
A Tool for the Automatic Generation of Test Cases
and Oracles for Simulation Models Based on

Functional Requirements
Aitor Arrieta

Electronics and Computer Science Dpt.
Mondragon University

Mondragon, Spain
aarrieta@mondragon.edu

Joseba A. Agirre
Electronics and Computer Science Dpt.

Mondragon University
Mondragon, Spain

jaagirre@mondragon.edu

Goiuria Sagardui
Electronics and Computer Science Dpt.

Mondragon University
Mondragon, Spain

gsagardui@mondragon.edu

Abstract—Simulation models are frequently used to model,
simulate and test complex systems (e.g., Cyber-Physical Systems
(CPSs)). To allow full test automation, test cases and test oracles
are required. Safety standards (e.g., the ISO 26262) highly
recommend that the test cases of systems like CPSs are associated
to requirements. As a result, typically, test cases that need to
cover specific requirements are manually generated in the context
of simulation models. This is, of course, a time-consuming and
non-systematic process. However, the current practice lacks tools
that generate test cases by considering functional requirements
for simulation-based testing. In this short paper we propose
a Domain-Specific Language (DSL) for specifying requirements
for simulation-based testing in an easy manner. These files are
later parsed by an automatic test generation algorithm, which
generates test cases that follow the ASAM-XiL standard. The
tool was integrated with two professional tools: (1) SYNECT
from dSPACE and (2) xMOD from FEV. An initial validation
was also performed with an industrial simulation model from
YASA motors.

Index Terms—Simulation-based Testing, Functional Require-
ments, Test Case Generation

I. INTRODUCTION

Simulation-based testing is the driving technology to ver-
ify and validate complex dynamic systems, such as Cyber-
Physical Systems [1], [2]. In many domains, safety standards
require test cases to be associated to requirements (e.g., the
ISO 26262 standard on the automotive domain) [3]. As a
result, a common practice is to derive test cases directly from
requirements. This is a typically manual process, which is a
tedious, time-consuming and non-systematic activity. Subse-
quently, automated test generation tools are required to reduce
verification and validation efforts. Besides test generation, to
allow full-automation, test oracles are also necessary [4], [5].

A problem with test generation based on requirements
is that the latter are usually specified in natural language.
However, natural language-specified requirements are usually
difficult to process by machines and are often ambiguous.
To solve this problem, in this paper we propose a Domain
Specific Language (DSL) that enables engineers (1) to easily
specify requirements for simulation-models, (2) to reduce the
ambiguity of requirements and (3) to easily parse requirements

for automated test generation. For this last point, we adapted
the well-known Adaptive Random Testing (ART) algorithm
to this context for the purpose of generating requirements-
specific test cases [6].

The main contributions of this paper include (1) a novel
language that enables to specify requirements for simulation-
based testing and (2) the adaptation of the ART algorithm [6]
for generating test cases for simulation-based testing following
requirements. These scientific contributions are complemented
with the following advances in the state-of-the-practice: (1)
integration with two professional tools (SYNECT [7], a data
management and collaboration software for automated testing
from dSPACE and xMOD [8], a co-simulation tool from FEV)
and (2) generation of ASAM-XiL compliant test cases, which
allows for the re-use of test cases at different test levels and
with different simulation tools.

The rest of the paper is structured as follows: Background of
the context is given in Section II. The DSL for test generation
is presented in Section III. The tool support and the test
generation workflow is explained in Section IV. We present the
performed preliminary evaluation in Section V. We position
our tool with other approaches in Section VI. Lastly, we
conclude the paper and summarize future work in Section VII.

II. BACKGROUND

Developers of CPSs rely on Model-Based Design work-
flows and simulation environments, where graphical models
are used to test the systems at design-time [9]. Simulation
tools (e.g., Simulink) are data-flow models, where each model
contains a set of blocks that accept data through their inputs
and may pass output through their output ports after per-
forming a set of operations (e.g., mathematical or logical)
[9]. To allow for a hierarchical organization, these models
can be structured into several subsystems. Consider as an
example the simulation-model depicted in Figure 1. This
model includes six inputs (enable, brake, set, speed, inc and
dec) and two outputs (throt and target), and is structured into
two hierarchical levels, permitting engineers to organize their
models [10]. Each input and output of the simulation-model is



a signal (i.e., a function of time), which is stored as a vector
where elements are indexed by time [2]. In the context of
simulation-based testing, a test case is a signal that stimulates
the highest level subsystem of the System Under Test (SUT)
(i.e., for the case of the example shown in Figure 1, six signals
stimulating the input of the subsystem named as “Controller”).

