Published November 7, 2019 | Version v1
Conference paper Open

Dataflow acceleration of Smith-Waterman with Traceback for high throughput Next Generation Sequencing

  • 1. National Technical University of Athens
  • 2. Maxeler Technologies UK

Description

Smith-Waterman algorithm is widely adopted by most popular DNA sequence aligners. The inherent algorithm computational intensity and the vast amount of NGS input data it operates on, create a bottleneck in genomic analysis flows for short-read alignment. FPGA architectures have been extensively leveraged to alleviate the problem, each one adopting a different approach. In existing solutions, effective co-design of the NGS short-read alignment still remains an open issue, mainly due to narrow view on real integration aspects, such as system wide communication and accelerator call overheads. In this paper, we propose a dataflow architecture for Smith-Waterman Matrix-fill and Traceback alignment stages, to perform short-read alignment on NGS data. The architectural decision of moving both stages on chip extinguishes the communication overhead, and coupled with radical software restructuring, allows for efficient integration into widely-used Bowtie2 aligner. This approach delivers x18 speedup over the respective Bowtie2 standalone components, while our co-designed Bowtie2 demonstrates a 35% boost in performance.

Files

6_data_flow.pdf

Files (292.7 kB)

Name Size Download all
md5:87a3b1478f5a1ee62fe636bf2e7220a2
292.7 kB Preview Download

Additional details

Funding

EXA2PRO – Enhancing Programmability and boosting Performance Portability for Exascale Computing Systems 801015
European Commission