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INTRODUCTION 

 
We endeavor to develop methods for analyzing time series of high-dimensional data, and are 

motivated context by the study of ecological communities comprised of species, where samples of organisms 
are collected over time (Christensen et al. 2018). Specifically, we are interested in determining if the 
composition of a community (relative composition of species) changes over the course of the study, and if it 
does, we seek to quantify those dynamics, which may occur abruptly (Williams et al. 2011) or smoothly 
(Tingley et al. 2009). However, ecological communities are typically composed of many species relative to the 
number of samples collected (i.e., the data are high-dimensional; McCune and Grace 2002), which presents a 
challenge to time series modeling. To address this problem, we reduce the dimensionality of the community 
data prior to time series analysis (Christensen et al. 2018). We accomplish this through a two-stage analysis 
referred to here as LDATS. The first stage (LDA) uses Latent Dirichlet Allocation (Blei et al. 2003) to find the 
optimally simplified, latent representation of the data, which is then analyzed in the second stage (TS) using 
Bayesian change point Time Series models (Western and Kleykamp 2004) that we extend for multinomial 
data using softmax regression (Venables and Ripley 2002). This manuscript describes the two-stage LDATS 
model in a unified mathematic setting and accompanies an LDATS R package (Simonis et al. 2019). 
 

Latent Dirichlet Allocation is a hierarchical Bayesian model that uses a generative classifier (i.e., it 
uses the joint probability of the inputs and outputs with Bayes’ rules to calculate the posterior, as opposed to 
a discriminative classifier that calculates the posterior directly; see Ng and Jordan 2002) to decompose high-
dimension data into a reduced number of latent groups (Blei et al. 2003) also known as topics (i.e., LDA is a 
topic model). The LDA model originally derived and developed by Blei et al. (2003) for analysis of textual 
corpora has since been successfully applied to ecological data (Valle et al. 2014, Christensen et al. 2018, Valle et 
al. 2018), the domain of interest here. In relation to the original linguistic LDA description and notation (Blei 
et al. 2003), organisms within a sample are like words in a document, species are like terms (word options) in a 
vocabulary, component communities are like linguistic topics, samples are like documents using the terms, 
and the whole study is like the corpus of documents (Valle et al. 2014). Importantly, LDA is a mixed-
membership model, such that terms (species) can be associated with multiple topics (component 
communities). For the sake of maintaining the relationship between our two-stage LDATS model and the 
topic model derivation of LDA, we retain the original naming (e.g., observations of words within documents, 
latent grouping of terms into topics) of Blei et al. (2003) 

 
The TS models used here to analyze the decomposed (via LDA) sample data build upon the Bayesian 

change point model of Western and Kleykamp (2004), which allows for discrete (change point) and 
continuous temporal changes as well as covariate impacts. This approach allows estimation of the continuous 
dynamics and covariate impacts to be estimated unconditionally with respect to discrete changes (i.e., the 
model includes change point uncertainty when estimating regression coefficients; Western and Kleykamp 
2004), but had a few components that needed expansion for our application. The original model included a 
single change point (Western and Kleykamp 2004), but we recognize that ecological communities can 
undergo multiple discrete shifts during a study (including temporary changes) or may not undergo any abrupt 
shifts (i.e., change gradually or not at all; Ratajczak, et al. 2018). Therefore, we expanded the model to include 



potentially 0, as well as multiple (but currently restricted to a maximum of five for purely computational 
reasons), change points (Ruggieri 2013). Further, the original model assumed a univariate normal response 
variable (Western and Kleykamp 2004), whereas the output from the LDA in Stage 1 are the proportional 
parameters of a multinomial response, which are multivariate and non-normal. For use in LDATS, we 
therefore generalized (à la generalized linear modeling; McCullagh and Nelder 1989) the model of Western 
and Kleykamp (2004) using softmax regression (Venables and Ripley 2002) to predict multinomial probability 
variables. The TS models are fit with Bayesian techniques using parallel tempering Markov Chain Monte 
Carlo (ptMCMC) methods (Earl and Deem 2005) to locate the change points and neural networks (Ripley 
1996) to estimate continuous time and covariate parameters.  

 
By combining dimension reduction and time series analysis into a single mathematical framework and 

software pipeline, LDATS provides a robust and user-friendly methodology for evaluating complex dynamics 
of high-dimension time series (Fig. 1). Although we understand the pressing need for these models within 
ecology (Andersen et al. 2009, Karssenberg et al. 2017, Ratajczak, et al. 2018), we recognize their application 
may be broader, given the interest in regime shifts in financial, political, and engineering sectors, for example 
(Scheffer 2009, Gal and Anderson 2010). We therefore keep the model and its coding implementation as 
general as possible to facilitate application to other systems of interest. This manuscript details the 
mathematical model underlying the LDATS methodology and an example application from the motivating 
system (based on Christensen et al. 2018). The accompanying LDATS software package implements the 
model in R (R Core Team 2018). The code is currently available via the Weecology Lab GitHub repository 
(https://github.com/weecology/LDATS). 

 
MODEL DEVELOPMENT 

 
General Terminology and Notation 

 
Because of the overlap in notation between LDA (Blei et al. 2013), the time series models used here 

(Western and Kleykamp 2004), and the ptMCMC method used to fit the time series models (Earl and Deem 

2005) (e.g., all use 𝛽 but with different meanings), we create a notational set for use here with an effort to 
minimize name reuse (Table 1). Given that LDATS specifically uses LDA as the first stage and that our 
methods build upon topic models, in instances of notational overlap between the LDA and TS or ptMCMC 
components, we defer to the LDA usage. We do make one important deviation from the original LDA 
notation (Blei et al. 2003), however, to clarify the dimensionality of state variables and parameters. Specifically, 

we use the lowercase, regular type letter (e.g., 𝛽) to indicate a singular value; the lowercase, boldface letter (e.g., 

𝜷) to indicate a vector of values; and the capital, boldface letter (e.g., 𝜝) to indicate a matrix of values. 
 

A corpus (set of documents) 𝐷 consists of 𝑀 total documents comprising 𝑁 total words from 𝑉 

total terms. Each document 𝑑 (in 1…𝑀) consists of 𝑁𝑑 words (𝑛 in 1…𝑁𝑑) assigned to one of 𝑣 in 1…  𝑉 
terms. The total number of words in the corpus is the sum of the words within each document. The weight 

of document 𝑢𝑑 is the number of words it has relative to the average number of words in any document:  
 

 
𝑢𝑑 =

𝑁𝑑
∑ 𝑁𝑗 𝑀⁄
𝑀
𝑗=1

 [1] 

 
allowing us to account for variable numbers of words among documents across segments of the time series 

(with vector 𝒖1…𝑀, or just 𝒖).  
 

LDA involves grouping the terms into 𝑖 in 1…𝑘 total latent (unobserved) component topics, where 
“component topic” means a group of terms that tend to be found together in specific proportions. The 
allocation process (Blei et al. 2003) allows individual terms to be assigned to multiple component topics. The 
total number of latent topics is also unknown, and for the present approach is fixed a priori within a given 



Stage 1 (LDA) model 𝑚1 in 1…ℳ1 (note the difference between ℳ1, the number of Stage 1 models and 𝑀, 

the number of documents) as 𝑘𝑚1
. 

 

Each word within a document has an observed term identity 𝑤𝑑,𝑛𝑑 and a latent topic membership 

that is fit in the Stage 1 model 𝑚1 as 𝑧𝑚1,𝑑,𝑛𝑑. Because there are varying numbers of words in each 

document, we use a vector structure to hold word-level data across the corpus. The term identities of all 

words within document 𝑑 are 𝒘𝑑,1…𝑁𝑑 (or 𝒘𝑑) and the term identities of all words across all documents 𝑀 

are 𝒘1…𝑀,1…𝑁𝑑 (or 𝒘), an 𝑁-length vector. Similarly, the topic identities of all words in document 𝑑 are 

𝒛𝑚1,𝑑,1…𝑁𝑑 (or 𝒛𝑚1,𝑑) and the topic identities of all words across all documents 𝑀 are 𝒛𝑚1,1…𝑀,1…𝑁𝑑 (or 

𝒛𝑚1,), an 𝑁-length vector. Thus 𝒛𝑚1
 contains the topic identity (latent state) and 𝒘 the term identity 

(observed state) for all words in the corpus. Note that the term identity does not contain a rank-index 

subscript associated with the model (𝑚1), indicating that the term identity stays the same for all models, 

whereas the topic identity does have the 𝑚1 subscript, indicating that it varies among the ℳ1 Stage 1 models.  
 

We are interested in temporal changes in topic composition, and so define the time of document 𝑑 

to be 𝑡𝑑 and the vector of all document times to be 𝒕1…𝑀 or simply 𝒕. 𝒕 defines the temporal relationship 
among documents, is used to locate change points, and presently must be a discrete (or discretizable) variable. 

For a given time series model 𝑚2 (in 1…ℳ2), we also collate 𝐶𝑚2
 total covariates (including an overall 

intercept), indexed as 𝑐 in 1…𝐶𝑚2
, and measured for each document. The value of a particular covariate 𝑐 

for a specific document 𝑑 is 𝑥𝑚2,𝑑,𝑐 and the set of 𝐶𝑚2
 covariates for the document is a vector 𝒙𝑚2,𝑑,1…𝐶𝑚2

 

or simply 𝒙𝑚2,𝑑. All of the covariates (including the intercept) across all of the documents are held in 𝑿𝑚2
, an 

𝑀 × (𝐶𝑚2
+ 1) matrix, that can vary among the ℳ2 time series models (hence the rank-index subscript). 

 
Stage One: Dimension Reduction 

 
Latent Dirichlet Allocation: Single Model 

 
The first stage of the LDATS analysis reduces the raw, high-dimensional data (counts of terms in 

documents over time) to a lower dimensional representation of the information contained in the data using 
Latent Dirichlet Allocation (LDA; Blei et al. 2003). Specifically, we use the Variational Expectation 
Maximization (Jordan et al. 1999) version of the LDA model derived and developed first by Blei et al. (2003). 

For a Stage 1 model 𝑚1 with a total number of topics 𝑘𝑚1
, the distribution of topics within a document 𝑑 is 

a 𝑘𝑚1
-dimension categorical random variable described by probabilities 𝜃𝑚1,𝑑,1…𝜃𝑚1,𝑑,𝑘𝑚1

 held in the 

vector 𝜽𝑚1,𝑑 (∑𝜽𝑚1,𝑑 = 1) and collated across documents into the 𝑀 × 𝑘𝑚1
 matrix 𝜭𝑚1

. Thus, the realized 

topic identity (𝑧) of word 𝑛 within document 𝑑 under model 𝑚1 is 
 
 𝑧𝑚1,𝑑,𝑛 ~ Cat𝑘𝑚1(𝜽𝑚1,𝑑) [2] 

 

The vector of topic probabilities within a document (𝜽𝑚1,𝑑) is defined by a 𝑘𝑚1
-dimensional Dirichlet 

distribution with concentration parameters 𝜶𝑚1,𝑑, which (following Blei et al. 2003) we assume do not change 

among documents (i.e., 𝜶𝑚1,1 = ⋯ = 𝜶𝑚1,𝑀 = 𝜶𝑚1
) and are symmetric (i.e., 𝛼𝑚1,𝑑,1 = ⋯ = 𝛼𝑚1,𝑑,𝑘𝑚1

=

𝛼𝑚1
), reducing the set to a single unknown parameter 𝛼𝑚1

 for the model. Thus, the topic probabilities are 

 
 𝜽𝑚1,𝑑  ~ Dir𝑘(𝛼𝑚1

) [3] 

 
which is drawn separately for each document (Blei et al. 2003). The word-level term distribution within a 

document is a 𝑉-dimension categorical random variable contingent upon the topic identity of the word and 



defined by probabilities 𝛽𝑚1,𝑑,1,1…𝛽𝑚1,𝑑,𝑘𝑚1 ,𝑉
, where ∑ 𝜷𝑚1,𝑑,𝑖𝑣 = 1. The probabilities across all topics 

within a document are held in a 𝑘𝑚1
× 𝑉 matrix (𝜝𝑚1,𝑑), which we assume is constant across documents, 

(𝜝𝑚1,𝑑 = ⋯ = 𝜝𝑚1,𝑀 = 𝜝𝑚1
; Blei et al. 2003). The word-level term identity (𝑤) is then generally defined: 

 
 𝑤𝑑,𝑛 ~ Cat𝑉(𝑧𝑚1,𝑑,𝑛, 𝜝𝑚1

) [4] 

 

𝒘 is therefore a function of unknown parameters 𝛼𝑚1
 (a scalar) and 𝜝𝑚1

 (a 𝑘𝑚1
× 𝑉 matrix). 

