
IEEE SYSTEMS JOURNAL, VOL. 13, NO. 4, DECEMBER 2019 3675

System of System Composition Based on
Decentralized Service-Oriented Architecture

Hasan Derhamy , Jens Eliasson, and Jerker Delsing , Member, IEEE

Abstract—As society has progressed through periods of evolu-
tion and revolution, technology has played a key role as an en-
abler. In the same manner, mechanical machines of the 1800s drove
the industrial revolution, now digitalized machines are driving an-
other industrial revolution. Manufacturers are increasing the dig-
ital footprint on the factory floor. It is challenging to harness the
vast amounts of data generated, stored, analyzed, archived, and
returned. Data centralization has several well-known challenges,
such as collection bottlenecks, secure retrieval, single point of fail-
ure, and data scheme fragility as data heterogeneity increases. This
paper proposes a method of information distribution based on the
principle of data at its source. It proposes that contextual data be
used at runtime through the creation of dynamic queries that build
compositions of different systems. Such system of systems (SoS)
compositions handle the flow of data across its life cycle and present
it as information to the initiating system. The proposal starts by
creating a graph model of the Arrowhead framework. Then, build-
ing on the graph model, the query-based approach for specifying,
validating, and forming the SoS is proposed. The proposed graph
model allows for unambiguous description of systems and their in-
terrelations, including security relations. The proposed composer
operates on the edge computing hardware and gives the produc-
tion floor the ability to extract information without impacting the
overall operation of the factory.

Index Terms—Arrowhead framework (AF), edge computing,
graph theory, Hypermedia as the engine of application state (HA-
TEOAS), industrial Internet of Things (IIoT), information cen-
tric networking, RAMI4.0, RESTful, service-oriented architecture,
system of systems (SoS), systems theory.

I. INTRODUCTION

INITIATIVES in the manufacturing industry are looking to
boost the productivity by leveraging advances in connec-

tivity. The increase in connected devices, in large part, is due
to increases in low cost networking and computing. This has
meant that there is a significant increase in the volume and flow
of information. All these developments have occurred within a
landscape of ISA 95 [1] deployments. ISA 95 supports verti-
cal integration and information flow. However, this also created
bottlenecks from many perspectives, which are as follows,

1) Storage: Centralized storage exhibits database bottle-
necks, meaning that storing and retrieving data is

Manuscript received June 17, 2018; revised October 24, 2018; accepted De-
cember 24, 2018. Date of publication February 11, 2019; date of current version
November 22, 2019. This work was supported in part by the Far-Edge project
and in part by Productive 4.0 project. (Corresponding author: Hasan Derhamy.)

The authors are with the EISLAB, Department of Electrical and Computer
Engineering, Luleå University of Technology, 971 87 Luleå, Sweden (e-mail:,
hasan.derhamy@ltu.se; Jens.Eliasson@ltu.se; jerker.delsing@ltu.se).

Digital Object Identifier 10.1109/JSYST.2019.2894649

usually restricted to ensure that the database is not over-
loaded with requests. Local storage handles requests
within its local scope, therefore, fewer requests would
be present. Also, if a decentralized database does ex-
perience reduced performance due to overloading, the
area of impact is local and does not reach to wider
applications.

2) Communication: Centralized storage must have strong
networks. The network becomes a bottleneck as traffic
increases, meaning close monitoring and costly backbone
infrastructure is required. Redundant networks become
a necessity to reduce the down time in case of the net-
work failure. Performance degradation on the network
also has a wide impact. On the other hand with local stor-
age, network performance degradation has a lesser impact
on normal operations.

3) Technology: Centralized systems are sensitive to disrup-
tions and so, change process must ensure normal opera-
tion. Also, technology selection is limited to those that
have been tested for high performance operation. With a
localized storage system, the sensitivity to disruption is
reduced and the options to work around the disruption in-
creases. Also, technology selection can evolve more read-
ily, with a more heterogeneous set of technologies better
suited for specific requirements.

4) Engineering: Centralized systems will have a specific set
of competencies such as data warehousing, network ad-
ministration, server maintenance, etc. These specialists
are required to handle scaling up infrastructure and tools.
While localized systems do not require specialized knowl-
edge for scale, they simply do not reach such demanding
levels and so competent general engineering skills are
sufficient.

Building on from ISA 95, the Industry 4.0 initiative has pro-
posed the Reference Architectural Model for Industry (RAMI)
4.0 [2] and I4.0 component model [3]. The I4.0 component
model captures the notion of an administration shell that ab-
stracts the digitalized equipment and products with high levels
of connectivity. The RAMI 4.0 captures a three-dimensional
cube for modeling architectural solutions. It presents I4.0 com-
ponents at different “hierarchies” must be designed over a com-
plete “life-cycle” and must participate in functional “layer.” Or
from a layer point of view, a single functional “layer” cannot be
confined to a single level of the “hierarchy.” Rather a “layer” is
spread across many I4.0 components at different levels of the
“hierarchy.” This is shown in Fig. 1.

1937-9234 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9484-9766
https://orcid.org/0000-0002-4133-3317
mailto:hasan.derhamy@ltu.se
mailto:Jens.Eliasson@ltu.se
mailto:jerker.delsing@ltu.se

3676 IEEE SYSTEMS JOURNAL, VOL. 13, NO. 4, DECEMBER 2019

Fig. 1. RAMI4.0 three perspective cube. Figure adapted from [2].

A central philosophy of the RAMI 4.0 approach is that
connectivity and integration is no longer purely vertical. I4.0
components can communicate with one and other vertically, hor-
izontally, or diagonally. Many I4.0 components spread across
the component hierarchy are participating in the information
layer each contributing and consuming data. A smooth flow
of data in the information layer enables decentralized decision
making on the factory floor, reducing reliance on manufacturing
execution system (MES) cloud so that work centers, cells, and
stations can achieve high level of autonomy. The reduced re-
liance on the centralized decision support has the added benefit
of reduced information system coupling between physical work
cells so that a malfunction in one work cell does not lead to a
performance degradation in adjacent work cells.

