Conference paper Open Access

A Crisis Classification System for flood risk assessment: the beAWARE project

Gerasimos Antzoulatos; Anastasios Karakostas; Stefanos Vrochidis; Ioannis Kompatsiaris; Francesca Lombardo; Danielle Norbiato; Michele Ferri

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.3739200</identifier>
      <creatorName>Gerasimos Antzoulatos</creatorName>
      <affiliation>Information Technologies Institute (ITI) - Centre for Research and Technology Hellas (CERTH)</affiliation>
      <creatorName>Anastasios Karakostas</creatorName>
      <affiliation>Information Technologies Institute (ITI) - Centre for Research and Technology Hellas (CERTH)</affiliation>
      <creatorName>Stefanos Vrochidis</creatorName>
      <affiliation>Information Technologies Institute (ITI) - Centre for Research and Technology Hellas (CERTH)</affiliation>
      <creatorName>Ioannis Kompatsiaris</creatorName>
      <affiliation>Information Technologies Institute (ITI) - Centre for Research and Technology Hellas (CERTH)</affiliation>
      <creatorName>Francesca Lombardo</creatorName>
      <affiliation>Alto Adriatico Water Authority (AAWA)</affiliation>
      <creatorName>Danielle Norbiato</creatorName>
      <affiliation>Alto Adriatico Water Authority (AAWA)</affiliation>
      <creatorName>Michele Ferri</creatorName>
      <affiliation>Alto Adriatico Water Authority (AAWA)</affiliation>
    <title>A Crisis Classification System for flood risk assessment: the beAWARE project</title>
    <subject>Early Warning System</subject>
    <subject>Real-time Monitoring and Risk Assessment DSS</subject>
    <subject>Flood Management</subject>
    <subject>Flood hazard</subject>
    <date dateType="Issued">2020-04-03</date>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3739199</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;Crisis management is a dynamic, complex and multi-disciplinary process, consisting of consecutive sets of activities to collect information, analyse heterogeneous data, formulate alternatives, decision-making processes, implementation, and monitoring. Especially, in the content of the natural disaster the emergence of numerous Early Warning systems and specialised Decision Support Systems (DSS) plays an important role in assisting to reduce the risks resulting from the interaction of human societies and their natural environments. Currently, the majority of these emerged tools are not capable to provide an integrated and generalised framework for formulating decision options for crisis level estimation and risk assessment. Furthermore, the advances to the IoT as well as the increasingly volume of heterogeneous data from multiple resources (mobile phones and Apps, sensory data, drones etc) generate new capabilities and opportunities to timely alerting and tackling effectively an extreme weather or natural phenomenon. The authorities and decision makers should confront new challenges in flood risk management by operating in a holistic and interoperable framework combining data from multiple resources. A few efforts are towards on this direction by proposing generalised platforms combining the flood risk management relevant science, such as FLOODSS.&lt;/p&gt;</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/700475/">700475</awardNumber>
      <awardTitle>Enhancing decision support and management services in extreme weather climate events</awardTitle>
All versions This version
Views 9797
Downloads 6969
Data volume 22.7 MB22.7 MB
Unique views 8484
Unique downloads 6464


Cite as