 

Despite the fact that the observations (𝒘; word-level term identities) are a statistical function of the 

unknown parameters 𝛼𝑚1
 and 𝜝𝑚1

, we are actually interested in the latent components of the model, not the 

base parameters. Specifically, we would like to estimate the posterior probability distribution for the latent 

topic probabilities 𝜭𝑚1
 (and thus also states 𝒛𝑚1

) given the observations 𝒘, but that distribution depends on 

the parameters fit by the model, and so our inferential problem becomes determining the posterior 
probability distribution of the latent components, given the observations and the estimated parameters: 
 
 

𝒫(𝜭𝑚1
, 𝒛𝑚1

|𝒘, 𝛼𝑚1
, 𝜝𝑚1

) =  
𝒫(𝜭𝑚1

, 𝒛𝑚1
, 𝒘|𝛼𝑚1

, 𝜝𝑚1
)

𝒫(𝒘|𝛼𝑚1
, 𝜝𝑚1

)
 [5] 

 

where 𝒫 is used generally as a probability distribution function. Clearly, estimating the probability distribution 

of the latent states necessitates calculation of 𝛼𝑚1
 and 𝜝𝑚1

, which facilitates expansion of the probability of 

observations 𝒘 given the parameters 𝛼𝑚1
 and 𝜝𝑚1

 (𝒫(𝒘|𝛼𝑚1
, 𝜝𝑚1

); Appendix 1): 

 
 

𝒫(𝒘|𝛼𝑚1
, 𝜝𝑚1

) =∏[∫𝒫(𝜽𝑚1,𝑑|𝛼𝑚1
)(∏ ∑ 𝒫(𝑤𝑑,𝑛|𝑧𝑚1,𝑑,𝑛, 𝜝𝑚1

)𝒫(𝑧𝑚1,𝑑,𝑛|𝜽𝑚1,𝑑)

𝑧𝑚1,𝑑,𝑛

𝑁𝑑

𝑛=1

)𝒹𝜽𝑚1,𝑑]

𝑀

𝑑=1

 

 

[6] 

This equation highlights the problematic coupling of 𝜽𝑚1,𝑑 (and thus 𝛼𝑚1
) and 𝜝𝑚1

 in the summation over 

latent topics (Blei et al. 2003), which prevents direct, tractable estimation of parameters (and latent states).  
 

To circumvent this issue, we use a variational approximation (Jordan et al. 1999) to the equations that 
decouples the parameters, and which we fit using the expectation-maximization routine (aka VEM for 
Variational Expectation Maximization; Blei et al. 2003; Appendix 2). To accomplish this, we endow the model 

with free latent variational parameters 𝜞𝑚1
 and 𝜱𝑚1

 (Appendix 2) that decouple the terms and characterize a 

family of distributions (𝒬 to distinguish from 𝒫) providing a lower bound on the probabilities (Jordan et al. 
1999, Blei et al. 2003). Once the VEM algorithm has converged, we achieve approximate maximum likelihood 

estimates for the model parameters (𝛼𝑚1
∗  and 𝜝𝑚1

∗ ) given the full set of observations (𝒘) for model 𝑚1. This 

estimation procedure is executed using the LDA function in the topicmodels package (v0.2-7; Grün and 
Hornik 2011) in R (v 3.5.1; R Core Team 2018), which leverages C code written by Blei et al. (2003).  
 

Latent Dirichlet Allocation: Multi-Model Inference 
 

Given the fit of a specific Stage 1 model (𝑚1), we can then consider multiple Stage 1 models to 

determine the model with the most parsimonious number of topics 𝑘𝑚1
∗ . Specifically, we use AIC as our Stage 

1 model selection criterion (Christensen et al. 2018), defined for a specific LDA model 𝑚1: 
 
 AIC𝑚1

= −2ℓ(𝛼𝑚1
∗ , 𝜝𝑚1

∗ |𝒘) + 2𝓀𝑚1
 [7] 

 

where ℓ is the log likelihood (ℓ(𝛼𝑚1
∗ , 𝜝𝑚1

∗ |𝒘) = log𝒫(𝒘|𝛼𝑚1
∗ , 𝜝𝑚1

∗ )) and 𝓀𝑚1
= (1 + 𝑘𝑚1

𝑉) is the 



number of parameters in the model: 1 for 𝛼𝑚1
∗  and 𝑘𝑚1

𝑉 corresponding to each entry in 𝜝𝑚1
∗ , a 𝑘𝑚1

× 𝑉 

matrix (Blei et al. 2003, Hoffman et al. 2010, Grün and Hornik 2011). If small sample size is a concern with 
respect to the degrees of freedom being consumed by the model (as is often the case in ecological settings), 

one can use the AICc correction based on the number of observations, here the number of entries in the 

document-term matrix (𝑀𝑉; Buntine 2002, Hoffman et al. 2010): 
 
 

AICc𝑚1
= AIC𝑚1

+
2𝓀𝑚1

2 + 2𝓀𝑚1

𝑀𝑉 − 𝓀𝑚1
− 1

 [8] 

 
Because of the use of multiple iterative optimization routines (which require starting values to be 

drawn at random) to estimate otherwise intractable probability distributions, it is critical to account for the 
potential influence of starting values on analytical results. Here, we accomplish this by running multiple 

models with the same number of topics (𝑘𝑚1
) using different starting values, assigned through the random 

number generator seed (ʆ). Specifically, we use 𝒩 replicates (𝓃 in 1…𝒩) at each number of topics from 2 to 

𝑘max, the total number of topics to be explored. The minimal number of topics is set to 2 by the current 
coding implementation of the LDA algorithm (Blei et al. 2003, Grün and Hornik 2011), although the 
underlying mathematics can include the limiting case of a single topic (i.e., no dimension reduction). Thus, the 

total number of models in Stage 1 (ℳ1) is 
 
 ℳ1 = 𝒩(𝑘max − 1) [9] 

 

The optimal (according to AIC) LDA model (𝑚1
∗) is determined by  

 
 𝑚1

∗ = arg min
 𝑚1in1…ℳ1

AIC(𝑚1) [10] 

 

and has the corresponding set of parameters {𝛼𝑚1
∗

∗ , 𝜝𝑚1
∗

∗ , 𝑘𝑚1
∗ , ʆ𝑚1

∗ }. 

 
Reduced-Dimension Data 

 
Having found the optimal Stage 1 model, we obtain the posterior estimates for the document-level 

topic probabilities (held in a 𝑘𝑚1
∗ -length vector), which we will use as the response in our Stage 2 models. 

Because we are using a variational approach, we actually obtain posterior point estimates for the variational 

parameters 𝜞𝑚1
∗  (rather than the base model parameters 𝜭𝑚1

∗ ; Grün and Hornik 2011), taken from the final 

step of the VEM algorithm in model 𝑚1
∗. Recognizing that 𝜞𝑚1

∗  contains Dirichlet concentration parameters 

within documents (𝜸𝑚1
∗ ,𝑑

∗ ), we must normalize the values so they are proper proportions (sum to one) and 

can be modeled using a multinomial distribution. We notate the normalized parameters with the overbar 

accent as 𝜸̅𝑚1
∗ ,𝑑

∗ : 

 
 

𝜸̅𝑚1
∗ ,𝑑

∗ =
𝜸𝑚1

∗ ,𝑑
∗

∑𝜸𝑚1
∗ ,𝑑

∗  [11] 

 

The normalized posterior point estimates of the topic proportions across all of the 𝑀 documents in the 

corpus are held in the 𝑀 × 𝑘𝑚1
∗  matrix 𝜞𝑚1

∗ , which corresponds to the optimal (according to AIC based on 

VEM inference) decomposition of the word-level data to topic-level data. This matrix forms the multivariate 
response variable analyzed in the time series model, as outlined in the next section. 
 

Stage Two: Multinomial Time Series 



 
 The second stage of the LDATS model analyzes the time series of topic proportions estimated by the 

LDA (𝜞𝑚1
∗ ) to quantify temporal dynamics and in particular to identify abrupt change point. The times of the 

documents (𝒕 = 𝑡1…𝑡𝑀) have the potential to influence topic proportions in multiple manners: the time may 
control the application of the predictor variables in the model (in the case of discrete change points), may 
directly influence quantitative values of predictors (if continuous time impacts are included in the regression 

model), or may not impact 𝜞𝑚1
∗  at all (in the case of a model with no change points and no continuous time 

impacts). Presently, temporal autocorrelation is not included in the time series models, but is planned for 
future work (see FUTURE DEVELOPMENTS). We base our model on that indicator regression 
approach of Western and Kleykamp (2004), but make notable alterations, namely allowing for multiple 
change points, fitting segment-level regressions individually (following Ruggeri 2013), and generalizing the 
segment-level regression to model multinomial response data. 
 

A Stage 2 model 𝑚2 has a non-negative integer number of discrete change points (𝑃𝑚2
) that divide 

the corpus into distinct temporal segments (𝑠 in 1…𝑆𝑚2
, aka “chunks”) such that the number of chunks is 

always one more than the number of change points (𝑆𝑚2
= 𝑃𝑚2

+ 1; see Change Points: Segmenting the 

Time Series). If there are change points (i.e., 𝑃𝑚2
> 0), then their locations (for the 𝑝 in 1…𝑃𝑚2

 change 

points) are unknown parameters to be estimated (Western and Kleykamp 2004, Christensen et al. 2018). A 

specific change point 𝑝’s location is represented by 𝜌𝑚2,𝑝 and the set of change point locations is the 𝑃𝑚2
–

length vector 𝝆𝑚2,1…𝑃 (or 𝝆𝑚2
). In addition to the number of change points, 𝑚2 has a within-chunk 

regression model defined by a set of covariates (including the intercept indicator, temporal, and non-temporal 

covariates) 𝑿𝑚2
 that impact the topic proportions through a set of parameters 𝜢́𝑚2

 à la generalized linear 

models (McCullagh and Nelder 1989; see Segment-Level Models: Multinomial Logistic Regression). In 
combination then, we seek to estimate the posterior probability distribution of the change point locations and 

the regression coefficients given the fitted topic probabilities from 𝑚1
∗ (𝒫(𝝆𝑚2

, 𝜢́𝑚2
|𝜞𝑚1

∗)).  
 

We estimate 𝒫(𝝆𝑚2
, 𝜢́𝑚2

|𝜞𝑚1
∗) by leveraging the dual nature of the change points as both 

parameters of the model and parameters that structure the model (𝜢́𝑚2
) and calculating the marginal 

posterior probabilities of 𝝆𝑚2
 and 𝜢́𝑚2

 in sequence (Western and Kleykamp 2004). First, we estimate the 

marginal posterior probability distribution of the change point locations, given the topic proportions 
 

 
𝒫(𝝆𝑚2

|𝜞𝑚1
∗) = ∫ 𝒫(𝝆𝑚2

, 𝜢́𝑚2
|𝜞𝑚1

∗)

𝜢́𝑚2

𝒹𝜢́𝑚2
 [12] 

 
using Markov Chain Monte Carlo (MCMC; see Combining Segment-Level Models: Inference About Change 

Point Locations). Then, we define model realizations (𝑟 in 1…𝑅𝑚2
, as in 𝑚2

𝑟 in 𝑚2
1…𝑚2

𝑅𝑚2) to specify the 

actual change point locations (𝝆𝑚2
𝑟 ; see Change Points: Segmenting the Time Series). In a corpus of 𝑀 

documents with a range of time stamps from 𝑡1 to 𝑡𝑀, the 𝑃𝑚2
 change points have ((𝑡𝑀−1)−𝑡1

𝑃𝑚2
) 

(“(𝑡𝑀 − 1) − 𝑡1 choose 𝑃𝑚2
”) possible values for 𝝆𝑚2

, constituting 𝑅𝑚2
 unique realizations of 𝑚2. Each 

realization has a posterior probability value itself (𝒫(𝝆𝑚2
= 𝝆𝑚2

𝑟|𝜞𝑚1
∗) and produces a conditional posterior 

probability distribution of the regressors given the change point locations it specifies (𝒫(𝜢́𝑚2
|𝝆𝑚2

𝑟 , 𝜞𝑚1
∗)). 

We then combine these conditional distributions via Bayesian Model Averaging (BMA; Bartels 1997, Western 
and Kleykamp 2004, Hobbs and Hooten 2015) considering the realizations as submodels and using their 
posterior probabilities as weights to estimate the marginal posterior probability of the regression coefficients, 
given just the topic proportions: 
 



 

𝒫(𝜢́𝑚2
|𝜞𝑚1

∗) = ∑𝒫(𝜢́𝑚2
|𝝆𝑚2

𝑟 , 𝜞𝑚1
∗)𝒫(𝝆𝑚2

= 𝝆𝑚2
𝑟|𝜞𝑚1

∗)

𝑅𝑚2

𝑟=1

 [13] 

 
(see Combining Segment-Level Models: Inference About Within-Segment Parameters).  
 