Development teams must rely on external resources to be able
to handle the complexity and size of the automation solutions.
Integrating commercial off the shelf (COTS) components from
multiple vendors indicates that the systems may not all belong to
a single owner. For example, using equipment as a service may
be a viable manner to distribute life-cycle costs (design, devel-
opment, and maintenance). Such integrations demands regular
review of security assumptions regarding privacy, confidential-
ity, and trust. Heavy integration costs and information blockages
must be avoided between multivendor systems. Requiring that
systems are able to learn of or establish meaningful, trusted, and
confidential connections for exchanging data.

The final aspect and consideration, is that software
technology evolves at a rapid pace, much more quickly than
the traditional mechanical or electronic technologies. Software
development practices tend toward adoption of Agile [4] prac-
tices. This entails short development cycles with small releases
and fast deployment. The solution, therefore, must support in-
cremental change with minimized impact due to disruption of
operations. In addition, the approach toward and treatment of
software technology must be one of embracing change. In other
words, a successful solution must have a clear path for change
and ensure that it is not bound to a single technology that inhibits
change.

Service-oriented architecture is one such architectural ap-
proach that tackles technology abstraction through abstract
messaging interfaces. However, industrial Internet of Things
(IIoT) systems go beyond pure software and include hardware.
Physical, (real world) dependencies between services offered
from a single hardware means, utilizing the system theory with
services, provides a more meaningful modeling expression.
Modular and independent systems, which can be pure software
or embedded software, are modeled as black box with technol-
ogy independent service interfaces between one and other for
communication and collaboration.

A. Requirements for Industrial Information Distribution

Industrial engineers and designers need immediate access to
data without dependence on high availability network infras-
tructure, rigid technology, and specialist competencies. Domain
specialists on the shop floor must be able to access local data and
change data routing/flows without direct involvement of infor-
mation technology (IT) specialists. The solution must support
independent evolution of both the tools for data access and the
sources of data. The specialist support and restrictive technol-
ogy choices required of both purely centralized and peer-to-peer
solutions do not meet the aforementioned criteria. In both cases,
system change is dependent on IT competencies or solution-
specific technology.

Therefore, a successful solution for decentralized information
distribution would require the following characteristics.

1) Ability to operate in an islanded mode without a central-
ized data store. Creating robustness to network perfor-
mance degradation and supporting remote “no network”
deployments.

2) Describe the data flow specification in a human readable
and machine executable manner.

3) It must be technology agnostic not limiting solutions due
to technological choices, for example, supporting both a
push and pull communication paradigm.

4) Support for fine grained access control, enabling change
by industrial designers and restricting untrained or adver-
sarial change.

5) Loose couple among data sources, processors, and sinks.
The solution must cope with rapid and unexpected
changes to the factory floor as working areas are rebal-
anced or faulty machines and tools are replaced.

B. Contribution

The proposed solution is designed to satisfy the requirements
from Section I-A. It proposes a software system that is able to
process information queries and setup communication routing
that produce and move information. A graph model is proposed
to support reasoning on services, service types, systems, and
security. The graph model developed in this research is used at
runtime to build an online picture of the IIoT application space.

It is proposed to use a standard graph query language, Open
Cypher, in a novel manner to describe the composition of sys-
tems and services for the information flows. It is in this way
that the graph model is used to describe and form the system of
system (SoS).

DERHAMY et al.: SYSTEM OF SYSTEM COMPOSITION BASED ON DECENTRALIZED SERVICE-ORIENTED ARCHITECTURE 3677

The proposed solution includes in-network data processing.
The composed information flow is responsible for the data
before it reaches the consuming system. The processing can be
aggregation, filter, format manipulation, or signal processing.

The proposed SoS compositions are activated only where and
when they are needed, thereby reducing unnecessary informa-
tion flows.

In the next section, related work is introduced before present-
ing the proposed solution in Section III.

II. RELATED WORKS AND TECHNOLOGIES

In this section, some work related to the challenges is
presented and some technologies used within the solution are
presented.

A. Mashups

The notion of mashups comes from mixing and combining
the presentations of different data sources into a single view.
For example, Twitter and Facebook feeds can be viewed on
one page together with Instagram updates. This page would
be a mashup of three different social media sources. Another
example Trendsmap [5] is a web application that utilizes Twitter
and Google Maps application program interfaces (APIs) to show
the Twitter activity by location. Meaning that users are able to
view what the trending Twitter topics are in particular cities.
The same can be applied for sensory data from multiple sensors
or equipment key performance indicators (KPI) along with the
current production orders.

Mashup approaches such as the one offered by ThingWorx [6]
are a great example of run-time-based creation of information
flow. ThingWorx is a business-oriented platform for connecting
IoT devices with different protocols and routing data between
devices. Access to IoT data and so the visualization of related
data from different sources is a primary driver. The Web of
Things have developed WoTKit [7] for building mashups. The
WoTKit targets web mashups and meaning that only web servers
and clients are used. However, these solutions both relay on the
centralization of either the data or the distribution of the data.
Node-red [8] is Javascript-based graphical environment that can
mash together different services into a composition. Its structure
is similar to typed pipe and filter diagrams. The IFTTT (“if this
then that”) platform [9] is an IoT mashup cloud that supports
applets and services that can connect heterogeneous things to-
gether. Using chained conditionals, it is a strong commercial
mashup platform.

B. Arrowhead Framework (AF)

The AF [10] is a supporting technology for the proposed so-
lution. The AF is a service-oriented architecture (SOA)-based
SoS integration framework. Within Arrowhead, a system can
provide and consume services while systems themselves are
hosted upon devices. This allows hierarchical meta-data, split
between devices, systems, and services. Reusable services ab-
stract the physical and digital implementations. This means that
applications can be specified using purely functional models.

Arrowhead systems are composed into SoS using orches-
trations. A single system can provide and consume multiple
services and can interact with multiple other systems. Interac-
tions between systems can only occur through these services.
For communication between systems, there must be matching
service provider and consumer interfaces. The AF documenta-
tion structure [11] defines how to specify a service interface.

