Conference paper Open Access
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://zenodo.org/record/3732471"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3732471</dct:identifier> <foaf:page rdf:resource="https://zenodo.org/record/3732471"/> <dct:creator> <rdf:Description rdf:about="http://orcid.org/0000-0003-1254-8869"> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0003-1254-8869</dct:identifier> <foaf:name>Rasa Bocyte</foaf:name> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description rdf:about="http://orcid.org/0000-0003-1750-6801"> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0003-1750-6801</dct:identifier> <foaf:name>Johan Oomen</foaf:name> </rdf:Description> </dct:creator> <dct:title>Content Adaptation, Personalisation and Fine-grained Retrieval: Applying AI to Support Engagement with and Reuse of Archival Content at Scale</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued> <dcat:keyword>Reuse</dcat:keyword> <dcat:keyword>Video Summarisation</dcat:keyword> <dcat:keyword>Content Adaptation</dcat:keyword> <dcat:keyword>Personalisation</dcat:keyword> <dcat:keyword>Multimedia Annotation</dcat:keyword> <dcat:keyword>Retrieval</dcat:keyword> <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/780656/"/> <schema:funder> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier> <foaf:name>European Commission</foaf:name> </foaf:Organization> </schema:funder> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-03-27</dct:issued> <owl:sameAs rdf:resource="https://zenodo.org/record/3732471"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3732471</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <owl:sameAs rdf:resource="https://doi.org/10.5220/0009188505060511"/> <dct:isPartOf rdf:resource="https://zenodo.org/communities/retv-h2020"/> <dct:description><p>Recent technological advances in the distribution of audiovisual content have opened up many opportunities for media archives to fulfil their outward-facing ambitions and easily reach large audiences with their content. This paper reports on the initial results of the ReTV research project that aims to develop novel approaches for the reuse of audiovisual collections. It addresses the reuse of archival collections from three perspectives: content holders (broadcasters and media archives) who want to adapt audiovisual content for distribution on social media, end-users who have switched from linear television to online platforms to consume audiovisual content and creatives in the media industry who seek audiovisual content that could be used in new productions. The paper presents three uses cases that demonstrate how AI-based video analysis technologies can facilitate these reuse scenarios through video content adaptation, personalisation and fine-grained retrieval.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5220/0009188505060511"/> <dcat:byteSize>1130439</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/3732471/files/ARTIDIGH202010.pdf"/> <dcat:mediaType>application/pdf</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/780656/"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">780656</dct:identifier> <dct:title>Enhancing and Re-Purposing TV Content for Trans-Vector Engagement</dct:title> <frapo:isAwardedBy> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier> <foaf:name>European Commission</foaf:name> </foaf:Organization> </frapo:isAwardedBy> </foaf:Project> </rdf:RDF>
Views | 465 |
Downloads | 142 |
Data volume | 160.5 MB |
Unique views | 452 |
Unique downloads | 141 |