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   In statistical mechanics, microcanonical factorial counting applied to systems in an ensemble 
is approximated by a canonical distribution with a weight of exp(-E/T) (where E is the energy of 
the fixed N particle system). Such an approach is even applied to a “hot” nucleus with E= Sum 
over i ei. In such a case, however, no mention is made of the number of particles in a system, 
implying such a statistical approach should apply to very small numbers of particles. It is only 
when the canonical distribution exp(-E/T) is approximated by the grand canonical exp(-(E-uN)/T) 
where N is the number of particles in a system that one finds that <N*N>-<N><N> approaches 
zero for large N. Then, restrictions to large numbers of particles are made. In previous notes, we 
have argued one may describe a statistical system in terms of reaction balance and have tried 
to map such a balance into a factorial scheme, thus linking it to traditional statistical mechanics. 
Thus, we argued there is no a priori reason for the counting of different arrangements to have 
meaning unless it maps into reaction balance. In this note, we wish to examine more closely 
equilibrium with a small number of particles to see if there is a simple map between factorial 
counting (arrangements of an ensemble) and reaction balance. We try to argue that there is not 
and that reaction balance alone applies to such cases. 
 
Scattering and Energy Conservation 
 
     We argue physical reactions occur in a system and are governed by conservation of energy 
in equilibrium as well as by probabilities for the reaction to occur. A reaction does not 
necessarily require two objects (as in two body scattering), but the energy of a particle must 
change, thus the change in energy must be transferred to a second entity. Therefore, the time 
reversed reaction does involve at least two entities. If one considers “and” probability, then 
multiple entities in a reaction lead to a product of probabilities, one factor per entity. Taking the 
ln of such an expression leads to a conservation law which one may try to equate to 
conservation of energy. Thus,  
 
ln(probability to react(e)) =  -(e-u)/T ((1))  
 
 where u and T are constants. In other words, the probability for an entity with e to react (not 
exist) in an equilibrium system is related to the energy itself, in fact the relationship is of the form 
of ((1)). Furthermore, it is often argued that: 
 
Probability to react (e) =  g(f(e)) where f(e) is the number of particles with energy e  ((2)) 
 
One has to be careful with ((2)), however. ((1)) applies to each kind of reaction, but a particle 
with energy e may be involved in many reactions or even the same reaction within different 
configurations (e.g. electrons in an excited atom). Later, a system with two electrons and three 



energy levels is examined using reaction balance. ((1)) is still used, but writing g(f(e)) may only 
apply for large particle numbers where one may approximate results by the use averages. 
It is also good to consider issues associated with energy. Consider a system which has N 
particles and only two allowable reactions e1+e2 to e3+e4 and the reverse. Imagine there is a 
wall at temperature T and that the system is in equilibrium. Next, add N2 extra e1 particles.  
Then, a readjustment would be needed such that the fractions related to N2 change from 100% 
of e1 particles to  N2 C exp(-ei/T). 
 
  We suggest in this note, that one may develop mathematical schemes which lead to ((1)). It 
seems one maps the scheme to ((1)) and so the scheme may have some physical meaning, but 
only if it maps to the reaction balance approach. We argue the scheme itself should not be 
taken as a fundamental principle, rather reaction balance is the principle. A scheme that may 
lead to ((1)) is: 
 
Imagine one wishes to map reaction probabilities g(f(e)) in space to a line. Then, one might try 
to use various factorial schemes to obtain such an arrangement e.g. 
 
M! / (m1! m2! …) ((3a))  where m1 is the number of particles with energy e1.  
 
In general, one may maximize ln of ((3a)) by changing mi subject to Sum over i mi = M ((3b)) 
and Sum over i ei mi = E and ((3c)). A question arises, however, as to why one should maximize 
ln of ((3)) and not ((3)) itself. For large mi values, one may argue there is a math approximation, 
Stirling’s approximation. Thus, the argument is that one uses ln simply because of Stirling’s 
approximation. It should be pointed out, however, that this approach converts ((3)a) into the 
form: 
 
Sum over i    q(mi)   ((4))  
 
This leads to independent equations for mi if one maximizes with respect to mi and adds 
constraints. Thus, each of these independent mi terms is set to 0 or: 
 
ln(q(mi) + b1 + b2ei =0   ((5)) 
 
This maps directly back into ideas used for reactions and conservation of energy. One may try 
to assign physical meaning to the arrangements  in ((3a)), but one may argue this is a little 
forced. In any event, the physical meaning attached does not necessarily represent a 
fundamental principle of nature, as one can devise other mathematical schemes which yield the 
same result ((5)). 
 
   This may perhaps be seen more clearly if one considers low mi values. In such a case, there 
is no use of Stirling’s approximation and so no justification in taking the ln of ((3a)) unless by 
using ln one really wants to map to the reaction approach ((1)). What is interesting is that for 
small mi, ((3a)) yields almost the same results as Stirling’s approximation: 



 
Q = ln(M!/[m1! m2! …]  =  ln(M!) -  Sum over i ln(mi!)   ((6)) 
 
Q(m1+1) - Q(m1)=  ln[ (mi+1)/mi]    ((7))  
 
Linking ((7)) to the constraint    Sum over i mi +  Sum over i ei mi and setting to zero yields: 
 
Ln[ (mi+1)/mi] =  (ei-u)/T where u and T are constants 
 
This yields  mi+1 = mi exp((ei-u)/T) or   mi = 1 / [1 - exp((ei-u)/T]  ((8)) 
 
This is not that same as ((1)). If there are not too many ei levels and N is of the order of 10 or 
so, ((8)) may be very similar to the Maxwell-Boltzmann factor. 
 
We argue that in the case of low number so particles, the factorial approach does not match the 
simple reaction balance case ((1)) exactly. Thus, the idea of counting system arrangements in 
an ensemble is an approximation at best.  
 