C. Next Generation Access Control (NGAC)

The NGAC is an attribute-based method of authorizing user
operations on objects. By utilizing attributes, NGAC enables
fine grained access control based on the context. A user that
is allowed to operate on an object in one location may not
have access from a different location, simply due to the user
attribute association. Alternatively, if the object is moved to a
new location (its attributes change), then it may reject operations
from all users. Access control rules can then be expressed based
on the context. Achieving such complex awareness becomes
unmanageable with static rules. Therefore, NGAC uses a graph
approach to describe the rules.

The NGAC defines objects, users, attributes, and operations
as nodes within a graph. A policy must then define the re-
quired attributes by a user to reach an operation and an ob-
ject to reach the same operation. When evaluating the policy,
the evaluation engine must have reliable information regarding
the current attributes of the object and the user. Therefore, a
secure information extraction solution must work with context
aware security such as NGAC.

D. In-Network Processing

In-network processing, a method treating the network as a
database. As described by Tannenbaum and van Steen [12],
the network will process raw data and aggregate or route the
information to the calling application. Using IEEE 802.15.4
wireless networks, TinyDB [13] can perform in-network pro-
cessing. TinyDB receives declarative queries that are passed
down the network mesh. Nodes that are capable of handling the
request will process it and pass the result back up the route.
Each parent node of the mesh will aggregate the child node
responses. Meaning that there is a natural formation for query
delivery and results aggregation. In-network processing can also
be applied to general computer networking. Any network can
act as a database that can be queried for information that may
not exist until the query is processed. One of the benefits of
the in-network processing are to avoid network and memory
overheads of centralizing data and information. Furthermore,
by aggregating and preparing results, it can help reduce the
complexity systems consuming data from multiple sources.

E. Information Centric Networking (ICN)

The ICN is a comprehensive approach toward in-network pro-
cessing. The ICN proposes to move away from host addressing
and to simply perform named information queries [14]. This is
highly suitable for many Web examples such as video streaming
and file sharing. Interest is expressed for information, and re-

3678 IEEE SYSTEMS JOURNAL, VOL. 13, NO. 4, DECEMBER 2019

gardless of where the information exists, the network will seek
out the information and return it to the caller. One of the issues
with the native ICN is in deployment, ICN overlays are proposed
so that the ICN and the transmission control protocol/Internet
protocol can co-exist [15]. Service Centric Networking (SCN)
[16] extends the ICN to include processing functions within
the network infrastructure. This recursive operation, informa-
tion = f (information), turns the existing information into new
information.

F. Service Composition

The SOA-based applications use composition as a principle
for their design. Software service building blocks are composed
into interacting clients and servers with the sum of the interac-
tions becoming the complete application. In [17], Eslamicha-
landar et al. present a survey on service composition adaptation
methods. These methods look to enable adaptation of compo-
sitions on a service interface and behavior levels. They review
the work by Tan et al. in [18] in which it is suggested to use the
reachability graph to construct a data mapping between the two
collaborative services. In [19], a continuous query is applied
to input streams of a complex event processor. This query per-
forms the required transformation on the data stream and passes
the result to the connected service. Formal modeling languages
such as finite-state machines, Petri-nets, and Business Process
Execution Language are used.

In [20], Bouveret et al. present the concept of conditional
importance networks (CI-net). This study utilizes the graph the-
ory and combinatorial logic to express the usage preferences. A
CI-net is built up based on the conditional important statements.
This graph can be used with the presence of contextual infor-
mation to find a suitable set of network nodes (or in the case of
their work, goods, and materials). In the case of composition, it
is needed to express preferences in service provision. Hence, this
study could be directed toward the service composition problem
of the SOA.

III. PROPOSED SOLUTION

The solution proposes a software system, called the sys-
tem composer, that is responsible for receiving the informa-
tion query, processing the query against the system, service and
access control graphs, formulating an information flow path,
and issuing the orchestration rules for the SoS. The system
that originated the information query receives instruction in the
form of an address that it can message to retrieve the result of
the SoS. Alternatively, an MQTT topic could be provided to
publish/subscribe channel for the system to receive information
from. This is the simple interface required of the system com-
poser for the proposed solution. The system composer service
interface is discoverable through a service registry and its ac-
cess rights is secured through an NGAC-enabled authorization
system. Internally, the system composer relies on a graph of
the local scope systems, service instances, and types and ac-
cess rights. This graph is based on the proposed graph model
presented in Section III-A. It is built through interaction with
Arrowhead; device, system, and service registries; and with ser-

Fig. 2. Building blocks of the AF.

vice inventory and authorization system. The system composer
is stateless in terms that none of its memory is persistent. The
graph is rebuilt on startup and maintained by active communi-
cation with the mentioned AF core support systems. The infor-
mation query is expressed in a graph query using Open Cypher.
The complete solution is presented in the following sections,
first, a graph model of an SoS-enabled SOA framework, the AF,
is presented.

A. Proposed Graph Model

The AF has three basic entities: devices, systems, and ser-
vices. Devices are physical entities with processing and net-
working capability. Systems are software entities that are hosted
on devices and that provide and consume services. Services are
goal-oriented interfaces that form the basis for collaboration
between systems. Services are then split into two entities.

1) The service description defines the goal of the service.
2) The interface design description defines the interaction

pattern, communications protocol, data structure, and se-
mantics of the service.

As shown in Fig. 2, these four entities form the base vertices
of the graph.

The AF uses these primary blocks to builds SoS. To build an
SoS, the primary entities must be related to one another. These
relations are are as follows.

1) A System is Hosted_By a Device.
2) A Service Description is Provided_By a System

(Provider).
3) A Service Interface is Offered_By a System (Provider).
4) A System (Consumer) Requires a Service Description.
5) A System (Consumer) Supports a Service Interface.
6) A Service Description is Implemented_By a Service In-

terface.
With this set of edges, it is possible to construct a simple

path between systems. For example, the path can be functional
using Required and Provided_By edges, or a communications
path based on Supported and Provided edges. A sub-graph with
a functional path is illustrated in Fig. 3. Here, it can be seen
that the path makes up a bipartite graph. There are only edges
between the two sets of System Nodes and Service Definitions.
There are no edges within either set.

A functional specification of the SoS can be formed by look-
ing only at the function graph. This can be formalized by

G = {V,E}
where
V = {A,B}
where A = Set of systems
and B = Set of service definition

DERHAMY et al.: SYSTEM OF SYSTEM COMPOSITION BASED ON DECENTRALIZED SERVICE-ORIENTED ARCHITECTURE 3679

Fig. 3. First SoS: A functional path between two system.

