPINB5, IVL, and CLCA4) were also
statistically significant (FDR 0.05; s0 � 0.5) between the con-
trol and patient samples in the discovery cohort (Fig. 2D). This
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signature demonstrated 83% sensitivity (95% confidence in-
terval: 51.6–98%), at a specificity of 100% (95% confidence
interval: 73.5–100%), and an AUC of 0.99 in the discovery set
(Fig. 2E). The permutation-based FDR for the signature pro-
teins ranged between 0–0.11 (Supplemental Table S9). The
coefficients of variation of the nine signature proteins were
below 25% (supplemental Fig. S2D). Importantly, this signa-
ture correctly predicted all three stage IA HGOC cases in-
cluded in the discovery set. Intensities of seven of the nine
proteins discriminated them from control samples better than
they discriminated advanced stage HGOC samples from
controls (supplemental Fig. S3A), suggesting the potential
strength of this signature in identification of early-stage le-
sions. Last, to control for any influence of confounding fac-
tors, we included the age, batch and medical center in the
prediction process. Repeating the same machine learning
procedures identified age as a predictor of disease, but the
other potential confounding factors were not included in the
top ranks. Because the HGOC group was on average, signif-

icantly older than the control group (61.8 versus 50.5 years
old) this result is expected. Moreover, adding these poten-
tial confounding variables to the signature resulted in re-
duced performance of the classifier, thus showing that
these do not contribute the signature performance (supple-
mental Fig. S3B).

We next sought to validate the performance of the pro-
teomic signature on the independent validation cohort of pa-
tient/control UtL samples (n � 152, Table I). This sample set
was analyzed independently in MaxQuant, which led to iden-
tification of a total of 8544 proteins, and an average of 3200
per sample. Application of the 9-protein classifier to the vali-
dation cohort predicted 84 of the controls and 25 patients
correctly, providing 74% sensitivity at 66% specificity (Sen-
sitivity- 95% confidence interval: 48.6–80.3%; Specificity-
95% confidence interval: 64.6–81.5%). ROC curve for the
validation cohort showed an AUC of 0.71 (Fig. 3A). Of note,
one case of an incidental occult precursor lesion of serous
tubal intraepithelial carcinoma (STIC) was incorrectly desig-
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nated as “healthy” by the 9-protein classifier. However, be-
cause of the small number of early stage patients, the per-
formance in these cases requires further investigation. Our

validation set included 22 UtL samples from HGOC patients
who received neo-adjuvant chemotherapy (NACT). PCA
shows that the NACT treated samples were highly like the
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samples obtained from HGOC patients during primary deb-
ulking (supplemental Fig. S4). Looking at the integration of the
two cohorts, the classifier offered 70% sensitivity and 76.2%
specificity for diagnosis of HGOC.

Given the long-standing clinical use of CA125 and HE4 as
diagnostic markers, we examined whether their combination
with our signature has any predictive advantage. The perform-
ance of a combination of the 9-classifier and the best-vali-

dated protein biomarkers (CA125 and HE4) was calculated in
the discovery and validation cohorts. Both sensitivity and
specificity were reduced compared with the 9-protein signa-
ture alone: sensitivity of 83% and 68% and specificity of 75%
and 67.5% in the discovery and validation cohort, respectively
(Fig. 3B). The performance of CA125�HE4 alone was even
worse, with sensitivity of 33% and 5.2% and specificity of
50% and 94.7% in the discovery and validation cohorts,
respectively (Fig. 3C).

Because the patient age correlated with the prediction,
and most HGOC patients were post-menopausal, we tested
whether age and menopausal status affect the signature pro-
tein expression. Because hormonal status information was not
available for all patients, we divided the cohort into age � � 50
(pre-menopausal) versus age � 50 (post-menopausal). Bino-
mial model multivariate analysis demonstrated no correlation
of the signature with age (p value � 0.414). p value for regres-
sion correlation of 1.45 with menopausal status was 0.01,
because diagnosis of HGOC directly and strongly correlates
with menopause (p value � 2.5E-06). Reassuringly, the actual
diagnosis strongly correlated with the signature prediction (p
value � 3.9E-07). Moreover, the LFQ intensities of the indi-
vidual signature proteins did not significantly correlate with
menopausal status. Only one protein, Ectonucleotide Pyro-
phosphatase/Phosphodiesterase 3 (ENPP3), inversely corre-
lated with age (p value � 0.00078; supplemental Table S9).