More complicated scenarios than ((1)) 
 
 ((1)) yields a reaction balance for a particular reaction. In a system, however, many reactions 
may occur and it is possible that for small numbers, these reactions are not decoupled. Thus, 
((1)), a reaction balance, may apply to each and one may possibly add in effects such as Pauli 
blocking and boson enhancement if photons or phonons are being absorbed or emitted. In (1), 
an example of the following three energy level, 2 electron system is given: 
 
N1 cases of:   1 e1    0 eg   1 e3 
N2 cases of    0e1     1eg    1e3 
N3 cases of    1e1     1eg     0e3 
 
By explicitly considering reactions which do not violate Pauli blocking, it was found that: 
 
N1 = x  N2 =  x[ n(n+2) + n2(2n+1)] /[ n*n+ n2(2n+1)]  N3= N2 (2n+1)/n -  x(n+1)/n  ((9)) 
 
where n= 1/[1-exp(-e/T)] and n2 = 1/[1-exp(-2e/T)] where e is the interlevel spacing energy 
 
If one considers the low temperature case, where e>>T, then n approx= exp(-e/T) and n2 
approx= exp(-2e/T), then one would expect N3 to be the largest, followed by N2 and then N1. 
Carrying out this approximation yields N3=1/(n*n), N2=1/n and N1=1. Here 1/n is large.  
 
The above problem may be solved in an alternative way. In the method used above, it is 
assumed that if an electron in a scenario N1, N2 or N3 occupied a state, this electron blocks the 
other electron from moving into the state. We now consider a transformation from the N1 state 



to the N3 state and balance it with the time reversal reaction and consider probabilities for both 
electrons at the same time. 
 
N1 to N3 balance 
 
Let C= N1+N2+N3  (normalization constant) 
 
N1/C (n2+1) [1 - N1/C (n+1) ] + [N1/C (n+1)]2 = N3/C n2 [1-n N3/C] + (nN3/C)2 
 
In the low T limit, n= exp(-e/T), n2= exp(-2e/T) and N3>N2>(N1=1)  so one may approximate 
C=N3. Then, the above yield N3=1/(n*n). 
 
Next, consider N1 to N2: 
 
nN1/C [1- (1+n2)N1/C ] + (nN1/C)2    = nN2/C [1- (n+1)N2/C] + [(n+1)N2/C]2 
 
Again, assuming C approx= C3  N1=1, n=exp(-e/T) and n2 = exp(-2e/T) gives N2=1/n. 
These are the results of the previous method. 
 
 
   Consider the example of a particle in state e3. There are two scenarios for this. In N1 cases, 
e3 may decay to eg while in N2 cases it may decay to e1. Thus, due to Pauli blocking, one 
cannot simply argue the probability for e3 to decay is proportional to f(e3) or a modified f(e3)/ 
(1-f(e3)) in this case of small particle numbers. It seems only in the case of large particle 
numbers that one may use this approximation. Thus, previous notes as well as the work of 
Kaniadakis (2) which argue for: 
 
ln(g(f(e))) = -(e-u)/T ((10))  
 
really apply to large particle numbers. 
 
 It is these large particle scenarios which may be easily mapped into factorial schemes. For 
example, (10)) has been argued in previous notes to map into a M!/ (m1! m2! …) scheme. 
   For the small number case considered above, with N1,N2 and N3, if one applies the 
“arrangement of systems in an ensemble” approach which appears in textbooks, one would 
again use: 
 
M! / (N1! N2! N3!)   ((10))   with N1+N2+N3=M  
 
it seems. This, however, does not match the results ((9)). Thus, for small particle number 
equilibrium based on reaction balance, it does not seem there is a simple mappable system 
arrangement scheme. This, we argue, it seems one should use  caution when taking factorial 
arrangement schemes very seriously or from considering them as representing fundamental 



physical principles. On the other hand, we argue reaction balance is a physically based 
approach. In addition, in obtaining ((9), one considers specific electron level pictures yielding 
N1, N2 and N3 and so purely statistical arguments are not being used even though every 
reaction itself is treated using ((1)). Furthermore, ((1)) is based on energy conservation more 
than statistics, it seems.  
    It should be noted that in obtaining ((9)), a Bose-Einstein distribution is assumed for the 
photons. In (3), it is shown that the BE distribution may be obtained directly from a two level 
reaction balance scheme.  
 
Conclusion 
 
   In conclusion, we argue that reaction balance is a physical approach to establish equilibrium 
results. In the case of large numbers, one may use ln(g(f(e)) = -(e-u)/T  where g is a function 
related to the physics of the reaction, for example g=f/(1+f) for bosons and g=f/(1-f) for fermions. 
In such a case, one is dealing with large numbers and using “average values”. Thus, for 
fermions a level is blocked on average by f(ei), i.e. the average presence of a particle in level ei. 
One may then map this approach into a factorial scheme as well as link to Kaniadakis entropy 
density Integral df ln(g(f))  which in turn links to the grand canonical partition function. We argue 
that reaction balance also pertains to small numbers of particles. One does not need to consider 
factorial arrangements of systems in an ensemble in such a case, but one cannot use average 
schemes like f/(1-f) for fermions. One must consider different allowable reactions and balance 
them. In such a case, even without fermions f(e) is not the probability for a particle with energy e 
to react because there may be two scenarios, with different weights N1 and N2 associated with 
different reactions. In other words, reactions are not decoupled. One applies a balance to each. 
The results, which we have tried to show above, do not map into a factorial arrangement of 
systems in an ensemble. Thus, we argue one should be cautious when assigning physical 
principles (e.g. maximization of arrangements) to equilibrium problems. We try to argue that 
reaction balance is the principle to use. 
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