Fig. 4. First SoS: A bipartite communication graph with two participant
systems.

Fig. 5. Complete communications graph is formalized.

|B| = |A| − 1
E = B * 2.

The communications graph is built from a set of participant
systems and service interfaces. To build this graph, the service
definition is used as an anchor to the service interfaces. In this
way, it is possible to move from the functional sub-graph to the
communications sub-graph.

This sub-graph can be seen in Fig. 4.
The communications graph is a concrete interaction path be-

tween participant systems. A formal description of the commu-
nications path can be seen in Fig. 5. It can be used to validate
the interaction path.

Based on the aforementioned graph definitions, it can be de-
duced that a graph is disconnected whenever the number of
edges is less than |B| then one or more required Service Defini-
tions are missing and the SoS is incomplete. If the SoS is incom-
plete, then the SoS must be re-engineered. Either requirements

Fig. 6. NGAC graph entities/nodes. User as “usr,” Attribute as “attr,” Object
as “obj,” and Operation as “op.”

Fig. 7. NGAC: An authorization path between two system.

can be modified for example remove unattainable requirements.
Or adding new systems and enhancing existing systems with
additional services.

Dynamic bridging is may be an alternative to full re-
engineering. For example, where a missing edge is detected
within the communications graph, this indicates that a service
interface mismatch exists. In this case, a translator can be in-
jected to the graph. Dynamic systems are discussed in detail
in Section V-A. Once a communications graph has been estab-
lished. The security authorization path must be checked.

B. NGAC Graph Entities

The connection to the Arrowhead entities. Access control is
a core element to secure SoS. Access control means restricted
system interaction (service exchange) to only authentic and au-
thorized peers. The NGAC [21] is a standard that utilizes the
graph-based attribute-based access control. The NGAC entities
can be seen in Fig. 6. To use the NGAC with Arrowhead, either
an equivalence or a relation must be formed between the two
models. Here, it is proposed that a relation mapping is formed
as follows.

1) An user entity—aliases—a consuming system.
2) An object entity—represents—a providing system.
3) An operation entity is—defined—by a service interface.
Fig. 7 shows the graph relations between the AF nodes and

the NGAC nodes. Utilizing the system nodes and the service
interface node as anchors, the related user, object, and operation
nodes can be found. Next, a path must be traversed between the
two systems through only the NGAC graph nodes.

A complete path, in the NGAC graph, between the systems
means that the required attribute permissions exist for the con-
suming system to invoke the operation upon the providing sys-
tem. With these three primary graphs, it is possible to build

3680 IEEE SYSTEMS JOURNAL, VOL. 13, NO. 4, DECEMBER 2019

TABLE I
SYSTEM COMPOSER COLLABORATES WITH EXISTING SYSTEMS THAT STORE

THE NEEDED INFORMATION TO BUILD THE GRAPH

validated and secured SoS. The next section will discuss the
method of utilizing the graph models.

IV. PROPOSED SOS FORMATION

To build an SoS, there are multiple steps. The fundamental
steps are as follows: 1) specification; 2) validation; and 3) run-
time binding. The proposed solution can be used in each step.

1) Specification: In order to specify an SoS, an engineer
must be able to express the expected systems and their ex-
pected interconnections. This can be expressed naturally
using the already defined vertices and edges. Using the
set theory, it is also possible to generate the mathematical
representation of the SoS from the graph.

2) Validation: Utilizing the mathematical representation, it
is possible to create a list of components that are expected
to be present. This list can be used to provide accurate
requirements to engineers and developers. It can also be
used to check if a specification can be met by currently
available systems.

3) Run-Time Orchestration: When the SoS specification is
run against a live graph, the service exchanges between
systems are identified. These identified service exchanges
are what generate the orchestration rules.

A. Building the Graph

The data required to build the graph are distributed among
different data sources. To perform the graph queries, the data
must be gathered together and sorted into a graph database.
The data are collected from data stores, which are described in
Table I.

The data stored in each of these systems must be retrieved
through service interfaces (see Fig. 8). In the case outlined in
this paper, the interfaces are defined by the AF. These interfaces
could be defined according to any preferred approach.

Fig. 8. System composer interaction with AF core systems.

A full graph of the local cloud can be maintained by synchro-
nizing the different data stores. The graph data does not change
rapidly as there is limitations on how quickly a Cyber Physical
system can be relocated. Depending on the protocol choice, this
could require polling the data stores for changes. However, to
avoid this, the data stores can notify the graph that a change
has occurred, allowing the pull from data sources to be event
driven. At no stage does the graph make changes to the data
stores. Therefore, write synchronizations are not required.

As described in the next section, the queries made to the
graph are only reading based, changes such as injection of local
bridges are either not reflected in the data stores, or are changed
through the normal device, system, and service registration.

B. Querying the Graph

The whole value of the graph model is the ability to query
the connected data. Before diving into the mechanisms, the
objective of the query can be listed as follows:

1) to find a functional path connecting a set of systems;
2) to find a communications path connecting a set of systems;
3) to find an authority path connecting a set of systems;
4) to identify a system based on its relations.
1) Function Path: To find the function path a combination

of known systems and service interfaces must be anchored
(known). The information that makes up this graph is formed
using System Registry and Service Inventory data. Given a start
system, an ordered set of services, and an end system, a func-
tional path can be built using the following query:

MATCH p = (a1 : System{name : “a”})
− [:Requires‖Offered by*]− >

(a2 : System{name : “e”}) RETURN p. (1)

The query will return all nodes and relations that create the
path. The nodes will consist of a set of systems and a set of
service definitions. These two sets are then used to find the
communications path.

2) Communications Path: To find the communications path,
each of the service definition and system pairs must form into a
triple with the interface definition. A consuming system supports

DERHAMY et al.: SYSTEM OF SYSTEM COMPOSITION BASED ON DECENTRALIZED SERVICE-ORIENTED ARCHITECTURE 3681

Fig. 9. Interface matching for a consumer system and service.

Fig. 10. Interface matching for a provider system and service.