Change Points: Segmenting the Time Series 
 

To deconstruct the time series into chunks, we augment the vector of change point locations 𝝆𝑚2
 

with the time step before the minimum (min 𝒕 − 1) and the maximum time step (max 𝒕), generating the 

(𝑃𝑚2
+ 2)–length vector 𝝆⏞𝑚2

 where the overbrace indicates the addition of the fixed range. In the instance 

that there are no change points (i.e., 𝑃𝑚2
= 0), 𝝆⏞𝑚2

 is still defined, but now is simply a length-2 vector 

including the minimum and maximum times, and therefore includes no unknown change point locations to 

be estimated. We assign the documents into segments via a mapping function (𝑓𝑑→𝑠), which returns an 

indication (ξ𝑚2
𝑟,𝑑,𝑠) of whether or not document 𝑑 belongs to chunk 𝑠 (0 for no or 1 for yes) based on its 

timestamp 𝑡𝑑 and the start (𝜌⏞𝑚2
𝑟,𝑠,1, the first time step after the previous change point) and end (𝜌⏞𝑚2

𝑟,𝑠,2, the 

timestep of the change point) times of the chunk: 
 
 

ξ𝑚2
𝑟,𝑑,𝑠 = 𝑓𝑑→𝑠 (𝝆⏞𝑚2

𝑟 , 𝑡𝑑 , 𝑠) =

{
 

 
0, 𝑡𝑑 < 𝜌⏞𝑚2

𝑟,𝑠,1                 

1, 𝜌⏞𝑚2
𝑟,𝑠,1 ≤ 𝑡𝑑 ≤ 𝜌⏞𝑚2

𝑟,𝑠,2

0, 𝑡𝑑 > 𝜌⏞𝑚2
𝑟,𝑠,2  

 [14] 

 

For each chunk of time, 𝑓𝑑→𝑠 produces a length-𝑀 vector of 0s and 1s (𝛏𝑚2
𝑟,1…𝑀,𝑠 or 𝛏𝑚2

𝑟,𝑠), which are 

collated across chunks into an 𝑀 × 𝑆𝑚2
 matrix (𝚵𝑚2

𝑟) that identifies to which chunk each document belongs 

(a document only belongs to one segment, such that the columns of 𝚵𝑚2
𝑟 each sum to 1). 𝚵𝑚2

𝑟 deconstructs 

the Stage 1 output (𝜞𝑚1
∗ ) into 𝑆𝑚2

 submatrices (𝜞𝑚1
∗ ,𝑠 in 𝜞𝑚1

∗ ,1…𝜞𝑚1
∗ ,𝑆𝑚2

), corresponding to the chunks. 

 
Segment-Level Models: Multinomial Logistic Regression 

 
 In LDATS, the indicator function is used to segment the data prior to analyses, such that under a 

given model 𝑚2, each of the chunks of documents is fit with a separate version of the same regression (i.e., 
the regression models all include the same predictor variables). Our approach corresponds to the assumption 
of no covariance among parameters across segments, which is reasonable given our conceptualization of the 
change points as discrete and abrupt. In this, LDATS follows Ruggieri (2013) but deviates from the approach 
of Western and Kleykamp (2004), who fit a single regression across the (two) chunks that applied the 
indicator internally, thereby allowing non-zero covariance among parameters between the segments. 
However, Western and Kleykamp (2004) had a singular change point, modeled a normal response variable, 
and used a relatively simple linear regression model with few covariates, all assumptions that we relax in 
LDATS (we allow for multiple change points, have a multinomial response variable, and permit complex 
predictive models) leading to a substantial increase in the number of parameters fit by the model, which 
would be computationally prohibitive to fit under a single model allowing for full covariance due to the size 
of the variance-covariance matrix (Genz 1992). (Although see FUTURE DEVELOPMENTS.) 
 

 The within-chunk component of a Stage 2 model 𝑚2 predicts the matrix of topic proportions for the 

𝑀𝑚2
𝑟,𝑠 documents belonging to segment 𝑠 (𝜞𝑚1

∗ ,𝑠) in terms of 𝐶𝑚2
 predictors (𝑿𝑚2

𝑟,𝑠) and 𝐶𝑚2
𝑘𝑚1

∗  

coefficients (𝜢𝑚2
𝑟,𝑠), recognizing that the segmentation (i.e., what 𝑠 indexes over) depends on the 

identification matrix 𝚵𝑚2
𝑟 , which varies among realizations of model 𝑚2. Although the original change point 



model (Western and Kleykamp 2004) assumed a univariate normal response variable, our response data are 

multivariate and non-normal. Specifically, our response variable is a set of 𝑘𝑚1
∗  multinomial probabilities, each 

of which must be non-negative and which must sum to 1 within a document. We address these constraints on 
the response variable by taking a generalized linear model approach (McCullagh and Nelder 1989) and 
modeling the data using a log-linear multinomial (aka multinomial logit or softmax) regression (Ripley 1996, 

Venables and Ripley 2002) based on a set of augmented parameters 𝜢́𝑚2
𝑟,𝑠 (the acute accent indicates 

augmentation) that define the first topic as a reference value (Appendix 3; Venables and Ripley 2002): 
 
 E[𝜞𝑚1

∗ ,𝑠]𝑚2
𝑟 = softmax(𝑿𝑚2

𝑟,𝑠𝜢́𝑚2
𝑟,𝑠) [15] 

 

where E indicates the expected (predicted) value(s) of the proportion(s) and softmax is the normalized 
exponential function that generalizes the logistic function to multiple dimensions (Bishop 2006). This 
representation is aligned with the generalized linear model equation (McCullagh and Nelder 1989), wherein 
our link and inverse link functions are the multinomial logit and softmax (akin to the binomial logit and 
logistic functions for a logistic regression). Recognizing the uncertainty in the relationship between the 

“observations” (𝜞𝑚1
∗ ,𝑠) and predictions (E[𝜞𝑚1

∗ ,𝑠]𝑚2
𝑟) allows us to estimate the probability distribution of the 

regression parameters for the segment given the change point locations and the segment’s topic proportions 

(𝒫(𝜢́𝑚2
𝑟,𝑠|𝝆𝑚2

𝑟,𝑠, 𝜞𝑚1
∗ ,𝑠)) and measure the segment-level contribution to the probability of the realization of 

change point locations (used to calculate 𝒫(𝝆𝑚2
= 𝝆𝑚2

𝑟|𝜞𝑚1
∗); see Combining Segment-Level Models: 

Inference About Within-Segment Parameters). This flexible formulation of the regression model is a 
substantial generalization of the original LDATS application, which imposed a seasonal (within-year) dynamic 
modeled as a Fourier series that made biological sense for the system of focus (Christensen et al. 2018). 
However, many systems experience dynamics that are not seasonal (e.g., decadal cycles) or are not stationary 
(i.e., directional changes), and so generalizing the regression model is a key component to generalizing 
LDATS more broadly.  
 
  Following Bayes’ rule, the posterior probability distribution of the regression parameters for a 
segment is proportional to the probability distribution of the topic proportions given the parameters (i.e., the 
model likelihood) times the prior probability distribution for the parameters: 
 
 𝒫(𝜢́𝑚2

𝑟,𝑠|𝝆𝑚2
𝑟,𝑠, 𝜞𝑚1

∗ ,𝑠) ∝ 𝒫(𝜞𝑚1
∗ ,𝑠|𝝆𝑚2

𝑟,𝑠, 𝜢́𝑚2
𝑟,𝑠)𝒫(𝜢́𝑚2

𝑟,𝑠|𝝆𝑚2
𝑟,𝑠) [16] 

 
where all of the probabilities are still conditional on the realized change point locations (i.e., the submodel). 

The probability of a single document 𝑑𝑠 given the parameters is the product of each topic’s predicted 
probability raised to power of the corresponding observed probability, which is equivalent to the negative 
cross entropy between the observed and predicted distributions (Berger et al. 1996, Malouf 2002). Of 
particular importance here is that the “observed” values (which are actually estimated latent topic 
proportions) are probabilities, and so we retain the full version of the probability equation (compared to 
when the observed data are categorized individuals and the equation can be simplified due to the fact that all 

states are 0 except one that is 1 for each observation). The probability of the 𝑀𝑚2
𝑟,𝑠 documents in the 

segment is then the weighted (by 𝒖) product of the document probabilities:  
 
 

𝒫(𝜞𝑚1
∗ ,𝑠|𝝆𝑚2

𝑟,𝑠, 𝜢́𝑚2
𝑟,𝑠) = ∏ 𝑒𝑢𝑑𝑠∏(E[𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗ ]

𝑚2
𝑟
)
𝛾̅
𝑚1
∗ ,𝑑𝑠,𝑖

∗
𝑘𝑚1

∗

𝑖=1

𝑀𝑚2
𝑟,𝑠

𝑑𝑠=1

 [17] 

 
The weights are exponentiated on the probability scale and thus linear on the additive log-probability (i.e., log-
likelihood, loss) scale.  



 
Generally speaking, we use a multivariate Gaussian prior for the regression parameters, following 

standard Bayesian approaches (Gelman and Hill 2007). The current iteration of LDATS assumes a mean-0 

distribution with common precision (inverse variance) across segments 𝜆 and no covariance (but see 

FUTURE DEVELOPMENTS). Recalling that the model parameters 𝜢́𝑚2
𝑟,𝑠 are defined with the first topic 

as a reference (intercept), however, there are some entries in 𝜢́𝑚2
𝑟,𝑠 that are fixed at 0 and not free for 

estimation. Specifically, for any covariate 𝑐, the parameter associated with the first topic 𝑖 = 1 is 0: 

𝜂́𝑚2,𝑠,𝑖=1,𝑐 = 0. Thus, we define the variance-covariance matrix using the augmented identity matrix 𝑰́ where 

the accent matches 𝜢́ and signifies that all of the entries associated with the first topic are set to 0. Including 

the set-to-0 regressors, there are 𝐶𝑚2
𝑘𝑚1

∗  entries in 𝜢́𝑚2
𝑟,𝑠, and thus the multivariate normal distribution is of 

dimension 𝐶𝑚2
𝑘𝑚1

∗ : 

 
 𝜢́𝑚2

𝑟,𝑠 ~ MVN𝐶𝑚2𝑘𝑚1∗
(0, 𝜆𝑰́) [18] 

 

where MVN is defined by the mean vector (0) and precision matrix (𝜆𝑰́). The original formulation of LDATS 

(Christensen et al. 2018) assumed 𝜆 = 0 (i.e., a fully vague prior) but including a small increase in precision 

(𝜆 ≈ 10−4 − 10−2) can aid in finding the optimal solution as long as all coefficients have been scaled to 

about [0,1] (e.g., normalized; Ripley 1993, Ripley 1996). This approach to estimating 𝒫(𝜢́𝑚2
𝑟,𝑠|𝝆𝑚2

𝑟,𝑠, 𝜞𝑚1
∗ ,𝑠) 

is equivalent to the method called ridge regression (Hoerl 1962, Hoerl and Kennard 1970), Tikhonov 
regularization (Tikhonov and Arsenin 1977), L2 regularization (Ng 2004) or joint maximum a posteriori (MAP; 
Bassett and Deride 2018) estimation of a neural network using a weight decay (Venables and Ripley 2002), 
depending on the applied setting. 

 
Computationally, the regression for a chunk of time based on a realization of a Stage 2 model is fit 

using the multinom and nnet functions within the nnet package (v7.3-12; Venables and Ripley 2002) in R (R 
Core Team 2018), which formulate the regression as a single-hidden-layer neural network with skip-layer 
connections (Venables and Ripley 2002). The posterior distribution for the parameters is found with the 
gradient-based optimization routine known as the Broyden–Fletcher–Goldfarb–Shanno or BFGS Algorithm 
(Brayden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970), a quasi-Newtonian iterative searching method 

for non-linear models. Here, we use the negative log of the prior-penalized likelihood as the loss value (ℒ):  
 
 ℒ𝑚2

𝑟,𝑠 = − log (𝒫(𝜞𝑚1
∗ ,𝑠|𝝆𝑚2

𝑟,𝑠, 𝜢́𝑚2
𝑟,𝑠)𝒫(𝜢́𝑚2

𝑟,𝑠|𝝆𝑚2
𝑟,𝑠)) [19] 

 

that is minimized to find the optimal parameter value set 𝜢́𝑚2
𝑟,𝑠

∗  

 
 𝜢́𝑚2

𝑟,𝑠
∗ = arg min

𝜢́𝑚2
𝑟,𝑠

ℒ𝑚2
𝑟,𝑠 [20] 

 

which has the loss value ℒ𝑚2
𝑟,𝑠

∗  and corresponds to the mode of the posterior (Venables and Ripley 2002). 

The BFGS Algorithm works efficiently by not calculating the Hessian (matrix of partial second derivatives) of 
the prior-penalized loss function at every step in the optimization, but rather approximating it by comparing 
successive iterations of the Jacobian matrix (matrix of partial first derivatives), whose components correspond 
to the partial derivatives the loss with respect to the coefficients associated with each combination of 
covariate and topic. The full Jacobian of the loss equation has an extensive derivation (due to the multivariate 
application of the chain rule) that is based on the nuances of the data set being analyzed, but which collapses 
neatly because it is sparse (Appendix 4).  
 

Combining Segment-Level Models: Inference About Change Point Locations 



 
We then define the full time series model for the realization by collating the chunk-level models. 

Specifically, we row-wise stack the chunk-specific parameter matrices 𝜢́𝑚2
𝑟,1 to 𝜢́𝑚2

𝑟,𝑆𝑚2
 creating 𝜢́𝑚2

𝑟 

(dimension: (𝑆𝑚2
𝐶𝑚2

) × 𝑘𝑚1
∗ ) and we place the chunk-specific covariate matrices 𝑿𝑚2

𝑟,1 to 𝑿𝑚2
𝑟,𝑆𝑚2

 into a 

diagonal square (𝑆𝑚2
× 𝑆𝑚2

) matrix to produce a covariate matrix for the full time series 𝑿𝑚2
𝑟  (dimension: 

𝑀 × (𝑆𝑚2
𝐶𝑚2

)). Recalling that the splitting of the corpus into segments and thus the fitting of chunk-level 

parameters is governed by the realized change point locations 𝝆𝑚2
𝑟 via the indication matrix 𝚵𝑚2

𝑟 , we can then 

define the generalized linear equation for the full time series as  
 
 E[𝜞𝑚1

∗ ]
𝑚2
𝑟 = 𝑓𝑓(𝑠)(softmax, 𝑿𝑚2

𝑟𝜢́𝑚2
𝑟 , 𝚵𝑚2

𝑟) [21] 

 

where the segment function mapper (𝑓𝑓(𝑠)) applies the softmax function to the segments of 𝑿𝑚2
𝑟𝜢́𝑚2

𝑟 as 

defined by 𝚵𝑚2
𝑟 (Appendix 5). The use of the mapping function is needed here, even for a simple prediction, 

as it defines the values included in the softmax function, whose output depends on the full set of inputs 

(Appendix 3). Further, because the softmax is log-linear, entries in 𝑿𝑚2
𝑟𝜢́𝑚2

𝑟 that are 0 are actually 

meaningful (they are equal to the reference topic) when included in the regression, and so we must only 

include true 0s, and not the filler-entry 0s, from 𝑿𝑚2
𝑟𝜢́𝑚2

𝑟 in the calculation. Equation 21 can be used to 

calculate the optimal model-estimated topic proportions for all documents in the corpus (E[𝜞𝑚1
∗ ]
𝑚2
𝑟

∗
) by 

simply substituting the MAP estimated parameter matrix into the segment function mapper, as in 

𝑓𝑓(𝑠) (𝑿𝑚2
𝑟𝜢́𝑚2

𝑟
∗ , softmax, 𝚵𝑚2

𝑟).  

