Dataset Open Access

Suitability Map of COVID-19 Virus Spread

Gianpaolo Coro


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/1_covid_suitability_preview.png"
      }, 
      "checksum": "md5:dea4e66a1c66d0dfc3b0872adfaa020f", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "1_covid_suitability_preview.png", 
      "type": "png", 
      "size": 5659192
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/2_covid_suitability_v2_Hi_Resolutionv2.png"
      }, 
      "checksum": "md5:069727a6c5656d276c475606c9b96d47", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "2_covid_suitability_v2_Hi_Resolutionv2.png", 
      "type": "png", 
      "size": 47348547
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/Altitude.asc"
      }, 
      "checksum": "md5:ca91c4d56654b77bf572eef1a42af7a5", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "Altitude.asc", 
      "type": "asc", 
      "size": 1883240
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/CO2.asc"
      }, 
      "checksum": "md5:0ed217e20ab32aad4ab96e5403670ee4", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "CO2.asc", 
      "type": "asc", 
      "size": 5097879
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/covid_high_rate_vs_high_risk_24_03_2020.png"
      }, 
      "checksum": "md5:ac354fec4c4fb60437404ea1a199cdb0", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "covid_high_rate_vs_high_risk_24_03_2020.png", 
      "type": "png", 
      "size": 289344
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/MaxEnt_Temperature_Precipitation_Elevation_CO2.asc"
      }, 
      "checksum": "md5:79639fd3540c68450d86fde288edb264", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "MaxEnt_Temperature_Precipitation_Elevation_CO2.asc", 
      "type": "asc", 
      "size": 2832561
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/Population.asc"
      }, 
      "checksum": "md5:57aa6c172b3fc036c08d0560f01436ba", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "Population.asc", 
      "type": "asc", 
      "size": 4564177
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/Precipitation.asc"
      }, 
      "checksum": "md5:3ab587ea0e0fbe3fcbd9ea6b7844271a", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "Precipitation.asc", 
      "type": "asc", 
      "size": 5521263
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375/Temperature.asc"
      }, 
      "checksum": "md5:7ea930f59e5ff627a18383f02737f78d", 
      "bucket": "c852554c-1682-478b-8df1-acf896310375", 
      "key": "Temperature.asc", 
      "type": "asc", 
      "size": 4701254
    }
  ], 
  "owners": [
    55267
  ], 
  "doi": "10.5281/zenodo.3725831", 
  "stats": {
    "version_unique_downloads": 191.0, 
    "unique_views": 516.0, 
    "views": 596.0, 
    "version_views": 1088.0, 
    "unique_downloads": 108.0, 
    "version_unique_views": 864.0, 
    "volume": 2370522763.0, 
    "version_downloads": 330.0, 
    "downloads": 179.0, 
    "version_volume": 4892681532.0
  }, 
  "links": {
    "thumb250": "https://zenodo.org/api/iiif/v2/c852554c-1682-478b-8df1-acf896310375:6902b587-c74b-40d9-ba73-91539d7e2317:1_covid_suitability_preview.png/full/250,/0/default.png", 
    "doi": "https://doi.org/10.5281/zenodo.3725831", 
    "thumbs": {
      "10": "https://zenodo.org/record/3725831/thumb10", 
      "750": "https://zenodo.org/record/3725831/thumb750", 
      "50": "https://zenodo.org/record/3725831/thumb50", 
      "1200": "https://zenodo.org/record/3725831/thumb1200", 
      "100": "https://zenodo.org/record/3725831/thumb100", 
      "250": "https://zenodo.org/record/3725831/thumb250"
    }, 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3719140", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3719140.svg", 
    "latest_html": "https://zenodo.org/record/3725831", 
    "bucket": "https://zenodo.org/api/files/c852554c-1682-478b-8df1-acf896310375", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3725831.svg", 
    "html": "https://zenodo.org/record/3725831", 
    "latest": "https://zenodo.org/api/records/3725831"
  }, 
  "conceptdoi": "10.5281/zenodo.3719140", 
  "created": "2020-03-24T14:46:57.432034+00:00", 
  "updated": "2020-03-26T00:38:58.857756+00:00", 
  "conceptrecid": "3719140", 
  "revision": 6, 
  "id": 3725831, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3725831", 