Fig. 11. Broken communications path is shown here. The two systems support
and provide different interface designs for the same service definition.

an interface definition and the interface definition is offered by
a providing system. Hence, Fig. 9 shows the result of the query
in the following equation, that is, the consuming triple.

MATCH

(a : System{name : “a”}) − [:Supports]− > (inst)

(inst) − [:Implements]− > (b:Type{name : “b”})
RETURN inst. (2)

Fig. 10 shows the results of the provider side query shown in
the following equation:

MATCH

(a : System{name : “c”}) < −[:Provided by] − (inst),

(inst) − [:Implements]− > (b:Type{name:“b”})
RETURN inst. (3)

A connected communication path will match to a single in-
terface definition that means the two systems utilize interoper-
able services. This is shown in Fig. 4, which has a connected
functional path between the two participant systems. Where a
communication path is not found, the resulting graph will look
like Fig. 11. In this situation, the SoS can be adapted to create a
connected communication path.

This case is covered in the system composer implementation
section that uses the translator to inject a local bridge and create
a communications path.

Fig. 12. Open Cypher query for storing meta-data into the graph database.

3) Authority Path: Using the Arrowhead and NGAC rela-
tionships, it is possible to shift from the functional domain to
the security domain. An attribute path must be found between the
providing system and consuming system, which passes through
the operations that represent the service instances. The attribute
designation is made through a secure management portal. The
requirement for the attribute policy is also made through a secure
management portal. Hence, this part of the graph is certainly
read only. A break in the security path will mean that there is no
authorization for the service exchange between the participant
systems.

The graph query to find the security path must first identify
the nodes that represent the users, objects, and operations. Using
the definitions from Fig. 7, each interface definition is mapped
to a single NGAC operation. A system can have at most one
NGAC Object and one NGAC User.

A path must be found between the user that is the alias of
the Consuming System, the operation defined by the Interface
Definition, and the object represented by the Providing System.
Fig. 7 shows a generic example of the authorization path.

V. IMPLEMENTATION OF SOS COMPOSER

It is now possible to use the graph model and SOA-based data
stores to design a solution that in (soft) real time will compose
the distributed functionality across the SoS.

The SoS Composer is a tool that can be utilized by technical
and non-technical users to compose new systems combinations.
It uses the processes described to build a graph of the device,
system, service, and security landscape.

To navigate the graph, an anchor needs to be located. This is
the starting system and is usually found through direct reference
to a unique system name, or through a unique combination of
meta-data connections.

The system composer is itself a participant in an SoS. Fig. 8
draws the SoS required to generate the graphs. The graphs are
kept up to date through polling and notifications between the
systems in Fig. 8.

Utilizing Open Cypher, the responses from the data stores are
stored in a Neo4J instance using the following queries.

A merge operation is used to avoid creating duplicate nodes
and edges. Device data can have many nodes connected to it.
They represent connected meta-data. For example, a device is
connected to a location. This can be physical location or logical
location. No edge label is required for meta-data nodes (see
Fig. 12).

System data will include an association to a device that is
hosting the system, the services provided and consumed from
the system, and any connected meta-data associated with the

3682 IEEE SYSTEMS JOURNAL, VOL. 13, NO. 4, DECEMBER 2019

Fig. 13. Open Cypher query for storing data regarding a system into the graph
database.

Fig. 14. Open Cypher query for storing security data into the graph database.

Fig. 15. Open Cypher query for storing service information from the service
inventory.

system. A sample Cypher command to store the minimum sys-
tem data is shown in Fig. 13.

To store the security attribute data and policy data, the Open
Cypher query is shown in Fig. 14.

To store the service data (resulting from a query to the Service
Inventory), the query shown in Fig. 15 must be executed.

Once the data have been collected and the graph has been
built, the graph can be presented to a user to graphically draw
the SoS composition.

The service interconnections are primarily and in some cases
exclusively used to specify the SoS. This is achieved by querying
the graph with a MATCH query like the one shown in Fig. 16.

When only validating the possibility of an SoS intermediate
and end systems can be left anonymous. Otherwise, while gener-
ating the SoS, the path query should return the intermediate and
end systems. It is possible that alternative paths exist, meaning
that there are alternative service providers that can satisfy the
specification. In the next stage, concrete SoS compositions can
be generated by looking at the communications path. To do this,
shared service interfaces that implement the service definitions
must be found between the intermediate systems. The queries
defined earlier are used to build the communications path, as
shown in Fig. 17.

So long, as the consumer service interface “consumerInt” and
the provider service interface “providerInt” are the same node,
then this means that the communication path is valid. Building

Fig. 16. Open Cypher query for retrieving an SoS. This graph represents an
SoS specification.

Fig. 17. Query to identify the matching service interface, given a common
service definition and two participant systems.

the communications path means performing this query on each
pairing of systems found from the functional path query.

The communications path is complete once the bipartite graph
connecting systems and service interfaces has been formed. In
case that the communications bipartite graph is disconnected, it
can be assumed that there are at least two systems that do not
share a common service interface for the same service definition.

Once a valid communications path has been found, the system
composer checks for a valid authorization route between the
participant systems using those service interfaces. Recalling the
NGAC mapping utilized in Section IV, each service interface is
mapped to an NGAC operation, and each system is mapped to
a user and/or object depending on if it will consumer or provide
the operations. The authorization path can be built using the
query in Fig. 18. The providing system, consuming system, and
operation nodes are inputs to this query.

This query must be executed for each system pairing within
the SoS. If the path is successfully returned, then a valid autho-
rization can exist between the participant systems.

The system composer now is able to create and validate the
functional SoS, check for communications path, and valid au-
thorization permissions.

DERHAMY et al.: SYSTEM OF SYSTEM COMPOSITION BASED ON DECENTRALIZED SERVICE-ORIENTED ARCHITECTURE 3683

Fig. 18. Build and check for authorization path for a given set of communi-
cations paths.

A. Dynamic Systems and Their Composition

The system composer is able to compose systems to create
new behaviors. So far, all systems have been static, meaning
that they have fixed sets of service interfaces (functionality).
Only the combination of the usage of these systems has been
dynamic. Dynamic systems are defined as systems that are able
to provision and consume new service interfaces at run time. On
a continuum, a system on one side can be highly static or up to
fully dynamic—likely using machine learning. Rigidity is both
functional and operational. Proposed here are systems that are
able to provision new service interface instances of a fixed type
but with independent configurations and life cycles.