 
 Inferentially, we are interested in determining the (marginal posterior) probability distribution of the 

change point locations, given topic proportions 𝒫(𝝆𝑚2
|𝜞𝑚1

∗), which we relate to the probability of the topic 

proportions, given the change point locations (i.e., the model likelihood, 𝒫(𝜞𝑚1
∗ |𝝆𝑚2

)) and the prior 

distribution of the change points (𝒫(𝝆𝑚2
)) via Bayes’ theory: 

 
 𝒫(𝝆𝑚2

|𝜞𝑚1
∗) ∝ 𝒫(𝜞𝑚1

∗ |𝝆𝑚2
)𝒫(𝝆𝑚2

) [22] 

 
We use the segment-level models’ loss values to construct the likelihood of the topic proportions under the 
change point locations. Specifically, we sum the minimized loss (negative log prior-penalized likelihood) 

values across the chunks to calculate the total minimized loss for a realization of the model (ℒ𝑚2
𝑟

∗ ), which is 

equal to the negative log likelihood for the topic proportions given the change point locations 
 
 

ℒ𝑚2
𝑟

∗ =∑ℒ𝑚2
𝑟,𝑠

∗

𝑆𝑚2

𝑠=1

= −ℓ(𝜞𝑚1
∗ |𝝆𝑚2

𝑟) [23] 

 
Remembering that a realization of a model simply specifies the change point locations, we can define the 

distribution of minimized loss ℒ𝑚2
∗  for the model as a function of change point locations based on the 

𝑅𝑚2
= ((𝑡𝑀−1)−𝑡1

𝑃𝑚2
)  unique realizations of, each of which has its own ℒ𝑚2

𝑟
∗  (Western and Kleykamp 2004): 

 
 

𝒫(𝜞𝑚1
∗ |𝝆𝑚2

= 𝝆𝑚2
𝑟) =

𝑒
ℒ
𝑚2
𝑟

∗

∑ 𝑒
ℒ
𝑚2
𝑟

∗𝑅𝑚2
𝑟=1

 [24] 

 



Although because of the sheer number of possible realizations for even a modest time series with multiple 
change points (Table 2), we use Markov Chain Monte Carlo (MCMC) methods to sample the probability 
distributions efficiently (rather than sample it systematically). 
 

The prior probability distribution for the change point locations (𝒫(𝝆𝑚2
)) is a multivariate discrete 

distribution, which could take any number of specific formulations (Western and Kleykamp 2004, Ruggieri 
2013). The original LDATS model (Christensen et al. 2018) allowed only a uniform prior, and that 
requirement is presently maintained in the coding of the package (Simonis et al. 2019), although relaxing this 
assumption in the software is planned (see FUTURE DEVELOPMENTS). The uniform prior allocates 

equal probability to each of the discrete time points from the time of the first document (min 𝒕) to one time 

step before the last document (max 𝒕 − 1), and the selected times are then sorted chronologically 
 

Because the probability distribution has a high potential for multiple modes (if multiple change 
points are reasonably likely), standard MCMC approaches may have difficulty fitting the model (Sambridge 
2014). Thus, we employ parallel tempering MCMC (ptMCMC; also called Metropolis-coupled or replica-
exchange MCMC), which endows a standard MCMC search with auxiliary chains that explore the distribution 
surface more rapidly than the focal chain (Swendsen and Wang 1986, Geyer 1991, Earl and Deem 2005). 
ptMCMC is a robust methodology that works well for generalized models (Guo et al. 2016) and is an efficient 
sampler of rough probability landscapes (Machata and Ellis 2011). Here, the posterior probability 

distribution’s surface is explored using 𝐻 chains (ℎ in 1…𝐻), each with its own temperature (𝑎ℎ) defining its 
search ability: higher temperature chains have higher variances in their step sizes (they have flattened surfaces 
to search; Gupta et al. 2018) and are therefore more easily able to navigate the surface. This comes at a cost of 
instability, however, as higher temperature chains are less likely to settle in to stable distributions. We 

therefore use a range of temperatures grouped in a series (𝒂 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝐻) to balance search 

breadth and depth, with the coolest (𝑎1) sampling the true surface (Earl and Deem 2005).  
 
The specifics of the temperature regime are obviously then critical for fitting a model to data using 

ptMCMC (Kone and Kofke 2005, Rathore et al. 2005, Nagata and Watanabe 2008). Following the original 
LDATS model (Christensen et al. 2018), the current implementation allows for control over the temperature 
sequence control parameters to facilitate fitting a wide range of potential corpus time series (Simonis et al. 
2019) and defines the temperatures as 

 
 

𝒂1…𝐻−1 = 2
(seq(0,log2 𝑎𝐻−1,𝐻−1))

1+𝑞

(log2 𝑎𝐻−1)
𝑞

 

𝑎𝐻 = 𝑎𝐻 
[25] 

 

where seq(0, log2 𝑎𝐻−1 , 𝐻 − 1) is a sequence of values from 0 to log2 𝑎𝐻−1 of length 𝐻 − 1, 𝑞 is the 

exponent controlling the temperature series (𝑞 = 0 produces a geometric sequence, 𝑞 = 1 implies squaring 

before exponentiating), 𝑎𝐻−1 is the penultimate temperature, and 𝑎𝐻 is the ultimate temperature. Currently, 

the control inputs (𝑎𝐻, 𝑎𝐻−1, 𝐻, and 𝑞) are available to the user, but are fixed for a given fit of the ℳ2 Stage 
2 models. A target for future mathematical and coding development is to expand the inputs and allow for an 
adaptive approach to ptMCMC, which will facilitate a more plug-and-play approach to model fitting (where 
the user does not need to set any control parameters; see FUTURE DEVELOPMENTS). 
 

The ptMCMC algorithm works by coupling the chains (which are taking their own walks on the 
distribution surface) through “swaps”, where neighboring chains exchange configurations in between steps 

(Geyer 1991, Falcioni and Deem 1999). Over the course of the search, each of the chains proceeds through 𝐺 

iterations (steps; 𝑔 in 1…𝐺) of the Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, Hastings 

1970), a classical MCMC method. Step 𝑔 on chain ℎ is some realization of the model, such that the values of 

the change points for 𝑟 = ℎ, 𝑔 are 𝝆
𝑚2
ℎ,𝑔 . The chains are each initialized (𝑔 = 0) with a draw from 𝒫(𝝆𝑚2

) 



and the best fit draw (determined by likelihood) is put in the focal chain with the next best fit draw is put in 

the next hottest chain until the worst fit draw is put in the hottest chain. Then, from each step until 𝑔 = 𝐺, 

for each chain, a new set of change points is proposed (𝝆
𝑚2
ℎ,𝑔̆ ; the breve accent indicates a proposal (pre)-

step), evaluated (loss is calculated), and then either accepted (𝝆
𝑚2
ℎ,𝑔 = 𝝆

𝑚2
ℎ,𝑔̆) or rejected (𝝆

𝑚2
ℎ,𝑔 = 𝝆

𝑚2
ℎ,𝑔−1). 

The proposed set of change point locations for step 𝑔 is generated from the proposal distribution ℛ 

conditional on the previous change point locations (ℛ (𝝆
𝑚2
ℎ,𝑔̆|𝝆

𝑚2
ℎ,𝑔−1)). The proposal distribution describes 

the movement of a single change point via a symmetric geometric distribution with a user-controlled average 

step size. Functionally, ℛ is a joint distribution representing three steps: [1] selecting one of the 𝑃𝑚2
 change 

points to move via a multinomial distribution with equal probabilities (
1

𝑃𝑚2
), [2] determining the directionality 

of movement (earlier or later in the time series) using a binomial distribution with equal probability for the 

outcomes −1 and 1, and [3] calculating the magnitude of the movement (number of discrete time steps) with 

a geometric distribution (mean step size is 𝜅). The multiplication of the three distributions results in the 𝑃𝑚2
-

length vector representing the proposal step from the current change point locations: 
 

 
𝝆
𝑚2
ℎ,𝑔̆  ~ 𝝆

𝑚2
ℎ,𝑔−1 + Geom(1,

1

𝜅
)Binom{−1,1}(1, 0.5)Multinom𝑃𝑚2

(1,
1

𝑃𝑚2

) [26] 

 

where Geom is the version of the geometric distribution that has 1 as its minimum returned value. The only 

parameter that is available to the user to set is the average step size of the geometric distribution, 𝜅. 
Ostensibly, this parameter could be adaptively set based on the data set, but that functionality is not presently 
included (although see FUTURE DEVELOPMENTS).   

 

Because the proposal distribution is symmetric (ℛ (𝝆
𝑚2
ℎ,𝑔̆|𝝆

𝑚2
ℎ,𝑔−1) = ℛ (𝝆

𝑚2
ℎ,𝑔−1|𝝆

𝑚2
ℎ,𝑔̆)), we are 

able to use the simplified Metropolis acceptance rule for the proposal (Metropolis et al. 1953, Hastings 1960). 

Acceptance of the proposal is probabilistic and based on the difference in energy ((∆ℰ) between the current 

(𝑚2
ℎ,𝑔

) and proposed (𝑚2
ℎ,𝑔̆

) realizations of the model: 

 
 ∆ℰ

𝑚2
ℎ,𝑔̆ = ℰ

𝑚2
ℎ,𝑔̆ − ℰ

𝑚2
ℎ,𝑔 [27] 

 

where the energy of 𝑚2
𝑟 is the log of the inverse posterior evaluated at  𝝆𝑚2

= 𝝆𝑚2
𝑟 ,  

 
 

ℰ𝑚2
𝑟 = log

1

𝒫(𝜞𝑚1
∗ |𝝆𝑚2

= 𝝆𝑚2
𝑟)𝒫(𝝆𝑚2

𝑟)
 [28] 

 

which is equal to the difference between the total minimized loss (ℒ𝑚2
𝑟

∗ ; negative log likelihood), and the log 

of the prior:  
 
 ℰ𝑚2

𝑟 = ℒ𝑚2
𝑟

∗ − log𝒫(𝝆𝑚2
𝑟) [29] 

 
(Metropolis et al. 1953, Gupta et al. 2018). The change in energy associated with a proposal is converted to an 
acceptance probability for the step: 
 
 

𝓊
𝑚2
ℎ,𝑔̆ = min(1, 𝑒

−𝑏ℎ∆ℰ
𝑚2
ℎ,𝑔̆
) [30] 

 



where 𝑏ℎ is the inverse temperature of chain ℎ (i.e., 𝑏ℎ =
1

𝑎ℎ
), such that higher temperature chains have 

higher acceptance probabilities for the same energy difference. A random number from the standard uniform 

distribution is then drawn (U(0,1)), with the proposal being accepted if the random number is less than or 

equal to 𝓊
𝑚2
ℎ,𝑔̆ , and rejected if the random number is larger than 𝓊

𝑚2
ℎ,𝑔̆ .  

 
After each Metropolis MCMC iteration, the chains are able to swap configurations with their nearest 

neighbors in the temperature series (following the Metropolis criterion; Metropolis et al. 1953), allowing them 
to share information and search the surface in combination (Earl and Deem 2005). Starting with the hottest 

pair of chains (𝐻 and 𝐻 − 1) and descending in temperature, the chains (generally, ℎ and ℎ − 1) swap 
information, and similar to the within-chain steps, the temperatures scale the swap acceptance rates for the 
sharing of information between chains, such that hotter chains are more likely to accept swaps (Earl and 
Deem 2005, Gupta et al. 2018). The acceptance probability for the swap between the neighboring chains is 
the exponentiated product of the difference in the chains’ inverse temperatures and energies: 
 
 

𝓊
𝑚2
ℎ:ℎ−1,𝑔 = min(1, 𝑒

∆𝑏
𝑚2
ℎ:ℎ−1,𝑔∆ℰ

𝑚2
ℎ:ℎ−1,𝑔

) [31] 

 
where 
 
 

∆𝑏
𝑚2
ℎ:ℎ−1,𝑔 =

1

𝑎ℎ
−

1

𝑎ℎ−1
 [32] 

 
and  
 
 ∆ℰ

𝑚2
ℎ:ℎ−1,𝑔 = ℰ

𝑚2
ℎ,𝑔 − ℰ

𝑚2
ℎ−1,𝑔  [33] 

 
Currently, the schedule of Metropolis iterations and chain swaps and the inclusion of the chains in each swap 
are set (as “swaps between each iteration” and “all neighbor pairs included in each swap”), although they 
could become adaptive or user-controlled to allow for more efficient sampling (this is the most 
computationally intensive step in the LDATS modeling process; see FUTURE DEVELOPMENTS).  
 