Fig. 1. Example of a simulation-model of a Cruise Controller of a car

Based on our discussions with industrial partners, two
aspects should be considered when generating test oracles
for simulation-based testing. Firstly, the transitory regime that
dynamic models are exposed to. For some systems/subsystems
(e.g., electrical engines), some signals are exposed to a tran-
sitory regime that is difficult to predict. For the industrial
example used in this paper, consider the graph shown in Figure
2. As can be seen, this output signal has a transitory regime
of around 0.1 seconds. After this time, the signal is stabilized.
The transitory regime of simulation-models corresponds to
the non-functional part of the simulation-model and thus,
it is normally not considered by engineers when manually
evaluating the functional requirements.

The second aspect when generating test oracles corresponds
to the tolerance (i.e., bounds) given by the engineers to
determine whether a signal meets certain requirements. This
is because usually the simulation-models are modeled with
complex mathematical models and it is difficult to predict the
specific trajectory that the signal should have. To cope with
this issue, test oracles must consider certain tolerance, which
we solved by using a tolerance tube (i.e., certain bounds are
given to a reference signal), as shown in Figure 3.

III. DSL FOR THE GENERATION OF TEST CASES

We now provide an overview of the tool for generating
test cases. Implementation and integration details, along with
the detailed description of the DSL syntax is provided in a
technical report [11] to keep the paper at a reasonable size.

Fig. 2. Output signal example for the industrial case study used in this paper
for a given test case generated by our tool

Fig. 3. Sample of a reference signal and its corresponding tolerance tube
signals (figure courtesy of dSPACE)

A. Syntax of the DSL

A DSL is a programming language in charge of solving
a particular problem of a specific domain. In this paper we
propose a DSL for specifying system properties (such as the
interface of the simulation-models and their requirements) to
automatically generate test cases and oracles. The developed
DSL supports all the characteristics for simulation-based test-
ing explained in the Background section.

The DSL has been developed in Xtext [12] as it permits
creating a language and generating a syntactic analyzer, an
abstract model of classes for the syntax tree. Another ad-
vantage for Xtext is that it permits the development in the
Eclipse environment, which eases the integration with other
tools. Furthermore, this environment permits making small
corrections and providing the end-user with the appropriate
guidance not to introduce syntax errors in their files. The
developed DSL has two main structures. The first one is
intended to characterize the model (e.g., the interfaces and its
parameters) of the models to be tested, whereas the second part
is intended to specify functional requirements of the models.
The second part makes use of the first part, which means



that in the workflow, it is mandatory to first characterize the
interface of the simulation-model under test.

1) Model characterization: This involves the characteriza-
tion of the inputs, outputs and parameters of the SUT. This
file is automatically generated from SYNECT, although some
manual changes might be required depending on the SUT.
When characterizing the inputs of a system, the following
properties need to be specified: (1) name of the input signal,
(2) datatype, (3) signal pattern (i.e., constant, PWM, sine,
etc.), (4) unit, (5) maximum value and (6) minimum value
(when the datatype is not boolean). All this information, with
the exception of the unit, is required by either the functional
requirement specification or the test generator. For the signal
pattern, we have followed the signals specified in the ASAM-
XiL standard. This is important as it helps delimit the search
space when generating test cases.

With regards to the outputs, the following properties are
mandatory: (1) name of the output signal, (2) datatype and
(3) unit. Besides this information, an optional property is the
stabilization time, which can be set to those output signals that
show a transitory time behavior (similar as shown in Figure
2). This information is processed by the test oracle generator.
Other properties (e.g., signal pattern or maximum/minimum
values) are not necessary when characterizing the outputs.