Dynamic systems as introduced in [22], provide a provision-
ing service interface. Requests to this service result in a new
function being created within the host system. The new func-
tion has service interfaces as required to match the specific
requirements. For example, a “consumer” service interface for
initiating “pull” based interaction or a “provider” service inter-
face to “push” based interaction.

These dynamic systems are able to create local bridges, con-
necting disconnected graphs. However, to allow interoperabil-
ity between dynamic systems from different developers, the
interface for provisioning must be standardized. In [22], the
dynamic systems were provisioned using SenML. Hypermedia
as the engine of application state (HATEOAS) is a method of
creating dynamic APIs for web-based applications. IETF Stan-
dards RFC 5988 [23] and 6690 [24] introduce web linking as a
way to achieve HATEOAS applications. In addition IETF draft
“draft-ietf-core-interfaces-10” [25] (core-interfaces) builds on
RFC 6690 to propose a set of standard interfaces for interacting
with URI resources. Here, we refine the provisioning interface
of [22] to utilize the core-interfaces specification. The specifi-
cation handles link format and SenML for parametric values.

The translation system proposed in [26] is an example of a
dynamic system. The translation system is reliant on protocol
information and link information to build the protocol translator.
The dynamic provisioning request is shown in Fig. 19.

Once the protocol translator and its interfaces have been pro-
visioned, the response is sent. It contains link information, link-
ing to the newly constructed service interfaces. The translator’s
response is provided in Fig. 20.

Dynamic systems are able to bridge two service providers that
require information exchange. Because service providers can-
not pro-actively seek out service consumers, then two providers
or two consumers cannot communicate and so must have
a bridging. In this case rather than a translator a dynamic
“proxy” can mediate the two systems. The dynamic systems

Fig. 19. Run-time request to the translation system to provision a new protocol
translator. With this information, the translator is able to provision two interfaces
that will interoperate with the specified interfaces.

Fig. 20. Response from the translation system once a new protocol translator
instance has been provisioned. Only the new provider interface is shown, this
should be compatible with the specified consumer interface to be satisfied.

being HATEOAS-based systems themselves will return links to
the dynamic resources from the base URI of the service. The
IETF core-interfaces draft defines sensor, actuator, and collec-
tion interfaces. However, in the case of configuring or provi-
sioning dynamic systems, more complex configuration param-
eters are required. Here, we propose to add a new interface that
will enable transport of provisioning information for dynamic
systems. The interface, which is based on the aforementioned
example, includes SenML with Link-Format embedded as an
element. Link-Format items can point to external definitions or
service endpoints. The “rel” element is used to understand the
meaning of the link.

A general definition and mapping of Link-Format attributes
to describe services (core and application) in the AF is shown
in Fig. 21. The items within the inner square brackets represent
variable values, whiles the rel values must be kept as “provider”
or “consumer.” All attributes (rt, if, ct, and rel) must be present

3684 IEEE SYSTEMS JOURNAL, VOL. 13, NO. 4, DECEMBER 2019

Fig. 21. Core link format used to describe service interfaces.

in the interface Here, the servicetype refers to service type def-
inition held in the service inventory.

VI. CASE STUDY

The use case demonstrating the proposed solution is a typical
industrial manufacturing environment. Production optimization
relies on flexible access to metrics and information regarding
the underlying processes. This information extraction at the edge
means that centralized infrastructure is not loaded with messag-
ing traffic and computational processes. During the manufactur-
ing of large industrial vehicles, there are safety critical nuts that
must be tightened according to a quality specification. The nuts
must be tightened to a specific torque value, and then, rotated
through a fixed angle after that. The target values along with ac-
tual values are archived for legal purposes. In case of an accident
involving the said vehicle, these data are reviewed to invalidate
manufacturing as a cause. Therefore, manufacturing data tied
to a vehicle chassis must be collected, monitored for quality,
and archived for possible retrieval. In this use case, operators
working within the wheel alignment work station notice that the
quality assured nut tightening is reducing efficiency and placing
ergonomic strain on the staff. An industrial engineer or designer
on the shop floor needs to compose a new SoS to extract pro-
cess information regarding the quality assured nut tightening.
In consultation with production engineers, it is agreed to collect
operational information of the nutrunner at the station.

In RAMI 4.0, a working area in the automation hierarchy con-
tains all the layers of the software stack including the business
layer down to asset layer. Cross-layer applications will be com-
posed of services executing across the automation hierarchy and
at different software layers. This wheel alignment work station
is an Arrowhead local cloud that provides SOA and SoS sup-
port. The electronic nutrunner is used, it publishes time stamped
notifications with its specification and actual data. These data
are normally kept as archive for the quality assured tightening
process and utilized only for regulatory requirements. However,
in order to measure the operational efficiency of the nut tight-
ening, the notifications from the nut runner can be captured,
stored, and processed (i.e., as KPI information for the operators
and engineers).

There are a number of ways that the nut runner KPI problem
could be tackled.

1) A custom client application could be developed that sub-
scribes to the nutrunner notifications and stores/processes
the KPI results. The single purpose client application pro-
vides a set of fixed operations upon the data that would
perform the required processing.

2) Alternatively, an SoS can be composed to capture the
nutrunner data in a re-usable storage system. Then—on-

Fig. 22. Functional specification for the information processing including
capture, storage, and processing requirement.

demand—the data can be passed through re-usable filter
systems to perform the required processing.
Option one requires an IT engineering expertise to pro-
duce a customized application. During a requirements
gathers phase, the IT engineer must consult with industrial
engineers and designers to understand the needs. Then,
implement the application according to the requirements.
It is possible to utilize re-usable design methods to op-
timize the development time. However, if there are any
change to processing requirements, this will likely re-
quire the IT engineers expertise to re-implement or make
the change. This means increased lead times and costs
for implementing the information extraction. A custom
single purpose application need not rely on surrounding
support infrastructure. It would subscribe to a configured
nut runner and perform the required processing.