We remove the first steps 𝐺burn-in (set by the user) steps as burn-in and thin the resulting sample to a 

fraction of 𝜏 (𝜏 = 1 equates to no thinning and 𝜏 ∈ (0,1]) steps (Link and Eaton 2012, Hobbs and Hooten 

2015), with the resulting change point location vectors we store as rows in the matrix 𝜬𝑚2
ℎ=1  (𝜬 as in capital 

𝝆), which is dimension floor(𝜏(𝐺 − 𝐺burn-in + 1 )) × 𝑃𝑚2
, where floor is the round-down function. 

𝒫(𝝆𝑚2
|𝜞𝑚1

∗) is then defined by the proportional representation of each of the 𝑅𝑚2
 realizations of 𝝆𝑚2

𝑟 in 

the rows of 𝜬𝑚2
ℎ=1 . Throughout the ptMCMC algorithm, we track step and swap acceptances and count the 

trips made by particles (the bits of information that can move among replica chains during swaps) from the 
hottest to the coolest chain (Katzgraber et al. 2006), and calculate a final rate for each based on the full set of 

𝐺 iterations (Earl and Deem 2005). These rates, along with trace plots (Kruschke 2015), constitute the 
ptMCMC diagnostics presently provided in LDATS.   
 

Combining Segment-Level Models: Inference About Within-Segment Parameters 
 

 Having defined 𝜢́𝑚2
𝑟 as the collated matrix of segment-level parameter matrices (𝜢́𝑚2

𝑟,𝑠) fit based on 

the realized change point locations and having estimated the probability of that specific set of change point 
locations using ptMCMC, we can now calculate the marginal posterior distribution of the regression 

parameters given the topic proportions (𝒫(𝜢́𝑚2
|𝜞𝑚1

∗)), acknowledging the uncertainty in the change point 



locations (Western and Kleykamp 2004). In order to accomplish this, however, we must account for the 

variance-covariance structure among the parameters within 𝜢́𝑚2
𝑟 , which is facilitated by first unwinding the 

matrix into a vector 𝜼́𝑚2
𝑟̃ , as indicated by the tilde accent, which constitutes the mean vector for the 

parameter distributions (𝜼́𝑚2
𝑟,𝑠̃ is the unwound segment-specific matrix 𝜢́𝑚2

𝑟,𝑠). Then, we place the precision 

(inverse variance-covariance) matrices for the segment-level model fits (generally, 𝜦𝜼́𝑚2𝑟,𝑠
̃ = 𝜮

𝜼́𝑚2
𝑟,𝑠

̃
−1 ) along the 

diagonal of a square (𝑆𝑚2
× 𝑆𝑚2

) matrix, producing the block-diagonal precision matrix for the full time 

series model given the realized change points, 𝜦𝜼́𝑚2𝑟̃
, whose off-diagonal entries are ∞ (i.e., no covariance). 

The probability distribution for the full set of regression parameters, given a realized set of change point 

locations and the topic proportions is then described by a multivariate normal distribution (MVN; Tiao and 

Zellner 1964) with mean vector 𝜼́𝑚2
𝑟̃  and precision matrix 𝜦𝜼́𝑚2𝑟̃

: 

 
 

𝒫(𝜢́𝑚2
|𝝆𝑚2

𝑟 , 𝜞𝑚1
∗) = 𝒫MVN𝑆𝑚2𝐶𝑚2𝑘𝑚1∗

(𝜼́𝑚2
𝑟̃ ,𝜦𝜼́𝑚2𝑟̃

) [34] 

 

where 𝒫MVN is the probability density function of an MVN defined for a set of specific parameter values 𝖝 
 
 

𝒫MVN𝑆𝑚2𝐶𝑚2𝑘𝑚1∗
(𝜼́𝑚2

𝑟̃ ,𝜦𝜼́𝑚2𝑟̃
) =

1

√|2𝜋𝜦𝜼́𝑚2𝑟,𝑠
̃
−1 |

𝑒
−
1
2
(𝖝−𝜼́𝑚2

𝑟̃)
′
𝜦𝜼́

𝑚2
𝑟̃
(𝖝−𝜼́𝑚2

𝑟̃)

 
[35] 

 

and 𝑆𝑚2
𝐶𝑚2

𝑘𝑚1
∗  is the dimensionality of the specific MVN distribution here (one parameter per covariate per 

topic per segment). The value of 𝒫(𝜢́𝑚2
|𝝆𝑚2

𝑟 , 𝜞𝑚1
∗) is determined for each of the 𝑅𝑚2

 realizations, which 

are then combined via Eq. 13 to estimate the marginal posterior probability of the regression coefficients, 

given just the topic proportions (𝒫(𝜢́𝑚2
|𝜞𝑚1

∗)). The original LDATS application did not calculate or return 

the posterior estimates of the regression parameters as the research was focused on the change point 
locations (Christensen et al. 2018), and so this constitutes a key update to the application.  
 

Multi-Model Inference 
 

 Given the fit of a specific Stage 2 model (𝑚2) defined by the number of change points (𝑃𝑚2
) and the 

within-segment covariate model (the specific 𝐶𝑚2
 predictors comprising 𝑿𝑚2

), we can then consider multiple 

Stage 2 models to determine the optimal configuration of the time series component.  
 

As with Stage 1, we use AIC as our Stage 2 model selection criterion (Christensen et al. 2018, based on 

Gelman et al. 2014), defined for a specific time series model 𝑚2: 
 
 AIC𝑚2

= −2ℓ(𝝆𝑚2
, 𝜢́𝑚2

|𝜞𝑚1
∗) + 2𝓀𝑚2

 [36] 

 

where ℓ is the log likelihood (ℓ(𝝆𝑚2
, 𝜢́𝑚2

|𝜞𝑚1
∗) = log𝒫(𝜞𝑚1

∗ |𝝆𝑚2
, 𝜢́𝑚2

)) estimated from the ptMCMC 

samples retained after burn-in and thinning, and 𝓀𝑚2
= (𝑆𝑚2

𝐶𝑚2
(𝑘𝑚1

− 1) + 𝑃𝑚2
) is the number of 

parameters in the model: for each segment (in 𝑆𝑚2
 total), there are 𝐶𝑚2

(𝑘𝑚1
− 1) parameters fit for the 

multinomial regression (one for every covariate for every topic, save the first to account for the sum-to-1 

constraint, Appendix 3), plus the 𝑃𝑚2
 change point locations (Western and Kleykamp 2004, Christensen et al. 

2018). The total number of models in Stage 2 (ℳ2) is 



 
 ℳ2 = (𝑃max + 1)𝒰𝑿 [37] 

 

where 𝑃max is the maximum number of change points included (and the +1 to account for 𝑃𝑚2
= 0) and 𝒰𝑿 

is the number of unique configurations of the covariate matrix (𝑿). The optimal (according to AIC) time 

series model (𝑚2
∗) is determined by  

 
 𝑚2

∗ = arg min
 𝑚2in1…ℳ2

AIC(𝑚2) [38] 

 

and has the corresponding set of parameters {𝝆𝑚2
∗ , 𝜢́𝑚2

∗ }. 
 

FUTURE DEVELOPMENTS 
  
 The LDATS modeling framework (as presented here) and code package (Simonis et al. 2019) are 
stable and robust, but as with any methodology, improvements can be made through future developments. 
We have noted multiple components slated for developments throughout this manuscript; we add some 
additional components and briefly describe our current plans in this section.  
 

Although the VEM approach to LDA model fitting is well developed in its application (Blei et al. 
2003, Grün and Hornik 2011), there is one notable area of improvement that could be included: adaptive 

selection of the optimal number of topics 𝑘𝑚1
∗ . The other common method to parameter estimation under 

LDA models, Gibbs sampling, provides a flexible approach to estimating the number of topics by 
considering it a free parameter to be fit (Griffiths and Steyvers 2004, Valle et al. 2018). However, there is also 
a method for adaptive selection of the number of topics under a VEM approach to LDA based on topic 
densities (Cao et al. 2009), which could be integrated into LDATS without needing to alter the underlying 
inference machinery.  

 
 The time series model options (based on Western and Kleykamp 2004) in LDATS do not presently 
include temporal autocorrelation, which is a feature of many time series (Cressie and Wikle 2011), and could 
be mistaken for (statistically speaking) change points, especially if the magnitude of the change is small 
(Jarušková 1997, Wang 2008, Beaulieu et al. 2012). Although there are methods for including temporal 
autocorrelation into change point models (Lund et al. 2007, Jandhyala et al. 2010, Beaulieu et al. 2012, Pandya 
et al. 2012), they all operate under the assumption of a univariate normal response variable, which is a much 
simpler segment-level regression model than the present softmax and offers the simple entrée of the error 
term for autocorrelation. Methods exist for including autocorrelation structure in multinomial regressions 
(Linderman et al. 2015), but have yet to be integrated with a change point model.  
 
 By splitting the corpus prior to fitting the segment-level models, LDATS makes the important 
assumption of no covariance among regressors across segments, although it is possible that there are 
substantially-non-0 covariances. It could therefore improve the predictive capacity of the model to fit the 
model across-segments in a fashion to allow covariances. Such a change to LDATS would require a shift in 
the underlying inferential machinery and is likely to considerably slow computation (Genz 1992), however.  
 

LDATS also assumes mean-0, uncorrelated, vague priors for the regression parameters and a vague 
prior for the change point locations. Although the vagueness of the regression prior can be toggled by the 
user, no other control on the priors is available, and therefore the full strength of the Bayesian approach is 
not yet being leveraged in the time series component of LDATS (Chin Choy and Broemeling 1980, Western 
and Kleykamp 2004). Including more nuanced control of the priors necessitates substantial changes to the 
inferential code underlying the model, and in particular will require a shift in the fitting of the multinomial 
models away from an established code base (Venables and Ripley 2003).  



 

 Although the parameters controlling the ptMCMC algorithm (𝑎𝐻, 𝑎𝐻−1, 𝐻, 𝑞, and 𝜅) are available to 
the user to input, they are limited to fixed values, and so require the user to a priori know appropriate values 
or spend considerable time testing them.  In addition, the swap schedule (in terms of frequency of swaps and 
the inclusion of chains within a swap) used for the ptMCMC is presently fixed and not available to control at 
all by the user. All of these controls have the potential to influence the convergence of the ptMCMC 
algorithm and the speed at which convergence is achieved. Therefore, the model’s application could be 
improved by allowing flexibility in and control over the swap schedule and by taking an adaptive approach to 
ptMCMC that allows the controls to optimize themselves via the fitting process (Katzgraber et al. 2006, 
Trebst et al. 2006, Hasenbusch and Schaefer 2010, Miasojedow et al. 2013). 
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TABLES 
 
Table 1. Definitions of the notation used in LDATS. 
 

Definition Parameter Expansions 

Corpus (set of documents) 𝐷  

Total documents 𝑀  

Specific document 𝑑  

Total words 𝑁  

Total words in a document 𝑁𝑑  

Specific word 𝑛  

Total terms 𝑉  

Specific term 𝑣  

Weight of a document 𝑢𝑑 𝒖 

Time of a document 𝑡𝑑 𝒕 
   

Probability 𝒫  

Loss ℒ  

Log-likelihood ℓ  

Expected value E  

Number of fitted parameters 𝓀  

Optimal value of a fit (parameter or model) ∗  

Replicates of a model with different starting values 𝒩  

Derivative 𝒹 𝒟 

General index variables 𝑖, 𝑗  

   

Total Stage 1 models ℳ1  

Specific Stage 1 model 𝑚1  

Total latent topics in a model 𝑘𝑚1
  

Specific latent topic 𝑖  

Observed word identity 𝑤𝑑,𝑛𝑑 𝒘𝑑, 𝒘 

Latent topic membership 𝑧𝑚1,𝑑,𝑛𝑑 𝒛𝑚1,𝑑, 𝒛𝑚1
 

Within-document topic probability 𝜃𝑚1,𝑑,𝑖 𝜽𝑚1,𝑑, 𝜭𝑚1
 

Document-level topic concentration 𝛼𝑚1,𝑖 𝛼𝑚1
, 𝜶𝑚1,𝑑 

Word-level term probability 𝛽𝑚1,𝑑,𝑖,𝑣 𝜝𝑚1,𝑑, 𝜝𝑚1
 

Random number generator seed ʆ  

Variational distribution 𝒬  

Variational lower bound 𝐿  

Kullback-Leibler Divergence DKL  

Within-document topic concentration (variational) 𝛾𝑚1,𝑑,𝑖 𝜸𝑚1,𝑑, 𝜞𝑚1
 

Within-document topic probability (variational) 𝛾̅𝑚1,𝑑,𝑖𝑚1
 𝜸̅𝑚1,𝑑, 𝜞̅𝑚1

 

Word-level topic probability (variational) 𝜙𝑚1,𝑑,𝑛,𝑖 𝝓𝑚1,𝑑,𝑛, 𝜱𝑚1
 

Gamma function Γ  

Digamma function Ψ  

Indication of term identity for an observed word ϣ𝑑,𝑛𝑑
𝑣   

   