    "description": "<p>This image&nbsp;reports a Maximum Entropy model that&nbsp;estimates <em>suitable </em>locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.</p>\n\n<p>The model was trained just on locations in <em>Italy </em>that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:</p>\n\n<ul>\n\t<li>Average Annual Surface Air Temperature in 2018 (NASA)</li>\n\t<li>Average Annual Precipitation in 2018 (NASA)</li>\n\t<li>CO2 emission (natural+artificial) averaged between January 1979 and&nbsp;December 2013 (Copernicus Atmosphere Monitoring Service)</li>\n\t<li>Elevation (NOAA ETOPO2)</li>\n\t<li>Population per 0.5&deg; cell (NASA Gridded Population of the World)</li>\n</ul>\n\n<p>A higher resolution map, the model file (in ASC format) and all parameters used are also attached.</p>\n\n<p>The model indicates highest correlation with&nbsp;<em>infection rate</em> for CO2 around 0.03 gCm^&minus;2day^&minus;1, for Temperature around 11.8 &deg;C, and for Precipitation around 0.3 kg m^-2&nbsp; s^-1, whereas Elevation and Population density are&nbsp;poorly correlated with <em>infection rate</em>.</p>\n\n<p><strong>One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location</strong>, <strong>and Iran (around Teheran) as a suited location for virus&#39; spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.</strong></p>\n\n<p><strong>Evaluation: </strong></p>\n\n<p>A <em>risk score</em> was calculated for&nbsp;each country/region reported by the JHU&nbsp;monitoring system (<a href=\"https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6\">https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6</a>). This score is calculated as&nbsp;the summed normalised probability&nbsp;in the populated locations divided by their total surface. This score represents how much the zone would potentially foster&nbsp;the virus&#39; spread.</p>\n\n<p>We assessed the reliability of this score, by selecting the country/regions that reported the <em>highest rates of infection</em>. These zones were selected&nbsp;as those with a rate higher than the upper confidence of a log-normal distribution of the rates.</p>\n\n<p>The agreement between the two maps (<a href=\"https://zenodo.org/api/files/23b09ea2-e5eb-415d-9f6c-fd3b5abfe6c9/covid_high_rate_vs_high_risk_24_03_2020.png\">covid_high_rate_vs_high_risk.png</a>, where violet dots indicate <em>high infection rates </em>and countries&#39; colours indicate estimated <em>high risk score</em>) is the following:</p>\n\n<p><strong>Accuracy </strong>(overall percentage of correctly predicted high-rate zones):&nbsp;<strong>77.25%</strong><br>\n<strong>Kappa </strong>(agreement between the two maps): <strong>0.46</strong> (Good, according to Fleiss&#39; intepretation of the score)&nbsp;</p>\n\n<p><strong>This assessment demonstrates that our map can be used to estimate the risk of a certain country to have a high rate of infection, and indicates that the influence of environmental parameters on virus&#39;s spread should be further investigated.</strong></p>\n\n<p>&nbsp;</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Suitability Map of COVID-19 Virus Spread", 
    "notes": "This experiment was done using the DataMiner cloud computing system of the D4Science e-Infrastructure and the BiodiversityLab Virtual Reseach Environment https://services.d4science.org/group/biodiversitylab/", 
    "relations": {
      "version": [
        {
          "count": 5, 
          "index": 4, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3719140"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3725831"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "covid-19"
      }, 
      {
        "id": "zenodo"
      }
    ], 
    "version": "5", 
    "references": [
      "Coro, G., Panichi, G., Scarponi, P., & Pagano, P. (2017). Cloud computing in a distributed e\u2010infrastructure using the web processing service standard. Concurrency and Computation: Practice and Experience, 29(18), e4219."
    ], 
    "keywords": [
      "COVID-19", 
      "Coronavirus", 
      "Maximum Entropy", 
      "Temperature", 
      "Precipitation", 
      "Carbon Dioxide", 
      "CO2", 
      "Corona virus"
    ], 
    "publication_date": "2020-03-20", 
    "creators": [
      {
        "affiliation": "ISTI-CNR", 
        "name": "Gianpaolo Coro"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3719140", 
        "relation": "isVersionOf"
      }
    ]
  }
}
1,088
330
views
downloads
All versions This version
Views 1,088596
Downloads 330179
Data volume 4.9 GB2.4 GB
Unique views 864516
Unique downloads 191108

Share

Cite as