Software Open Access

Khasawneh-Lab/PH_complex_networks: PHN

Audun Myers; Firas Khasawneh; Elizabeth Munch


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/a92e1382-bd67-479a-8d01-b5e5c938fd1b/Khasawneh-Lab/PH_complex_networks-V1.0.0.zip"
      }, 
      "checksum": "md5:7e0b307fc11ce57cdeb81387173b120e", 
      "bucket": "a92e1382-bd67-479a-8d01-b5e5c938fd1b", 
      "key": "Khasawneh-Lab/PH_complex_networks-V1.0.0.zip", 
      "type": "zip", 
      "size": 204072
    }
  ], 
  "owners": [
    92713
  ], 
  "doi": "10.5281/zenodo.3731096", 
  "stats": {
    "version_unique_downloads": 34.0, 
    "unique_views": 192.0, 
    "views": 221.0, 
    "version_views": 221.0, 
    "unique_downloads": 34.0, 
    "version_unique_views": 192.0, 
    "volume": 6938448.0, 
    "version_downloads": 34.0, 
    "downloads": 34.0, 
    "version_volume": 6938448.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3731096", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3731095", 
    "bucket": "https://zenodo.org/api/files/a92e1382-bd67-479a-8d01-b5e5c938fd1b", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3731095.svg", 
    "html": "https://zenodo.org/record/3731096", 
    "latest_html": "https://zenodo.org/record/3731096", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3731096.svg", 
    "latest": "https://zenodo.org/api/records/3731096"
  }, 
  "conceptdoi": "10.5281/zenodo.3731095", 
  "created": "2020-03-27T12:47:41.594375+00:00", 
  "updated": "2020-03-28T08:20:19.933296+00:00", 
  "conceptrecid": "3731095", 
  "revision": 4, 
  "id": 3731096, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3731096", 
    "description": "<p>Persistent Homology of Networks (PHN) is a python package for the functions developed in &quot;Persistent Homology of Complex Networks for Dynamic State Detection.&quot; These functions use a time series to develop a complex network, which can be analyzed to detect dynamic state changes as well as complexity changes in the time series. Additionally, complex networks allow for a unique view into the shape of high dimension embedding that could not normally be visualized.</p>", 
    "license": {
      "id": "other-open"
    }, 
    "title": "Khasawneh-Lab/PH_complex_networks: PHN", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3731095"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3731096"
          }
        }
      ]
    }, 
    "version": "V1.0.0", 
    "publication_date": "2020-03-27", 
    "creators": [
      {
        "orcid": "0000-0001-6268-9227", 
        "affiliation": "Michigan State University", 
        "name": "Audun Myers"
      }, 
      {
        "orcid": "0000-0001-7817-7445", 
        "affiliation": "Michigan State University", 
        "name": "Firas Khasawneh"
      }, 
      {
        "orcid": "0000-0002-9459-9493", 
        "affiliation": "Michigan State University", 
        "name": "Elizabeth Munch"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "related_identifiers": [
      {
        "scheme": "url", 
        "identifier": "https://github.com/Khasawneh-Lab/PH_complex_networks/tree/V1.0.0", 
        "relation": "isSupplementTo"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3731095", 
        "relation": "isVersionOf"
      }
    ]
  }
}
221
34
views
downloads
All versions This version
Views 221221
Downloads 3434
Data volume 6.9 MB6.9 MB
Unique views 192192
Unique downloads 3434

Share

Cite as