Total Stage 2 models ℳ2  



Specific Stage 2 model 𝑚2  

Total realizations of a specific Stage 2 model 𝑅𝑚2
  

Specific realization of a specific Stage 2 model 𝑟  

Total change points 𝑃𝑚2
  

Specific change point 𝑝  

Total segments of the time series 𝑆𝑚2
  

Specific segment 𝑠  

Change point location 𝜌𝑚2,𝑝 𝝆𝑚2
 

Change point locations augmented with time range  𝝆⏞𝑚2
 

Indication if a document is from a segment ξ𝑚2
𝑟,𝑑,𝑠 𝛏𝑚2

𝑟,𝑠, 𝚵𝑚2
𝑟 

Total covariates in a model 𝐶𝑚2
  

Specific covariate 𝑐  

Value of a covariate 𝑥𝑚2,𝑑,𝑐𝑚2
 𝒙𝑚2,𝑑, 𝑿𝑚2,𝑠, 𝑿𝑚2

 

Within-segment regressors 𝜂𝑚2
𝑟,𝑠,𝑖,𝑐 𝜼𝑚2

𝑟,𝑠,𝑖, 𝜢𝑚2
𝑟,𝑠 

Augmented within-segment regressors 𝜂́𝑚2
𝑟,𝑠,𝑖,𝑐 𝜼́𝑚2

𝑟,𝑠,𝑖, 𝜢́𝑚2
𝑟,𝑠, 𝜢́𝑚2

𝑟, 𝜢́𝑚2
 

Precision on the prior for the regressors 𝜆  

General augmented within-segment regressor values 𝔵 𝖝 
   

Total MCMC chains 𝐻  

Specific MCMC chain ℎ  

Temperature of a chain 𝑎ℎ 𝒂 

Inverse temperature of a chain 𝑏ℎ 𝒃 

Exponent controlling the temperature sequence 𝑞  

Final temperature 𝑎𝐻  

Penultimate temperature 𝑎𝐻−1  

Total MCMC iterations 𝐺  

Specific MCMC iteration 𝑔  

Proposal iteration for the step to 𝑔 𝑔̆  

Statistical energy ℰ  

Acceptance probability 𝓊  

Proposal distribution ℛ  

Average step size in the proposal distribution 𝜅  

Number of burn-in iterations 𝐺burn-in  

Fraction of samples remaining after thinning 𝜏  

   

Document to segment mapping function 𝑓𝑑→𝑠  

Cross entropy function 𝑓CE  

Softmax function softmax, 𝑓S  

Matrix multiplication function 𝑓MM  

Softmax of matrix multiplication function 𝑓S(MM)  

Cross entropy of softmax of matrix multiplication 𝑓CE(S(MM))  

Penalty function 𝑓P  

Partition function 𝑓part  

Segment function mapper 𝑓𝑓(𝑠)  

Kronecker Delta 𝛿𝑖𝑗  

 



 
Table 2. Number of unique model realizations for a combination of time series length and number of change 
points. 
 

                          Time steps → 
  Change points   

↓ 
50  100 200 500 

1 49 99 199 499 

2 1176 4851 1970 124251 

3 18424 156849 1293699 10507399 

4 211876 3764376 63391251 2552446876 

5 1906884 71523144 2472258789 252692240724 

  



FIGURES 
 

 
 
Fig 1. Schematic representation of the data-model relation of the LDATS framework. Documents are 
described by high-dimensional term counts, which are first reduced to low-dimension topic proportions. 
Then, the topic proportions are analyzed with time series models that include both covariate and change 
point dynamics.   



Appendix 1: Expanding the probability of a corpus given an LDA model 
 

For a given Latent Dirichlet Allocation (LDA; Blei et al. 2003) 𝑚1, the probability of the entire 
corpus, given the parameters, is the product of the probabilities of each document, given the parameters: 
 
 

𝒫(𝒘|𝛼𝑚1
, 𝜝𝑚1

) =∏𝒫(𝒘𝑑|𝛼𝑚1
, 𝜝𝑚1

)

𝑀

𝑑=1

 [A1.1] 

 
The probability of a document’s data given the parameters is the product of [1] the word-level term-identity 
distributions, given the model parameters governing the within-document topic distribution and word-level 

term distributions (𝒫(𝑤𝑑,𝑛|𝜽𝑚1,𝑑, 𝜝𝑚1
)) and [2] the within-document topic distribution parameters given 

the document-level concentration parameter (𝒫(𝜽𝑚1,𝑑|𝛼𝑚1
)), integrated over the uncertainty in the within-

document topic distribution (𝜽𝑚1,𝑑): 

 
 

𝒫(𝒘𝑑|𝛼𝑚1
, 𝜝𝑚1

) = ∫𝒫(𝜽𝑚1,𝑑|𝛼𝑚1
) (∏𝒫(𝑤𝑑,𝑛|𝜽𝑚1,𝑑 , 𝜝𝑚1

)

𝑁𝑑

𝑛=1

)𝒹𝜽𝑚1,𝑑 [A1.2] 

 
The word-level topic-identity distribution can be further decomposed into the product of [1] the term identity 

distribution given the topic identity and the word-level term distribution parameters (𝒫(𝑤𝑑,𝑛|𝑧𝑚1,𝑑,𝑛, 𝜝𝑚1
)) 

and [2] the topic identity distribution given the parameters governing the within-document topic distribution 

(𝒫(𝑧𝑚1,𝑑,𝑛|𝜽𝑚1,𝑑)), integrated (summed due to discreteness) over the uncertainty in topic type 𝑧𝑚1,𝑑,𝑛 

 
 

𝒫(𝑤𝑑,𝑛|𝜽𝑚1,𝑑 , 𝜝𝑚1
) =  ∑ 𝒫(𝑤𝑑,𝑛|𝑧𝑚1,𝑑,𝑛, 𝜝𝑚1

)𝒫(𝑧𝑚1,𝑑,𝑛|𝜽𝑚1,𝑑)

𝑧𝑚1,𝑑,𝑛

 [A1.3] 

 
Substituting Eq. A1.3 into Eq. A1.2,  
 

 

𝒫(𝒘𝑑|𝛼𝑚1
, 𝜝𝑚1

) = ∫𝒫(𝜽𝑚1,𝑑|𝛼𝑚1
) (∏ ∑ 𝒫(𝑤𝑑,𝑛|𝑧𝑚1,𝑑,𝑛, 𝜝𝑚1

)𝒫(𝑧𝑚1,𝑑,𝑛|𝜽𝑚1,𝑑)

𝑧𝑚1,𝑑,𝑛

𝑁𝑑

𝑛=1

)𝒹𝜽𝑚1,𝑑 [A1.4] 

 
and then Eq. A1.4 into Eq 1.1, 
 

 

𝒫(𝒘|𝛼𝑚1
, 𝜝𝑚1

) =∏[∫𝒫(𝜽𝑚1,𝑑|𝛼𝑚1
)(∏ ∑ 𝒫(𝑤𝑑,𝑛|𝑧𝑚1,𝑑,𝑛, 𝜝𝑚1

)𝒫(𝑧𝑚1,𝑑,𝑛|𝜽𝑚1,𝑑)

𝑧𝑚1,𝑑,𝑛

𝑁𝑑

𝑛=1

)𝒹𝜽𝑚1,𝑑]

𝑀

𝑑=1

 [A1.5] 

 
 
  



Appendix 2: Variational Expectation Maximization estimation of a Latent Dirichlet Allocation 
 

For the variational expansion of a Stage 1 LDA model 𝑚1, 𝜞𝑚1
 is an 𝑀 × 𝑘𝑚1

-matrix akin to 𝜭𝑚1
, 

where row 𝑑 corresponds to document 𝑑: 𝛾𝑚1,𝑑,1…𝛾𝑚1,𝑑,𝑘𝑚1
 (or 𝜸𝑚1,𝑑), but contains the concentration 

parameters of a 𝑘𝑚1
-dimension Dirichlet distribution and therefore are not constrained to sum to 1, and 

𝜱𝑚1
  is an 𝑁 × 𝑘𝑚1

-matrix whose rows correspond to the words across documents (indexed akin to 𝒘𝑑 and 

𝒛𝑑) and whose columns correspond to the 𝑘𝑚1
 topics. 𝜙𝑚1,𝑑,𝑛,𝑖 is the probability that word 𝑛 within 

document 𝑑 is from topic 𝑖, and 𝝓𝑚1,𝑑,𝑛;1…𝑘𝑚1
 (or 𝝓𝑚1,𝑑,𝑛) is a 𝑘𝑚1

-length vector of probabilities defining 

the categorical distribution of that word’s topic identity (∑𝝓𝑚1𝑑,𝑛 = 1). 𝜱𝑚1
 contains 𝑀 document-specific 

matrices (each is 𝑁𝑑 × 𝑘𝑚1
 and notated 𝜱𝑚1,𝑑). In comparison to 𝛼𝑚1

 and 𝜝𝑚1
, the variational parameters 

𝜞𝑚1
 and 𝜱𝑚1

 are document-specific and not coupled, thereby allowing estimation.  

 

For a specific document 𝑑, the variational distribution (𝒬) is  
 
 

𝒬(𝜽𝑚1,𝑑, 𝒛𝑚1,𝑑|𝜸𝑚1,𝑑 ,𝜱𝑚1,𝑑) = 𝒬(𝜽𝑚1,𝑑|𝜸𝑚1,𝑑)∏𝒬(𝑧𝑚1,𝑑,𝑛|𝝓𝑑,𝑛)

𝑁𝑑

𝑛=1

 [A2.1] 

 

In the Expectation (“E”) Step in the VEM algorithm, the distribution 𝒬(𝜽𝑚1,𝑑, 𝒛𝑚1,𝑑|𝜸𝑚1,𝑑,𝜱𝑚1,𝑑) is used 

to find a tight lower bound on 𝒫(𝒘𝑑|𝛼𝑚1
, 𝜝𝑚1

) by optimizing the variational parameters 𝜸𝑚1,𝑑 and 𝜱𝑚1,𝑑 

(i.e., finding 𝜸𝑚1,𝑑
∗  and 𝜱𝑚1,𝑑

∗ , where the asterisks notate optimal values) with respect to minimizing the 

Kullback-Leibler Divergence (DKL) between 𝒬(𝜽𝑚1,𝑑, 𝒛𝑚1,𝑑|𝜸𝑚1,𝑑 ,𝜱𝑚1,𝑑) and 𝒫(𝜭𝑚1
, 𝒛𝑚1

|𝒘, 𝛼𝑚1
, 𝜝𝑚1

): 
 

 (𝜸𝑚1,𝑑
∗ ,𝜱𝑚1,𝑑

∗ ) = arg min
𝜸𝑚1,𝑑,𝜱𝑚1,𝑑

DKL (𝒬(𝜽𝑚1,𝑑, 𝒛𝑚1,𝑑|𝜸𝑚1,𝑑,𝜱𝑚1,𝑑)‖𝒫(𝜭𝑚1
, 𝒛𝑚1

|𝒘, 𝛼𝑚1
, 𝜝𝑚1

)) [A2.2] 

 

Minimization of the distance is achieved through an iterative fixed-point method, where the derivative of DKL 
is set to zero, producing a pair of update equations (Blei et al. 2003). First, the parameters describing the topic 

allocation of each word (𝜙𝑚1,𝑑,𝑛,𝑖) are updated based on the topic distribution for the document (𝜸𝑚1,𝑑): 

 
 𝜙𝑚1,𝑑,𝑛,𝑖 ∝ 𝛽𝑚1,𝑑,𝑤𝑑,𝑛,𝑖𝑒

E𝒬[log(𝜃𝑚1,𝑑,𝑖)|𝜸𝑚1,𝑑] [A2.3] 

 

where E𝒬 is the expected value of the (log-scale) topic probability and is calculated using the digamma 

function (Ψ), which is the logarithmic derivative of the gamma function (Ψ(𝑎) =
𝒹

𝒹𝑎
log(Γ(𝑎))), a quantity 

that is calculated through Taylor approximation: 
 
 

E𝒬[log(𝜃𝑚1,𝑑,𝑖) |𝜸𝑚1,𝑑] = Ψ(𝛾𝑚1,𝑑,𝑖) − Ψ(∑𝜸𝑚1,𝑑) [A2.4] 

 

Then, the parameters describing the topic distribution for the document (𝛾𝑚1,𝑑,𝑖) are updated based on the 

word-level topic distributions for the sample (𝜱𝑚1,𝑑): 

 
 

𝛾𝑚1,𝑑,𝑖 = 𝛼𝑚1
+∑𝜙𝑚1,𝑑,𝑛,𝑖

𝑁𝑑

𝑛=1

 [A2.5] 

 
The update equations are alternated until the bound converges (i.e., the updates do not yield changes to the 



parameters), at which point the document-specific variation parameters have been optimized (𝜸𝑚1,𝑑
∗  and 

𝜱𝑚1,𝑑
∗  have been found) for the set of main parameters (𝛼𝑚1

, 𝜝𝑚1
).. 

