Dataset Open Access

Dataset for Quaternary Complex Hadamard Matrices of Order 18

Östergård, Patric R J; Paavola, William T


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3733061</identifier>
  <creators>
    <creator>
      <creatorName>Östergård, Patric R J; Paavola, William T</creatorName>
    </creator>
  </creators>
  <titles>
    <title>Dataset for Quaternary Complex Hadamard Matrices of Order 18</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-03-30</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3733061</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3733060</relatedIdentifier>
  </relatedIdentifiers>
  <version>1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The files contain the quaternary complex Hadamard matrices of order 18 classified in the work &amp;quot;Patric R. J. &amp;Ouml;sterg&amp;aring;rd and William T. Paavola, Quaternary Complex Hadamard Matrices of Order 18&amp;quot;.&lt;/p&gt;

&lt;p&gt;Each file bh18-t&lt;strong&gt;n&lt;/strong&gt;.txt contains the matrices of type &lt;strong&gt;n&lt;/strong&gt; up to Hadamard equivalence. Each matrix is expressed as a human-readable 18 by 18 array of &lt;strong&gt;x&lt;/strong&gt;&amp;isin;{0,1,2,3} such that the corresponding elements of each matrix are given by raising the imaginary unit to the power of &lt;strong&gt;x&lt;/strong&gt;. Each array is followed by a single row that contains the size of the stabilizer of the matrix.&lt;/p&gt;</description>
  </descriptions>
</resource>
120
23
views
downloads
All versions This version
Views 120120
Downloads 2323
Data volume 4.9 GB4.9 GB
Unique views 102102
Unique downloads 1919

Share

Cite as