Option two, on the other hand, may not require IT compe-
tency. In this proposed approach, domain engineers are able to
interact with the factory floor using a software tool, and ex-
press their information (KPI) requirement. The IT competency
is only required to do initial setup of the system and its support-
ing functionality (the Arrowhead local cloud), but the generation
of KPI information is completely in the hands of the industrial
engineers.

This section describes the implementation of option two us-
ing the proposed method. With the Arrowhead local cloud setup,
the nut runner will already be sending its tightening results to
the manufacturing execution system for storage of the quality
assured nut tightening. Hence, the industrial engineer will use
the system composer to specify the (KPI) information extraction
requirement. Fig. 22 shows this functional information specifi-
cation in an Open Cypher query.

Here, the services are specified by their service names and the
nut runner is specified by its system identity. The intermediate
systems do not require specification and the composer is able
to find suitable replacements. Once the composition engine has

DERHAMY et al.: SYSTEM OF SYSTEM COMPOSITION BASED ON DECENTRALIZED SERVICE-ORIENTED ARCHITECTURE 3685

Fig. 23. Communication specification for the information processing includ-
ing capture, storage, and processing requirement. Here, the e.dev.id is the device
ID, e.ts is the job time stamp, and e.type is the job type. The composition handle
is returned from the consumer data. This is a generic handle so that the same
information specification can be used for multiple consumers.

parsed the functional query and created a valid path, a communi-
cations query will be generated according to the query shown in
Fig. 23. The query shown contains references to variables from
the earlier functional specification, such as historian, consumer,
and filter.

The new system composition is routing new data from the nut
runner system through a time filter and storing the results in a
historian system. The consumer system, likely a graphical user
interface system, is able to get the latest up-to-date KPI from
the historian at any time.

The system composer takes this specification and builds func-
tional, communications, and authorization graphs. Once the dif-
ferent paths are validated, the validated communications path is
turned into composition rules that can be used by the orchestra-
tion engine. Existing SoS compositions are left unchanged and
the new SoS has not yet impacted any operations on the station.
Once executed, it will run alongside normal SoS compositions
that achieve the normal station objectives. If degradation of the
station performance is noticed due to introduction of the new
composition, it can be reverted by removing the consuming sys-
tem from the composer (the Arrowhead orchestrator). Collecting
data in this manner can occur over any period of time.

To continue our use case; after a suitable length of time, the
captured KPI information can be used to benchmark and report
the inefficient nut tightening process. The industrial engineers
suggest process to move the operation using the nutrunner to the
next station. This suggestion is based on the qualitative assess-
ment of the industrial engineer. Existing tasks at the next station
involve orienting the product in such a manner that more er-
gonomic access is available for the nutrunner operation. Hence,
human operators are able to complete the task more quickly

and efficiently. When the equipment is introduced to the down-
stream station, the information specification is also moved and
so a new SoS composition is created on the same specifica-
tion, allowing an identical data collection and processing and
comparison of the change. These local scope changes to SoS
compositions are done at the edge and so do not impact the
centralized infrastructure.

The final step of the use case is for the industrial engineer
to run the same analysis and compare the results to the original
KPI. Hence, a qualitative judgement of the process improvement
can be quickly backup with quantitative results. This level of
flexibility would normally require considerable assistance from
tier 3 software support. It would also require significant change
control procedures as underlying operations must be left un-
affected.

VII. CONCLUSION

This paper has presented a method to dynamically extract
information from its source within an IIoT network. Industrial
designers are able to describe their information requirement in a
simple query. Without assistance from specialized IT resources,
the industrial designer creates new SoS compositions from local
factory floor services. It is the graph query that unambiguously
describes the SoS composition. Thus, during normal operation,
the industrial engineer can manage KPI or new diagnostic in-
formation collection. Furthermore, centralized data stores are
avoided because graph queries access the information at its
source.

Utilizing the SOA and SoS theory, it is possible to visu-
alize the IIoT application as sets of graph elements, create a
mathematical expression of an information query in the form of
data sources, transformations, and sinks, and compose systems,
communications paths, and dynamic graph local bridges. The
proposed graph model captures the services, systems and their
associated abstract types, and a small set of edges representing
the communication paths and functional dependencies. With
separation between functional and communications specifica-
tions, the graph enables multilevel reasoning on requirements.
Where a graph is disconnected, a local bridge can be injected
between collaborating systems, thereby, creating a connected
graph. The local bridge could be a translator in the communi-
cations path, or a data manipulator (i.e., filter or trigger) in the
functional path.

The graph model goes further to map the SoS and SOA ar-
chitecture to the NGAC model. Thus, enabling the proposed
system composer to evaluate access control policies to ensure
that SoS will be attainable under current conditions. The system
composer does not hold the NGAC policy information, but is al-
lowed to query the policy information and retrieve the rules. The
system composer retrieves the system context information, and
thus, has the knowledge required to reason upon the likelihood
of access being granted between systems.

The proposed solution is able to operate within an Arrow-
head local cloud. The local cloud supports islanded mode with
all required support infrastructure co-located within the work-
ing area. The information extraction is described in a human

3686 IEEE SYSTEMS JOURNAL, VOL. 13, NO. 4, DECEMBER 2019

readable query language. It uses the Open Cypher query lan-
guage with reuse of symbols to enable reasoning on SoS cre-
ation. The proposed method relies on the graph theory and is
implementation technology independent. It can be used with
message-based protocols such as MQTT or request/response
protocols such as HTTP. The NGAC standard is supported by
the solution for secure access control. Enabling a third level of
reasoning on the graph, based on attribute distribution between
systems. Finally, the solution uses run-time-based lookup and
late binding. Defining types and attributes that can be resolved
to instances of systems. This enables fault tolerance and spo-
radic changes to the working area without redefinition of the
information queries. The SoS specification is updated based on
the information extraction specification.

VIII. FUTURE WORK

The research presented has laid the foundation for a formal
description of SOA-based SoS composition and information
extraction within an industrial setting. There exist many ways
that this study can be further refined and extended. It would
be interesting to define a method and its associated software
components that would enable validation of correct operation of
the specified SoS composition. Continuous quality monitoring
of this validity would ensure that the objectives of the SoS are
achieved. Extending the Arrowhead quality of service manager
with composition rules could be a possible solution.