 
The Maximization (“M”) Step in the VEM algorithm maximizes the overall lower bound with respect 

to the main model parameters 𝛼𝑚1
 and 𝜝𝑚1

 given the optimal variational parameters (Blei et al. 2003). This 

corresponds to obtaining maximum likelihood values of the model parameters using expected sufficient 
statistics for each sample under the approximate posterior calculated in the E Step (Blei et al. 2003). The 

update for the topic-level term distribution (𝜝𝑚1
) is, analytically:  

 
 

𝛽𝑚1,𝑖𝑚1𝑣
∝ ∑∑𝜙𝑚1,𝑑,𝑛,

∗

𝑁𝑑

𝑛=1

𝑀

𝑑=1

ϣ𝑑,𝑛
𝑣  [A2.7] 

 

where ϣ𝑑,𝑛
𝑣  is an indicator variable based on the term identity (𝑣) of the observed word (𝑤𝑑,𝑛): 

 
 

ϣ𝑑,𝑛
𝑣 = {

1, 𝑤𝑑,𝑛 = 𝑣 

0, 𝑤𝑑,𝑛 ≠ 𝑣
 [A2.8] 

 

The update for the concentration parameter underlying the document-level topic distribution (𝛼𝑚1
 ) requires 

an iterative approach to find a stationary point estimate. The optimization is conducted using the Newton-
Raphson method (Ronning 1989), which repeats 
 
 𝛼𝑚1

new = 𝛼𝑚1
old −DD(𝛼𝑚1

old)
−1
D(𝛼𝑚1

old) [A2.9] 

 
 

until convergence, where D represents the Jacobian matrix of first derivatives of a multivariate function and 

DD is the Hessian matrix of second derivatives of the function. Having updated the main model parameters 
(the M-Step), a new iteration of the E-Step followed by the M-Step is conducted, and the E-Step and M-Step 

are alternated until 𝒬 converges.  
 
  



Appendix 3: Softmax regression 
 
We accommodate the multivariate proportional responses in our time series model by using 

multinomial logistic regression, also known as Softmax regression. The model is “log-linear” in that it relates 

the log of the expected proportion (log E[𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ ]
𝑚2
𝑟
) to the linear predictors (𝒙𝑚2

𝑟,𝑑𝑠
𝜼𝑚2

𝑟,𝑠,𝑖), although we 

formulate our model as the expected proportion (E[𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ ]
𝑚2
𝑟
) being a function of exponentiated predictors 

𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼𝑚2

𝑟,𝑠,𝑖 . And we handle the sum-to-1 constraint by normalizing 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼𝑚2

𝑟,𝑠,𝑖 with a document-specific 

partition function 𝑓part𝑚2
𝑟,𝑑𝑠

: 

 
 

E[𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ ]
𝑚2
𝑟
=
𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼𝑚2

𝑟,𝑠,𝑖

𝑓part𝑚2
𝑟,𝑑𝑠

 [A3.1] 

 

Given the sum-to-1 constraint (∑ 𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗
𝑘𝑚1

∗

𝑖=1
= ∑

𝑒
𝒙
𝑚2
𝑟,𝑑𝑠

𝜼
𝑚2
𝑟,𝑠,𝑖

𝑓part𝑚2
𝑟,𝑑𝑠

𝑘𝑚1
∗

𝑖=1
= 1), we can simply define 𝑓part𝑚2

𝑟,𝑑𝑠
=

∑ 𝑒
𝒙
𝑚2
𝑟,𝑑𝑠

𝜼
𝑚2
𝑟,𝑠,𝑗

𝑘𝑚1
∗

𝑗=1
, where we replace the 𝑖 with 𝑗 to avoid confusion with the focal topic 𝑖. This produces a 

generalized equation that is often referred to as the softmax function:  
 
 

E[𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ ]
𝑚2
𝑟
=

𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼𝑚2

𝑟,𝑠,𝑖

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼𝑚2

𝑟,𝑠,𝑗
𝑘𝑚1

∗

𝑗=1

= softmax (𝑖, 𝒙𝑚2
𝑟,𝑑𝑠
𝜼𝑚2

𝑟,𝑠,1, … , 𝒙𝑚2
𝑟,𝑑𝑠
𝜼𝑚2

𝑟,𝑠,𝑘𝑚1
∗ ) [A3.2] 

 

However, because of the sum-to-1 constraint, only 𝑘𝑚1
∗ − 1 of the proportions (𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗  in 

𝛾̅𝑚1
∗ ,𝑑𝑠,1

∗ … 𝛾̅𝑚1
∗ ,𝑑𝑠,𝑘𝑚1

∗
∗ ), and by extension only 𝑘𝑚1

∗ − 1 of the parameter vectors (𝜼𝑚2
𝑟,𝑠,𝑖 in 

𝜼𝑚2
𝑟,𝑠,1…𝜼𝑚2

𝑟,𝑠,𝑘𝑚1
∗ ), are uniquely identifiable. Thus, we define an augmented parameter vectors 𝜼́𝑚2

𝑟,𝑠,𝑖 (in 

𝜼́𝑚2
𝑟,𝑠,1… 𝜼́𝑚2

𝑟,𝑠,𝑘𝑚1
∗ ), where 

 
 𝜼́𝑚2

𝑟,𝑠,𝑖 = 𝜼𝑚2
𝑟,𝑠,𝑖 − 𝜼𝑚2

𝑟,𝑠,1 [A3.3] 

 

setting the parameters associated with the first topic (𝑖 = 1) to 0 (𝜼́𝑚2
𝑟,𝑠,1 = 0, 𝑒

𝒙
𝑚2
𝑟,𝑑𝑠

𝜼
𝑚2
𝑟,𝑠,1 = 1). This 

reduces the number of free parameter vectors (and number of proportions estimated) by 1 to the 𝑘𝑚1
∗ − 1 

(𝜼́𝑚2
𝑟,𝑠,2… 𝜼́𝑚2

𝑟,𝑠,𝑘𝑚1
∗ ) we are able to fit for this specific chunk of time 𝑠𝑚2

𝑟, resulting in the modified 

probability equation 
 

 
E[𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗ ]

𝑚2
𝑟
=

𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑖

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗
𝑘𝑚1

∗

𝑗=1

= softmax (𝑖, 𝒙𝑚2
𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,1, … , 𝒙𝑚2
𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑘𝑚1
∗ ) [A3.4] 

 

We combine all of the 𝑘𝑚1
∗  parameter vectors 𝜼́𝑚2

𝑟,𝑠,1 to 𝜼́𝑚2
𝑟,𝑠,𝑘𝑚1

∗  (including the vector of 0s in 𝜼́𝑚2
𝑟,𝑠,1) into 

a matrix 𝜢́𝑚2
𝑟,𝑠, which has 𝑘𝑚1

∗  columns and a number of rows equal to the number of coefficients in model 

𝑚2 (𝐶𝑚2
) including the intercept (i.e., the length of 𝒙𝑚2

𝑟,𝑑𝑠
).  

 
 This allows us to further condense the expected probability equation to  
 



 E[𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ ]
𝑚2
𝑟
= softmax(𝑖, 𝒙𝑚2

𝑟,𝑑𝑠
𝜢́𝑚2

𝑟,𝑠) [A3.5] 

 
thereby facilitating use of the generalized linear modeling framework. We expand the model to predict the 

proportions across all of the 𝑘𝑚1
∗  topics within the document, which means we can drop the 𝑖 input and 

produce the full set of values from the softmax function, which is a length- 𝑘𝑚1
∗  row vector corresponding to 

the topic distribution of a single document: 
 
 E[𝜸̅𝑚1

∗ ,𝑑𝑠
∗ ]

𝑚2
𝑟
= softmax(𝒙𝑚2

𝑟,𝑑𝑠
𝜢́𝑚2

𝑟,𝑠) [A3.6] 

 
We then expand the model across all documents within the chunk of time  
 
 E[𝜞𝑚1

∗ ,𝑠]𝑚2
𝑟 = softmax(𝑿𝑚2

𝑟,𝑠𝜢́𝑚2
𝑟,𝑠) [A3.7] 

 

where the covariates are held in a matrix (𝑿𝑚2
𝑟,𝑠) with the number of columns equal to the number of 

coefficients (𝐶𝑚2
) and the number of rows equal to the number of documents in the chunk (𝑀𝑚2,𝑠). That is, 

𝑿𝑚2
𝑟,𝑠 is a series of 𝒙𝑚2

𝑟,𝑑𝑠
 row vectors. This equation relates directly to the generalized linear modeling 

equation that is typically written as g(𝒀) = 𝑿𝜷 or E[𝒀] = g-1(𝑿𝜷), where g is the so-called link function 

and g-1 is the inverse link function (McCullagh and Nelder 1989).  
 
  



Appendix 4: Derivation of the Jacobian for the loss function 
 

To construct the Jacobian of the loss function (which generates the negative prior-penalized log-

likelihood (ℒ𝑚2
𝑟,𝑠 = − log (𝒫(𝜞𝑚1

∗ ,𝑠|𝝆𝑚2
𝑟,𝑠, 𝜢́𝑚2

𝑟,𝑠)𝒫(𝜢́𝑚2
𝑟,𝑠|𝝆𝑚2

𝑟,𝑠))), we first recognize that the loss for 

the segment is (weighted) additive across the documents within the chunk: 
 

 

ℒ𝑚2
𝑟,𝑠 = − ∑ 𝑢𝑑𝑠 [− log (𝒫(𝜞𝑚1

∗ ,𝑠,𝑑𝑠|𝝆𝑚2
𝑟,𝑠, 𝜢́𝑚2

𝑟,𝑠)𝒫(𝜢́𝑚2
𝑟,𝑠|𝝆𝑚2

𝑟,𝑠))]

𝑀
𝑚2
𝑟,𝑠

𝑑𝑠=1

 [A4.1] 

 

We next acknowledge the order of operations of the component multivariate functions that comprise ℒ𝑚2
𝑟,𝑠. 

To reduce notational clutter, we rename the cross entropy, softmax, matrix multiplication, and penalty 

functions 𝑓CE, 𝑓S, 𝑓MM, and 𝑓P, as well as rename the nested functions: the softmax of the matrix 

multiplication and the cross entropy of the softmax of the matrix multiplication become 𝑓S(MM) and 

𝑓CE(S(MM)). This allows us to write the loss equation for all documents within a time chunk as 

 
 

ℒ𝑚2
𝑟,𝑠 = − ∑ 𝑢𝑑𝑠 [∑ 𝑓CE(S(MM))(𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗ , 𝑖, 𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) + 𝑓P(𝜢́𝑚2
𝑟,𝑠)

𝑘𝑚1
∗

𝑖=1

]

𝑀𝑚2
𝑟,𝑠

𝑑𝑠=1

 [A4.2] 

 
which can be condensed via the summation across topics to 
 
 

ℒ𝑚2
𝑟,𝑠 = − ∑ 𝑢𝑑𝑠 (𝑓CE(S(MM))(𝜸̅𝑚1

∗ ,𝑑𝑠
∗ , 𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) + 𝑓P(𝜢́𝑚2
𝑟,𝑠))

𝑀
𝑚2
𝑟,𝑠

𝑑𝑠=1

 [A4.3] 

 
This highlights the chained (nested) aspect of the non-penalty functions (the cross entropy is calculated using 
the output of the softmax, which uses the output of the matrix multiplication), whose derivative can be 

expanded using the multivariate chain rule. For two general functions f and g chained as f(g(𝒂)) (where 𝒂 

contains the multivariate input values), we can write the function composite using the ring operator as 

(f ∘ g)(𝒂). We then take the multivariate derivative (denoted as function 𝒟) of the composite: 
 
 𝒟(f(g(𝒂))) = 𝒟((f ∘ g)(𝒂)) 

                                           = (𝒟(f) ∘ g)(𝒂) · 𝒟(g(𝒂)) 

                                       = 𝒟(f)(g(𝒂)) · 𝒟(g(𝒂)) 

                                      = 𝒟(f)(g(𝒂)) · 𝒟(g)(𝒂) 

[A4.4] 

 

where · is the dot product operator. Thus, the derivative of f of g of 𝒂 is the dot product of the derivative of f 
evaluated at g of 𝒂 and the derivative of g evaluated at 𝒂. Using the chain rule, we now expand the derivative 

of the loss function applied to a specific document within a specific chunk (𝑑𝑠). We start by expanding the 

outer layers (𝑓CE and 𝑓S): 
 

 
𝒟 (𝑓CE(S(MM))(𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗ , 𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) = 𝒟(𝑓CE) (𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) · 𝒟 (𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) [A4.5] 

 

We next expand the inner layers (𝑓S and 𝑓MM) by working with the right-hand-side of the dot product: 
 



 𝒟 (𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) = 𝒟(𝑓S) (𝑓MM(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) · 𝒟(𝑓MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) [A4.6] 

 
Combining these chained results gives the full Jacobian for the non-penalized component of the loss function 
applied to a single document: 
 

𝒟(𝑓CE(S(MM))(𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠))

= 𝒟(𝑓CE) (𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) · 𝒟(𝑓S) (𝑓MM(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) · 𝒟(𝑓MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) 
[A4.7] 

 
which is the dot product between [1] the dot product between [a] derivative of the cross-entropy function 
(evaluated at the softmax of the matrix multiplication of the coefficients) and [b] the derivative of the softmax 
(evaluated at the matrix multiplication of the coefficients), and [2] the derivative of the matrix multiplication 
evaluated at the coefficients. 
 

We now define the derivative matrices (Jacobians) of each of the singular functions 𝑓MM, 𝑓S, and 𝑓CE 

and the composite functions 𝑓S(MM) and 𝑓CE(S(MM)). To aid in this, we consider that the Jacobian of a 

function f contains the partial derivatives of each output (f𝑖, a general component of f) with respect to each 

input (𝑎𝑗 a general component of 𝒂), which can be written generally as 
𝜕f𝑖

𝜕𝑎𝑗
 or 𝒟𝑗f𝑖. The Jacobian for a given 

function then maps the input to the output, and so has dimensions equal to the number of output classes × 
the number of input classes.  
 

