Report Open Access

Statistical review of Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial

Wilkinson, Jack; Dahly, Darren


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3734198</identifier>
  <creators>
    <creator>
      <creatorName>Wilkinson, Jack</creatorName>
      <givenName>Jack</givenName>
      <familyName>Wilkinson</familyName>
      <affiliation>Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester.</affiliation>
    </creator>
    <creator>
      <creatorName>Dahly, Darren</creatorName>
      <givenName>Darren</givenName>
      <familyName>Dahly</familyName>
      <affiliation>HRB Clinical Research Facility - Cork. HRB Trial Methodology Research Network. University College Cork School of Public Health</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Statistical review of Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Randomized Clinical Trials</subject>
    <subject>COVID-19</subject>
    <subject>Antiviral</subject>
    <subject>Favipiravir</subject>
    <subject>Arbidol</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-03-31</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Report</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3734198</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="Reviews" resourceTypeGeneral="Text">10.1101/2020.03.17.20037432</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3734197</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/covid-19</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/covid-19-tx-rct-stats-review</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/zenodo</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The following review has been prepared in collaboration with members of the MRC-NIHR Trials Methodology Research Partnership. The reviewers named above, and other, unnamed discussants of the paper, are all qualified statisticians with experience in clinical trials. Our objective is to provide a rapid review of publications, preprints and protocols from clinical trials of COVID-19 treatments, independent of journal specific review processes. We aim to provide timely, constructive, focused, clear advice aimed at improving both the research outputs under review, as well as future studies. Given our collective expertise (clinical trial statistics) our reviews focus on the designs of the trials and other statistical content (methods, presentation and accuracy of results, inferences). Here we review &lt;em&gt;Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial,&lt;/em&gt; by Chen et al. &lt;a href="https://www.medrxiv.org/content/10.1101/2020.03.17.20037432v2"&gt;https://www.medrxiv.org/content/10.1101/2020.03.17.20037432v2&lt;/a&gt;&lt;/p&gt;</description>
  </descriptions>
</resource>
4,302
2,537
views
downloads
All versions This version
Views 4,3024,302
Downloads 2,5372,537
Data volume 1.5 GB1.5 GB
Unique views 3,7823,782
Unique downloads 2,3112,311

Share

Cite as