Software Open Access
Ziqian Wang;
Lucius Samo Fekonja;
Felix Dreyer;
Peter Vajkoczy;
Thomas Picht
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3727664</identifier> <creators> <creator> <creatorName>Ziqian Wang</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6675-6407</nameIdentifier> <affiliation>Charité - University Hospital Berlin</affiliation> </creator> <creator> <creatorName>Lucius Samo Fekonja</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1973-4410</nameIdentifier> <affiliation>Charité - University Hospital Berlin</affiliation> </creator> <creator> <creatorName>Felix Dreyer</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1560-8126</nameIdentifier> <affiliation>Freie Universität Berlin</affiliation> </creator> <creator> <creatorName>Peter Vajkoczy</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4350-392X</nameIdentifier> <affiliation>Charité - University Hospital Berlin</affiliation> </creator> <creator> <creatorName>Thomas Picht</creatorName> <affiliation>Charité - University Hospital Berlin</affiliation> </creator> </creators> <titles> <title>SVM code for article: Analysis of transcranial magnetic stimulation for object naming with machine learning classification shows reorganisation patterns in tumor patients.</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>SVM</subject> <subject>Machine Learning</subject> <subject>TMS</subject> <subject>Language mapping</subject> </subjects> <dates> <date dateType="Issued">2020-03-26</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Software"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3727664</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="Cites" resourceTypeGeneral="Text">https://github.com/faruto/Libsvm-FarutoUltimate-Version/blob/master/Libsvm-FarutoUltimate%20V3.1/matlab-implement%5Bby%20faruto%5D/SVR_test.m</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3727663</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/neuroinformatics</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/zenodo</relatedIdentifier> </relatedIdentifiers> <version>1.0</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Here we publish the&nbsp;SVM code used in our&nbsp;<em>analysis of transcranial magnetic stimulation for object naming with machine learning classification shows reorganisation patterns in tumor patients</em> article.</p> <p>&nbsp;</p> <p>The SVM code is modified after faruto and liyang,&nbsp;<a href="https://github.com/faruto/Libsvm-FarutoUltimate-Version/blob/master/Libsvm-FarutoUltimate%20V3.1/matlab-implement%5Bby%20faruto%5D/SVR_test.m">Libsvm-FarutoUltimate-Version</a>.</p></description> <description descriptionType="Other">The authors acknowledge the support of the Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025.</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 549 | 122 |
Downloads | 118 | 46 |
Data volume | 303.2 kB | 153.1 kB |
Unique views | 450 | 92 |
Unique downloads | 77 | 24 |