Dataset Open Access

Suitability Map of COVID-19 Virus Spread

Gianpaolo Coro


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Coro, G., Panichi, G., Scarponi, P., &amp; Pagano, P. (2017). Cloud computing in a distributed e‐infrastructure using the web processing service standard. Concurrency and Computation: Practice and Experience, 29(18), e4219.</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">COVID-19</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Coronavirus</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Maximum Entropy</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Temperature</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Precipitation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Carbon Dioxide</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CO2</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Corona virus</subfield>
  </datafield>
  <controlfield tag="005">20200326003858.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This experiment was done using the DataMiner cloud computing system of the D4Science e-Infrastructure and the BiodiversityLab Virtual Reseach Environment https://services.d4science.org/group/biodiversitylab/</subfield>
  </datafield>
  <controlfield tag="001">3725831</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5659192</subfield>
    <subfield code="z">md5:dea4e66a1c66d0dfc3b0872adfaa020f</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/1_covid_suitability_preview.png</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">47348547</subfield>
    <subfield code="z">md5:069727a6c5656d276c475606c9b96d47</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/2_covid_suitability_v2_Hi_Resolutionv2.png</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1883240</subfield>
    <subfield code="z">md5:ca91c4d56654b77bf572eef1a42af7a5</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/Altitude.asc</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5097879</subfield>
    <subfield code="z">md5:0ed217e20ab32aad4ab96e5403670ee4</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/CO2.asc</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">289344</subfield>
    <subfield code="z">md5:ac354fec4c4fb60437404ea1a199cdb0</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/covid_high_rate_vs_high_risk_24_03_2020.png</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2832561</subfield>
    <subfield code="z">md5:79639fd3540c68450d86fde288edb264</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/MaxEnt_Temperature_Precipitation_Elevation_CO2.asc</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4564177</subfield>
    <subfield code="z">md5:57aa6c172b3fc036c08d0560f01436ba</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/Population.asc</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5521263</subfield>
    <subfield code="z">md5:3ab587ea0e0fbe3fcbd9ea6b7844271a</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/Precipitation.asc</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4701254</subfield>
    <subfield code="z">md5:7ea930f59e5ff627a18383f02737f78d</subfield>
    <subfield code="u">https://zenodo.org/record/3725831/files/Temperature.asc</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-03-20</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-zenodo</subfield>
    <subfield code="p">user-covid-19</subfield>
    <subfield code="o">oai:zenodo.org:3725831</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ISTI-CNR</subfield>
    <subfield code="a">Gianpaolo Coro</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Suitability Map of COVID-19 Virus Spread</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-covid-19</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-zenodo</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This image&amp;nbsp;reports a Maximum Entropy model that&amp;nbsp;estimates &lt;em&gt;suitable &lt;/em&gt;locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.&lt;/p&gt;

&lt;p&gt;The model was trained just on locations in &lt;em&gt;Italy &lt;/em&gt;that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Average Annual Surface Air Temperature in 2018 (NASA)&lt;/li&gt;
	&lt;li&gt;Average Annual Precipitation in 2018 (NASA)&lt;/li&gt;
	&lt;li&gt;CO2 emission (natural+artificial) averaged between January 1979 and&amp;nbsp;December 2013 (Copernicus Atmosphere Monitoring Service)&lt;/li&gt;
	&lt;li&gt;Elevation (NOAA ETOPO2)&lt;/li&gt;
	&lt;li&gt;Population per 0.5&amp;deg; cell (NASA Gridded Population of the World)&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;A higher resolution map, the model file (in ASC format) and all parameters used are also attached.&lt;/p&gt;

&lt;p&gt;The model indicates highest correlation with&amp;nbsp;&lt;em&gt;infection rate&lt;/em&gt; for CO2 around 0.03 gCm^&amp;minus;2day^&amp;minus;1, for Temperature around 11.8 &amp;deg;C, and for Precipitation around 0.3 kg m^-2&amp;nbsp; s^-1, whereas Elevation and Population density are&amp;nbsp;poorly correlated with &lt;em&gt;infection rate&lt;/em&gt;.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location&lt;/strong&gt;, &lt;strong&gt;and Iran (around Teheran) as a suited location for virus&amp;#39; spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Evaluation: &lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;A &lt;em&gt;risk score&lt;/em&gt; was calculated for&amp;nbsp;each country/region reported by the JHU&amp;nbsp;monitoring system (&lt;a href="https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6"&gt;https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6&lt;/a&gt;). This score is calculated as&amp;nbsp;the summed normalised probability&amp;nbsp;in the populated locations divided by their total surface. This score represents how much the zone would potentially foster&amp;nbsp;the virus&amp;#39; spread.&lt;/p&gt;

&lt;p&gt;We assessed the reliability of this score, by selecting the country/regions that reported the &lt;em&gt;highest rates of infection&lt;/em&gt;. These zones were selected&amp;nbsp;as those with a rate higher than the upper confidence of a log-normal distribution of the rates.&lt;/p&gt;

&lt;p&gt;The agreement between the two maps (&lt;a href="https://zenodo.org/api/files/23b09ea2-e5eb-415d-9f6c-fd3b5abfe6c9/covid_high_rate_vs_high_risk_24_03_2020.png"&gt;covid_high_rate_vs_high_risk.png&lt;/a&gt;, where violet dots indicate &lt;em&gt;high infection rates &lt;/em&gt;and countries&amp;#39; colours indicate estimated &lt;em&gt;high risk score&lt;/em&gt;) is the following:&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Accuracy &lt;/strong&gt;(overall percentage of correctly predicted high-rate zones):&amp;nbsp;&lt;strong&gt;77.25%&lt;/strong&gt;&lt;br&gt;
&lt;strong&gt;Kappa &lt;/strong&gt;(agreement between the two maps): &lt;strong&gt;0.46&lt;/strong&gt; (Good, according to Fleiss&amp;#39; intepretation of the score)&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;This assessment demonstrates that our map can be used to estimate the risk of a certain country to have a high rate of infection, and indicates that the influence of environmental parameters on virus&amp;#39;s spread should be further investigated.&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3719140</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3725831</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
1,088
330
views
downloads
All versions This version
Views 1,088596
Downloads 330179
Data volume 4.9 GB2.4 GB
Unique views 864516
Unique downloads 191108

Share

Cite as