As an optional property, the interface file also allows to
specify parameters. The name of the parameter is set and a
default value is given. The specified parameters in this section
can later be used to specify the functional requirements. This
can be interesting, for instance, to model different parameters
within PID controllers (e.g., a higher Kp will mean a higher
ramp, etc.).

2) Functional requirements specification: After character-
izing the model in the interfaces files, requirements need to be
specified with our DSL. The idea is to formally specify which
the signal behavior should be for certain inputs. To this end,
each requirement file has two properties, as depicted in Figure
4: (1) system requirement and (2) output vector definition. The
former specifies potential conditions that are required to be
given to cover a requirement (i.e., the test stimulation). The
latter specifies the expected output (i.e., the test oracle) for
the given conditions in the system requirement part as well
as the parameters. In addition, the tolerance tube for a given
signal is specified in the output definition part, as can be seen
in Figure 4. This is the information used to generate the test
oracles.

B. Automated Test Generator

Along with the DSL we have developed an automated test
generator. This test generator generates a set of test cases
for each of the requirements specified within the DSL. The
implemented test generator is a novel algorithm based on the
Adaptive Random Testing (ART) test generation algorithm [6].
The ART algorithm relies on the hypothesis that the more
diverse the test data is, the higher the probability of detecting
faults. We selected ART because its implementation is simple,
it is a relatively fast algorithm, it is intended for black-box

Fig. 4. Sample of a functional requirement file specified with the DSL

testing and its focus is on detecting faults. Nevertheless, it has
some limitations that we have addressed in our tool.

The first limitation is that ART is designed for unit testing
of code rather than simulation-based testing. To cope with
this limitation, the algorithm we have developed has two main
features. The first feature includes a parser to determine the
signal pattern of each input, which enables later to generate
test cases with these patterns. The second feature consists on
a novel heuristic to measure the distance among test cases,
which was based on the well-known Hamming Distance.
However, we adapted it to the context of signal-based testing,
by considering different features (i.e., not only the amplitude
of the signals but also frequencies, etc.), depending on the type
of signals that the test generator aims to generate.

The second limitation is that ART does not consider require-
ments. This means that if pure random is used to generate
the candidate set of test cases, there is no control over the
covered and uncovered requirements. To overcome this issue,
we have opted to individually generate a set of test cases for
each requirement. A parser has been implemented to extract
which are the specifications provided by the requirements
in order to set certain constraints when generating the set
of candidates. After the algorithm generates the test cases,
these are converted into a format that follows the ASAM-XiL
standard and stored with a *.sti extension, which is a simple
XML file.

IV. TOOL SUPPORT AND WORK-FLOW

The DSL has been integrated with two professional
tools: SYNECT, a tool from dSPACE intended to manage
simulation-models data for automated testing, and xMOD, a
co-simulation tool from FEV that allows for the execution of
test cases. The integration with SYNECT has been performed
through Python scripts, whereas the integration with xMOD
has been done via the XiL-API that follows the ASAM-XiL
standard.

The test generation and execution workflow has five steps.
In the first step, a model to be tested is selected in SYNECT
from a specific workspace. In SYNECT, the model can be
characterized, which later allows for the automated generation
of the interface file explained in Section III-A1. The second
step is to edit the requirements with our DSL, which is opened
by triggering it through SYNECT. When our tool is opened,



it is possible to edit and/or create functional requirements for
the selected simulation-model. When this process has been
finished, the editor is closed and the changes can be saved
in SYNECT. The third step is to generate test cases. The
test generator explained in Section III-B is triggered through
SYNECT, test cases generated and stored back in SYNECT.
The fourth step corresponds to the test execution. In SYNECT
it is possible to select which test cases need to be executed
and when. When this is selected, the tests are executed, where,
for each test to be executed the XIL-API is invoked and the
tests executed through xMOD. When the test execution has
finished, the simulation results files are obtained (which have
an *.mdf format), and evaluated through our oracles, which
determine whether the test has passed or failed. The last step
is to store all the results in SYNECT. The overview of all
these steps is available in [11].