Real-time PCR Validation of Differential Expression of Sig-
nature Proteins—The UtL liquid biopsy samples proteins that
are not necessarily exclusively expressed by the cancer cells,
but can also capture stromal response to tumor development,
or can result from an increase in specific tissue mass. Some
known tumor markers (e.g. CA125) directly reflect an increase
in mass of a specific tissue type, and are not uniquely ex-
pressed by malignant cells, nor do they possess cancer-
promoting biological functions. Such markers are expected to
detect tumors at an advanced stage, and may not be appro-
priate for early cancer diagnosis, whereas cancer-specific
expression may increase the sensitivity of signature bio-
marker and increase the chances of diagnosing the disease at
an early stage. We therefore examined the expression pat-

TABLE II
The overlapping features which compose the 9-protein classifier

# Gene names Protein names UNIPROT ID SVM rank RFE-SVM rank ANOVA rank

1 MYH11 Myosin-11 P35749 1 10 478
2 CLCA4 Calcium-activated chloride channel regulator 4 Q14CN2 3 19 10
3 S100A14 Protein S100-A14 Q9HCY8 14 14 3
4 S100A2 Protein S100-A2 P29034 3 17 2
5 SERPINB5 Serpin B5 P36952 11 21 4
6 IVL Involucrin P07476 2 15 5
7 CD109 CD109 antigen Q6YHK3 8 8 168
8 NNMT Nicotinamide N-methyltransferase P40261 9 2 8
9 ENPP3 Ectonucleotide pyrophosphatase/phosphodiesterase
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terns of the signature proteins at the RNA level, by RT-PCR,
and the protein level, by IHC. We measured the mRNA ex-
pression of all signature genes in HGOC tumors versus normal
FTE on an independent set of unmatched samples: fresh-
frozen advanced HGOC tumors (n � 10) and unmatched
benign FTE cells harvested from normal fimbriae (n � 10). Our
results indicate statistically significant transcriptomic differen-
tial expression (DE) in accordance with the proteomic analysis
of five of the nine genes (Fig. 4). The fact that not all tran-
scripts are DE suggests that some proteins remain relatively
consistent through malignant transformation and may also
stem from the profound differences in the type of biological
materials examined (extracellular microvesicle proteins versus
cellular mRNA), and the methodologies used (MS versus
RT-PCR).

Immunohistochemistry (IHC) Validation of Tumor Expres-
sion of Signature Proteins—MS and RT-PCR methods lack
spatial resolution, thus precluding disclosure of the specific
cell-type that expresses each of the classifier’s proteins. To
explore the localization of selected signature proteins in
HGOC tumors and normal FTE, and confirm the DE by tumor
cells, we performed IHC for SERPINB5 and S100A14, two
selected proteins that were over-represented in UtL samples
of HGOC patients. IHC was performed on a tissue microarray

(TMA) of HGOC tumors versus four control-TMAs represent-
ing grossly normal FT fimbriae removed from women with:
HGOC, tubal ectopic pregnancy (EP), leiomyomatous uterus
(LM, benign condition of the uterus not affecting the fallopian
tube), or BRCA-mutation carriers undergoing RRBSO.

SERPINB5 is an epithelial-cell-specific member of the SERPIN
family that lacks serine protease inhibition activity. Not much
is known about its cellular functions in cancer, yet it has been
implicated as cancer susceptibility gene and a prognostic
factor in several cancer types (33). It has been also attributed
a role as an exosomal protein (34). In accordance with the
proteomic analysis, IHC exhibits weak cytoplasmic staining in
less than 50% of normal FTE specimens (intensity 0–1), and a
stronger expression in a subset of HGOC tumors (p value �

1.65E-09; Fig. 5A, supplemental Fig. S5).
S100A14 is a member of the S100 family lacking calcium-

binding function, known to be involved in the regulation of
TP53 protein expression and of cellular motility (35). In FTE, it
localized exclusively to the cytoplasm of ciliated cells, with
very low staining in secretory cells (intensity 0–1) (Fig. 5B,
supplemental Fig. S6). In agreement with the proteomic anal-
ysis, its expression was significantly higher in HGOC tumor
cells compared with the presumed cell-of-origin - secretory
FTE (p value � 2.04E-06; Fig. 5B) (15).

We further obtained IHC evidence from the Human Protein
Atlas database (www.proteinatlas.org (36)) for the expression
of three additional proteins. According to publicly available
histology images in the database, CLCA4, S100A2 and
MYH11 had stronger cytoplasmic staining in HGOC tumor
cells than in normal FTE. Overall, the IHC results confirm the
DE of the five signature proteins in HGOC tumors compared
with normal FTE and localize their expression specifically to
tumor cells.