The basis for secure access control within the graph compo-
sition is proposed but a full security analysis of the solution is
not performed. It would be interesting to understand what the
vulnerabilities of the solution are to accidental and purposeful
misuse by humans and computers systems operating in the area
of the Arrowhead local cloud.

REFERENCES

[1] B. Scholten, The Road to Integration : A Guide to Applying the ISA-95
Standard in Manufacturing. Research Triangle Park, NC, USA: Interna-
tional Society of Automation, 2007.

[2] Reference Architectural Model Industrie 4.0 (RAMI4.0)—An Introduc-
tion, Apr. 2018. [Online]. Available: https://www.plattform-i40.de/I40/
Redaktion/EN/Downloads/Publikation/ram i40-an-introduction.pdf

[3] Structure of the Administration Shell, Apr. 2018. [Online]. Available:
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/
structure-of-the-administration-shell.pdf

[4] A. Cockburn and J. Highsmith, “Agile software development, the people
factor,” Computer, vol. 34, no. 11, pp. 131–133, Nov. 2001.

[5] Real-Time Twitter Trending Hashtags and Topics, 2018. [Online]. Avail-
able: https://www.trendsmap.com/

[6] ThingWorx Industrial Innovation Platform—PTC. PTC. [Online]. Avail-
able: https://www.ptc.com/en/products/iot/thingworx-platform/

[7] M. Blackstock and R. Lea, “IoT mashups with the WoTKit,” in Proc. IEEE
3rd Int. Conf. Internet Things, Oct. 2012, pp. 159–166.

[8] Node-Red, 2018. [Online]. Available: https://nodered.org/
[9] IFTTT Helps Your Apps and Devices Work Together, 2018. [Online].

Available: https://ifttt.com/
[10] J. Delsing, Ed., Arrowhead Framework: IoT Automation, Devices, and

Maintenance. Boca Raton, FL, USA: CRC Press, Dec. 2016. [Online].
Available: http://amazon.com/o/ASIN/1498756751/

[11] F. Blomstedt et al., “The arrowhead approach for SOA application devel-
opment and documentation,” in Proc. 40th Annu. Conf. IEEE Ind. Electron.
Soc., Oct. 2014, pp. 2631–2637.

[12] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and
Paradigms, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, Mar. 2005. [Online].
Available: http://doi.acm.org/10.1145/1061318.1061322

[14] M. A. Yaqub, S. H. Ahmed, S. H. Bouk, and D. Kim, Information-Centric
Networks (ICN). Singapore: Springer, 2016, pp. 19–33.

[15] G. Xylomenos et al., “A survey of information-centric networking re-
search,” IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 1024–1049,
Second Quarter 2014.

[16] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, and M. Varvello,
“Service-centric networking,” in Proc. IEEE Int. Conf. Commun. Work-
shops, Jun. 2011, pp. 1–6.

[17] M. Eslamichalandar, K. Barkaoui, and H. R. Motahari-Nezhad, “Service
composition adaptation: An overview,” in Proc. 2nd Int. Workshop Adv.
Inf. Syst. for Enterprises, Constantine, Algeria, Nov. 2012, pp. 1–8.

[18] W. Tan, Y. Fan, M. Zhou, and M. Zhou, “A petri net-based method for
compatibility analysis and composition of web services in business process
execution language,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1, pp. 94–
106, Jan. 2009.

[19] Y. Taher, M. Parkin, M. P. Papazoglou, and W.-J. van den Heuvel, “Adap-
tation of web service interactions using complex event processing pat-
terns,” in Service-Oriented Computing, G. Kappel, Z. Maamar, and H. R.
Motahari-Nezhad, Eds. Berlin, Germany: Springer, 2011, pp. 601–609.

[20] S. Bouveret, U. Endriss, and J. Lang, “Conditional importance networks:
A graphical language for representing ordinal, monotonic preferences over
sets of goods,” in Proc. Int. Joint Conf. Artif. Intell., 2009, pp. 67–72.

[21] Information Technology—Next Generation Access Control—Functional
Architecture (NGAC-FA), American National Standards Institute, Wash-
ington, DC, USA, supersedes INCITS 499-2013, INCITS 499-2018,
Jan. 2018.

[22] H. Derhamy, J. Eliasson, J. Delsing, and J. van Deventer, “In-network pro-
cessing for context-aware SOA-based manufacturing systems,” in Proc.
43rd Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2017, pp. 3460–3465.

[23] M. Nottingham, “Web linking,” RFC Editor, RFC 5988, Oct. 2010. [On-
line]. Available: http://www.rfc-editor.org/rfc/rfc5988.txt

[24] Z. Shelby, “Constrained restful environments (core) link format,” RFC Ed-
itor, RFC 6690, Aug. 2012. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc6690.txt

[25] Z. Shelby, M. Vial, M. Koster, C. Groves, J. Zhu, and B.
Silverajan, “Reusable interface definitions for constrained restful
environments,” Working Draft, IETF Secretariat, Internet-Draft draft-ietf-
core-interfaces-11, Mar. 2018. [Online]. Available: http://www.ietf.org/
internet-drafts/draft-ietf-core-interfaces-11.txt

[26] H. Derhamy, J. Eliasson, and J. Delsing, “IoT interoperability—On-
demand and low latency transparent multi-protocol translator,” IEEE Int.
Things J., vol. 4, no. 5, pp. 1754–1763, Oct. 2017.

https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/ram i40-an-introduction.pdf
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/ram i40-an-introduction.pdf
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/str ucture-of-the-administration-shell.pdf
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/str ucture-of-the-administration-shell.pdf
https://www.trendsmap.com/
https://www.ptc.com/en/products/iot/thingworx-platform/
https://nodered.org/
https://ifttt.com/
http://amazon.com/o/ASIN/1498756751/
http://doi.acm.org/10.1145/1061318.1061322
http://www.rfc-editor.org/rfc/rfc5988.txt
http://www.rfc-editor.org/rfc/rfc6690.txt
http://www.rfc-editor.org/rfc/rfc6690.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-interfaces-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-interfaces-11.txt

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