V. PRELIMINARY EVALUATION

A preliminary validation was performed with an industrial
case study from YASA. The first objective was to see whether
the syntax of the DSL had sufficient expressiveness to spec-
ify functional requirements of their simulation-model. They
provided us with three requirements of their model specified
in natural language and later written in our DSL. The results
showed that the proposed DSL had sufficient expressiveness to
write the specified model’s requirements. This means that for
a real-world industrial simulation-model, the proposed syntax
is able to specify its requirements to later generate test cases
and oracles.

After writing the requirements with our DSL, we wanted to
know the practicality of the tool when generating test cases.
To this end, we specified different number of test cases and
oracles to be generated (i.e., from 15 to 300 test cases in
total), and measured the time the tool took to generate test
cases. Notice that the test generation time was triggered when
the user orders the generation of test cases through SYNECT,
and it was stopped when test cases were stored in SYNECT.
This means that the overhead introduced by SYNECT was
considered besides the time our algorithm took to generate
test cases. As expected, the highest test generation time was
when setting the tool to generate 300 test cases. This was,
however, less than 40 seconds, a time that is, by far, affordable
by engineers.

VI. RELATED WORK

In the last few years, several studies have considered test
case generation for simulation-based testing [2], [13]–[16].
Most of these studies follow search techniques when generat-
ing test cases. Despite some of them considering functional
requirements for test generation (e.g., [13], [14]), none of
them specify these requirements with a specific language
for simulation-based testing. In addition, in contrast to these
studies, the method proposed in this paper has been integrated
with two professional tools. Other approaches focus on the
generation of test cases based on falsification [17]–[20]. These

approaches, however, require the execution of simulation-
models, which might enlarge the test generation time, as
opposed to our tool, which generates test cases within seconds.

In the context of test oracle generation for simulation-
based testing there is much less work as compared with test
case generation [21]. Our previous tool generated test systems
for simulation-based testing of configurable CPS [22], which
included test cases and oracles. However, this tool focused
on the test system, which means that test cases and oracles
needed to be generated beforehand following any state-of-
the-art technique. A recent study proposed a DSL for the
generation of test oracles for Simulink models, which is
quite similar to what we propose in this paper [21]. The
main difference between the study proposed by Menghi et
al. and our approach is that they solely focus on test oracle
generation whereas we focus on both, test case and test oracle
generation. As for the test oracle generation, there are still
some differences between the work presented in [21] and our
work. One such difference is that their approach evaluates test
cases on-line whereas our approach does it off-line. We used
standards for doing this, such as the used *.mdf files generated
by xMOD, which eases our oracles to be used by other
simulation tools that generate these files. Another difference
is that we consider aspects like the tolerance a signal can have
or the transitory regime. On the contrary, we do not consider
aspects like the degree of satisfaction or violation, which is
considered in [21]. Nevertheless, although this could be easily
included in our oracles by measuring how far a signal is from
being out of the tolerance tube, SYNECT is not prepared for
obtaining a quantitative degree and solely focuses on verdicts
(i.e., PASS, FAIL, INCONCLUSIVE, etc.).

VII. CONCLUSION AND FUTURE WORK

In this paper we have proposed a tool based on a DSL to au-
tomatically generate test cases and test oracles of simulation-
models. A preliminary evaluation was performed with an
industrial case study from YASA, showing the feasibility of the
tool both to specify requirements and generate test cases and
oracles. The future steps will have as main objective a more
comprehensive evaluation with other industrial case studies.
To this end, at the current stage, the tool has been transferred
to other industrial partners (e.g., Idiada, Iveco, Ricardo, etc),
and we are planning to get feedback from them with regards
to the efficiency and usability of the tool.

ACKNOWLEDGMENT

The work of this paper has been done inside the HIFI-
ELEMENTS project (www.hifi-elements.eu). This project re-
ceived funding from the European Union’s Horizon 2020
research and innovation program under Grant Agreement no.
769935.

REFERENCES

[1] L. Briand, S. Nejati, M. Sabetzadeh, and D. Bianculli, “Testing the
untestable: Model testing of complex software-intensive systems,” in
Proceedings of the 38th International Conference on Software Engi-
neering Companion, ser. ICSE ’16. ACM, 2016, pp. 789–792.