DISCUSSION

In this work, we present the discovery of potential early
diagnostic markers for HGOC, using microvesicle proteomics
of UtL liquid biopsies. Isolation of microvesicles enabled over-
coming the large dynamic range of this body fluid, and untar-
geted identification of thousands of proteins per sample in
single LC-MS runs. As opposed to our original methodologi-
cal study of plasma microparticle proteomics (22), in the
current work we used LFQ rather than SILAC, because we did
not find a suitable SILAC standard for this body fluid. The
MaxQuant LFQ algorithm enabled general normalization that
overcame all potential batch effects; however, even in the
separate analysis of the discovery and validation sets, predic-
tive ability of the signature was still high. We believe that this
work is the first step toward translation of the signature pro-
teins into a clinical test and envision that such a test will use
simpler MS-based targeted assays and shorter analytical
times. MS-based clinical tests are expected to increase the
accuracy and multiplexing capabilities compared with more
commonly used antibody-based tests (e.g. ELISA). Further,
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these will reduce the cost and assay development times be-
cause of the high specificity of the MS results (37). Recent
attempts to advance the applicability of the MS-based assays
have already simplified the sample preparation and MS anal-
yses, increased the throughput and implemented targeted MS
methodologies, combined with absolute quantification (38–
41). Future combination of our study with such technologies
can potentially lead to implementation of the signature pro-
teins to routine clinical labs.

Early diagnosis of HGOC is of highest importance to women
with genetic predisposition, because they are currently coun-
seled to undergo RRBSO around the age of 40, despite the
incomplete penetrance and the highly variable age of presen-
tation. This practice gains legitimacy from the exceedingly nar-
row window-of-opportunity for early-stage diagnosis and the
unbearably high mortality rates, thus necessitating extremely
cautious management. Recently, evolutionary mutation analy-
ses revealed that the time gap between development of STIC
and clinical appearance invasive HGOC is longer than 6 years
(17), thus implying that early detection may, after all, be possible
once new methodologies become available. UtL liquid biopsy,
as opposed to blood, may potentially disclose localized HGOC
lesions, which are curable.

Our 9-protein classifier has 70% sensitivity and 76% spec-
ificity which outperforms previous results of genomic bio-
markers based on gynecological liquid biopsy (18–20). Unlike
mutation analysis in UtL samples which looks at a negligible
percent of cancer cells, proteomics reflects the complexity of
a cancer-associated program that, theoretically, captures ex-
pression changes in multiple cell types within the tumor mi-
croenvironment, thus can potentially provide a wider array of
early-detection biomarkers. Further improvement of the pro-
teomic signature and its predictive power requires analysis of
more early-stage HGOC UtL samples or STICs, however,
these samples are inherently rare. Coupled with the intrauter-
ine liquid biopsy method, this assay holds promise for clini-
cally significant early detection of HGOC.

The UtL sampling technique that we propose hereby is a
simplified version of the originally reported method (18), mak-

ing it suitable for routine testing of healthy young women at
high risk for HGOC, including women who have not under-
gone vaginal delivery. Fundamental parameters for clinical
feasibility, such as patient-reported outcomes, physicians-
reported workload and compliance of the target population to
undergo routine UtL sampling need to be investigated. Semi-
annual monitoring with clinical proteomic assays may be im-
plemented as a measure of reassurance for high-risk popula-
tions willing to delay RRBSO until after menopause, and thus
become practice changing.

To consolidate the specificity of the signature proteins to
HGOC tissues, we examined their expression in independent
tissue specimens, comparing FTE and HGOC, using comple-
mentary techniques: RT-PCR and IHC. We obtained confirm-
atory IHC results for five proteins and supportive RT-PCR
results for five of the nine genes tested, highlighting the ab-
errant expression of these proteins in HGOC tissues. These
results reinforce the potential of the proteomic signature as a
diagnostic test. Of note, discordance between the proteomic
predictions and transcriptomic validation results may arise
from the differences between mRNA and protein expression
patterns, and between the extracellular vesicles and intracel-
lular levels of expression. Alternatively, it is possible that the
expression of several proteins is not altered when FTE evolves
into HGOC, because they are not directly involved in the
cancerous process, but may still be useful biomarkers, like
CA125, for aberrant expansion of the cell lineage within
HGOC lesions.

Ultimately, the genomic and the proteomic approaches, as
well as other possible methodologies of liquid biopsy analysis,
may be integrated to yield a multi-modality classifier with an
adequate sensitivity and specificity to guarantee early detec-
tion of HGOC in both average- and high-risk populations, and
potentially enable personalized risk stratification and delay
of RRBSO in predisposed women without increasing HGOC
incidence.
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