[2] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Automated
test suite generation for time-continuous simulink models,” in Proceed-
ings of the 38th International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 595–606.

[3] A. Mjeda and M. Hinchey, “Requirement-centric reactive testing for
safety-related automotive software,” in 2015 IEEE/ACM 2nd Interna-
tional Workshop on Requirements Engineering and Testing, Florence,
Italy, 2015.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE transactions on software
engineering, vol. 41, no. 5, pp. 507–525, 2014.

[5] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on software engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[6] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing.” in ASIAN,
vol. 4. Springer, 2004, pp. 320–329.

[7] dSPACE. (2020) SYNECT. [Online]. Available:
https://www.dspace.com/en/inc/home/products/sw/datenmanagement/
synect.cfm

[8] FEV. (2020) xMOD - Co-Simulation Tool. [Online]. Available:
https://xmod.fev.com/

[9] S. A. Chowdhury, S. Mohian, S. Mehra, S. Gawsane, T. T. Johnson,
and C. Csallner, “Automatically finding bugs in a commercial cyber-
physical system development tool chain with SLforge,” in Proceedings
of the 40th International Conference on Software Engineering. ACM,
2018, pp. 981–992.

[10] A. Arrieta, S. Wang, U. Markiegi, A. Arruabarrena, L. Etxeberria,
and G. Sagardui, “Pareto efficient multi-objective black-box test
case selection for simulation-based testing,” Information & Software
Technology, vol. 114, pp. 137–154, 2019. [Online]. Available:
https://doi.org/10.1016/j.infsof.2019.06.009

[11] A. Arrieta, “Technical report of: “a tool for the automatic generation
of test cases and oracles for simulation models based on functional
requirements”,” Mondragon University, Tech. Rep., 2020. [Online].
Available: https://tinyurl.com/Arrieta-AMOST2020

[12] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Proceedings of the ACM international
conference companion on Object oriented programming systems lan-
guages and applications companion. ACM, 2010, pp. 307–309.

[13] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, and L. Etxeberria,
“Search-based test case generation for cyber-physical systems,” in Evo-
lutionary Computation (CEC), 2017 IEEE Congress on, 2017, pp. 688–
697.

[14] ——, “Employing multi-objective search to enhance reactive test case
generation and prioritization for testing industrial cyber-physical sys-
tems,” IEEE Transactions on Industrial Informatics, vol. 14, no. 3, pp.
1055–1066, 2018.

[15] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Test
generation and test prioritization for simulink models with dynamic
behavior,” IEEE Trans. Software Eng., vol. 45, no. 9, pp. 919–944,
2019. [Online]. Available: https://doi.org/10.1109/TSE.2018.2811489

[16] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algorithms,”
in Proceedings of the 40th International Conference on Software Engi-
neering, ser. ICSE ’18, 2018.

[17] S. Nejati, K. Gaaloul, C. Menghi, L. C. Briand, S. Foster, and D. Wolfe,
“Evaluating model testing and model checking for finding requirements
violations in simulink models,” arXiv preprint arXiv:1905.03490, 2019.

[18] C. Menghi, S. Nejati, L. C. Briand, and Y. I. Parache, “Approximation-
refinement testing of compute-intensive cyber-physical models:
An approach based on system identification,” arXiv preprint
arXiv:1910.02837, 2019.

[19] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 167–170.

[20] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2011, pp. 254–257.

[21] C. Menghi, S. Nejati, K. Gaaloul, and L. C. Briand, “Generating
automated and online test oracles for simulink models with continuous
and uncertain behaviors,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2019.

New York, NY, USA: ACM, 2019, pp. 27–38. [Online]. Available:
http://doi.acm.org/10.1145/3338906.3338920

[22] A. Arrieta, G. Sagardui, L. Etxeberria, and J. Zander, “Automatic gener-
ation of test system instances for configurable cyber-physical systems,”
Software Quality Journal, vol. 25, no. 3, pp. 1041–1083, 2017.