The function 𝑓MM maps the 𝜢́𝑚2
𝑟,𝑠 matrix (𝐶𝑚2

× 𝑘𝑚1
∗ ) to the dimensions of 𝒙𝑚2

𝑟,𝑑𝑠
𝜢́𝑚2

𝑟,𝑠 (1 × 𝑘𝑚1
∗ ) 

by left-multiplying 𝜢́𝑚2
𝑟,𝑠by the covariate row matrix 𝒙𝑚2

𝑟,𝑑𝑠
 (1 × 𝐶𝑚2

𝑟). Thus, its Jacobian has 𝑘𝑚1
∗  rows and 

𝐶𝑚2
𝑘𝑚1

∗  columns: 

 
 

𝒟(𝑓MM) = [

𝒟1𝑓MM1 ⋯ 𝒟𝐶𝑚2𝑘𝑚1∗
𝑓MM1

⋮ ⋱ ⋮
𝒟1𝑓MM𝑘𝑚1∗

⋯ 𝒟𝐶𝑚2𝑘𝑚1∗
𝑓MM𝑘𝑚1∗

] [A4.8] 

 

For notekeeping purposes, entry 𝑐, 𝑖 in the coefficient matrix 𝜢́𝑚2
𝑟,𝑠 (𝜂́𝑚2

𝑟,𝑠,𝑐,𝑖) corresponds to the 

column (𝑖 − 1)𝐶𝑚2
+ 𝑐 in the Jacobian. In effect, the coefficient matrix 𝜢́𝑚2

𝑟,𝑠 is linearized in column-major 

order (iterating through all covariates within a given topic before progressing to the next topic). Recall that 

the matrix multiplication used to generate an output element (row) 𝑓MM𝑙 (for 𝑙 in 1…𝑘𝑚1
∗ ) is just a linear 

combination of components 
 
 𝑓MM𝑙 = 𝑥𝑚2

𝑟,𝑑𝑠1
𝜂́𝑚2

𝑟,𝑠,1,𝑙 + 𝑥𝑚2
𝑟,𝑑𝑠,2

𝜂́𝑚2
𝑟,𝑠,2,𝑙 +⋯+ 𝑥𝑚2

𝑟,𝑑𝑠,𝐶𝑚2
𝜂́𝑚2

𝑟,𝑠,𝐶𝑚2 ,𝑙
 [A4.9] 

 

and therefore, the partial derivative of the output element 𝑙𝑚1
∗  with respect to an input element 𝑐𝑚2

𝑟 , 𝑖𝑚1
∗  is 

simply the relevant covariate or 0 (when beyond the relevant part of the Jacobian): 
 
 

𝒟𝑐,𝑖𝑓MM𝑙 = {
𝑥𝑚2

𝑟,𝑑𝑠,𝑐
, 𝑖 = 𝑙

0,                    𝑖 ≠ 𝑙
 [A4.10] 

 

Moving to the softmax function, 𝑓S maps 𝒙𝑚2
𝑟,𝑑𝑠
𝜢́𝑚2

𝑟,𝑠 to E[𝜸̅𝑚1
∗ ,𝑑𝑠

∗ ]
𝑚2
𝑟
, both of which are of 

dimension 1 × 𝑘𝑚1
∗ , because we are working within a single document. Thus, its Jacobian has 𝑘𝑚1

∗  rows and 

𝑘𝑚1
∗  columns: 



 
 

𝒟(𝑓S) = [

𝒟1𝑓S1 ⋯ 𝒟𝑘𝑚1∗
𝑓S1

⋮ ⋱ ⋮
𝒟1𝑓S𝑘𝑚1∗

⋯ 𝒟𝑘𝑚1∗
𝑓S𝑘𝑚1∗

] [A4.11] 

 

We can write a generalized equation for the entries by describing the partial derivative of output 𝑗 with 

respect to input 𝑖, 𝒟𝑖𝑓S𝑗: 

 
 

𝒟𝑖𝑓S𝑗 =
𝜕𝑓S𝑗

𝜕( 𝒙𝑚2
𝑟,𝑑𝑠  𝜢́𝑚2

𝑟,𝑠)𝑖

 

                =

𝜕
𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

𝜕(𝒙𝑚2
𝑟,𝑑𝑠  𝜢́𝑚2

𝑟,𝑠)𝑖

 

                                              =
𝜕

𝜕(𝒙𝑚2
𝑟,𝑑𝑠  𝜢́𝑚2

𝑟,𝑠)𝑖

𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

 

[A4.12] 

 

We decompose the generalized entry using the quotient rule, where for a function f(𝒂) that is equal to the 

ratio of two other functions: f(𝒂) =
g(𝒂) 

h(𝒂) 
, the derivative of the function is 

 
 

𝒟(f(𝒂)) =
𝒟(g(𝒂))h(𝒂) − 𝒟(h(𝒂))g(𝒂)

[h(𝒂)]2
 [A4.13] 

 

Here, g = 𝑒
𝒙
𝑚2
𝑟,𝑑𝑠

𝜼́
𝑚2
𝑟,𝑠,𝑗  and h = ∑ 𝑒

𝒙𝑑𝑠
𝑚2
𝑟
𝜼́𝑠
𝑚2
𝑟,𝑙𝑘𝑚1

∗

𝑙=1  and we differentiate each with respect to 

( 𝒙𝑚2
𝑟,𝑑𝑠
 𝜢́𝑚2

𝑟,𝑠)𝑖
:  

 
 

𝒟𝑖𝑓S𝑗 =

𝜕𝑒
𝒙
𝑚2
𝑟,𝑑𝑠

𝜼́
𝑚2
𝑟,𝑠,𝑗

𝜕(𝒙𝑚2
𝑟,𝑑𝑠  𝜢́𝑚2

𝑟,𝑠)𝑖

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1 −
𝜕∑ 𝑒

𝒙𝑚2
𝑟,𝑑𝑠

𝜼́𝑚2
𝑟,𝑠,𝑙

𝑘𝑚1
∗

𝑙=1

𝜕(𝒙𝑚2
𝑟,𝑑𝑠  𝜢́𝑚2

𝑟 ,𝑠)𝑖

𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗

[∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1 ]
2  

[A4.14] 

 

Regardless of the specific input 𝑖 that we are computing the partial derivative for h with respect to, the value 

will always be 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑖 : 
 
 

∑ 𝑒
𝒙
𝑚2
𝑟,𝑑𝑠

𝜼́
𝑚2
𝑟,𝑠,𝑙

𝑘𝑚1
∗

𝑙=1

𝜕(𝒙𝑚2
𝑟,𝑑𝑠  𝜢́𝑚2

𝑟,𝑠)𝑖

= 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑖 [A4.15] 

 

 For g, however, the value of the partial derivative is 0 unless 𝑖 = 𝑗, in which case it is 𝑒
𝒙
𝑚2
𝑟,𝑑𝑠𝑗 : 

 
 𝜕𝑒

𝒙𝑚2
𝑟,𝑑𝑠

𝜼́𝑚2
𝑟,𝑠,𝑗

𝜕(𝒙𝑚2
𝑟,𝑑𝑠  𝜢́𝑚2

𝑟,𝑠)𝑖

= {
 𝑒
𝒙𝑚2

𝑟,𝑑𝑠𝑗            𝑖 = 𝑗
0                        𝑖 ≠ 𝑗

 [A4.16] 

 



Thus, when 𝑖 = 𝑗, 
 
 

𝒟𝑖𝑓S𝑗 =
𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗 ∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1 − 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑖𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗

[∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1 ]
2  

 =
𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗 (∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1 − 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑖)

[∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1 ]
2    

             =
𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

(∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1 − 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑖)

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

 

                             =
𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

(
∑ 𝑒

𝒙
𝑚2
𝑟,𝑑𝑠

𝜼́
𝑚2
𝑟,𝑠,𝑙

𝑘𝑚1
∗

𝑙=1

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

−
𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑖

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

) 

=
𝑒
𝒙
𝑚2
𝑟,𝑑𝑠

𝜼́
𝑚2
𝑟,𝑠,𝑗

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

(1 −
𝑒
𝒙
𝑚2
𝑟,𝑑𝑠

𝜼́
𝑚2
𝑟,𝑠,𝑖

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

)          

= 𝑓S𝑗(1 − 𝑓S𝑖)                                                                     

 

[A4.17] 

Similarly, when 𝑖 ≠ 𝑗, 
 
 

𝒟𝑖𝑓S𝑗 =
0 − 𝑒

𝒙𝑚2
𝑟,𝑑𝑠

𝜼́𝑚2
𝑟,𝑠,𝑖𝑒

𝒙𝑚2
𝑟,𝑑𝑠

𝜼́𝑚2
𝑟,𝑠,𝑗

[∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1 ]
2    

                            = −
𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑖

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑗

∑ 𝑒
𝒙𝑚2

𝑟,𝑑𝑠
𝜼́𝑚2

𝑟,𝑠,𝑙
𝑘𝑚1

∗

𝑙=1

 

 = −𝑓S𝑖𝑓S𝑗                               

 = −𝑓S𝑗𝑓S𝑖                              

[A4.18] 

 
Combining these conditions, we have  
 
 

𝒟𝑖𝑓S𝑗 = {
𝑓S𝑗(1 − 𝑓S𝑖)       𝑖 = 𝑗

 −𝑓S𝑗𝑓S𝑖              𝑖 ≠ 𝑗
  [A4.19] 

 
We can use the Kronecker delta function to condense the conditional equation to  
 
 𝒟𝑖𝑓S𝑗 = 𝑓S𝑗(𝛿𝑖𝑗 − 𝑓S𝑖) [A4.20] 

 
where  
 
 

𝛿𝑖𝑗 = {
1      𝑖 = 𝑗
0      𝑖 ≠ 𝑗

  [A4.21] 

 

The function set 𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) maps the 𝜢́𝑚2
𝑟,𝑠 matrix (𝐶𝑚2

× 𝑘𝑚1
∗ ) to the dimensions of  



E[𝜸̅𝑚1
∗ ,𝑑𝑠

∗ ]
𝑚2
𝑟
 (1 × 𝑘𝑚1

∗ ) and so, like 𝑓MM, its Jacobian has  𝑘𝑚1
∗  rows and 𝐶𝑚2

 𝑘𝑚1
∗  columns. We combine the 

Jacobians of 𝑓S and 𝑓MM to define the Jacobian of 𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠):  
 

 

𝒟 (𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) =

[
 
 
 
𝒟1𝑓S(MM)(𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)1
⋯ 𝒟𝐶𝑚2  𝑘𝑚1∗

𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)1
⋮ ⋱ ⋮

𝒟1𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) 𝑘𝑚1∗
⋯ 𝒟𝐶𝑚2  𝑘𝑚1∗

𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) 𝑘𝑚1∗ ]
 
 
 
 [A4.22] 

 
For a general entry, the partial derivative is 
 
 

𝒟𝑐,𝑖𝑓S(MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)𝑗
= ∑𝒟𝑙𝑓S𝑗 · 𝒟𝑐,𝑖𝑓MM𝑙

𝑘𝑚1
∗

𝑙=1

 [A4.23] 

 

Recalling that 𝒟𝑙𝑓S𝑗 · 𝒟𝑐,𝑖𝑓MM𝑙 is 0 except for when 𝑖 = 𝑙 (when it is 𝑥𝑑𝑠,𝑐,𝑖), we can simplify this equation to  

 
 𝒟𝑐,𝑖𝑓S(MM)(𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)𝑗
= 𝐷𝑖𝑓S𝑗𝑥𝑚2

𝑟,𝑑𝑠,𝑐,𝑖
 [A4.24] 

 

And recalling that 𝒟𝑖𝑓S𝑗 = 𝑓S𝑗(𝛿𝑖𝑗 − 𝑓S𝑖), we can write this equation as 

 
 𝒟𝑐,𝑖𝑓S(MM)(𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)𝑗
= 𝑓S𝑗(𝛿𝑖𝑗 − 𝑓S𝑖)𝑥𝑚2

𝑟,𝑑𝑠,𝑐,𝑖
 [A4.25] 

 

The cross-entropy function, 𝑓CE, maps E[𝜸̅𝑚1
∗ ,𝑑𝑠

∗ ]
𝑚2
𝑟
 (dimension 1 × 𝑘𝑚1

∗ ) to the cross-entropy (loss) 

for the document, which is a scalar value. Thus, the Jacobian of 𝑓CE is of dimension 1 × 𝑘𝑚1
∗ : 

 
 𝒟(𝑓CE) = [𝒟1𝑓CE ⋯ 𝒟𝑘𝑚1∗

𝑓CE] [A4.26] 

 

A general entry in the Jacobian 𝒟𝑙𝑓CE (i.e., the partial derivative of the cross entropy loss with respect to topic 

𝑙’s probability) is 
 
 

𝒟𝑙𝑓CE = −∑
𝜕𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗ log (E[𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗ ]

𝑚2
𝑟
)

𝜕E [𝛾̅𝑚1
∗ ,𝑑𝑠,𝑙

∗ ]
𝑚2
𝑟

𝑘𝑚1
∗

𝑖=1

 [A4.27] 

 

Notably, the only instance where E[𝛾̅𝑚1
∗ ,𝑑𝑠,𝑙

∗ ]
𝑚2
𝑟
 appears in the function being derived is when 𝑙 = 𝑖, in which 

case, the derivative is 
 
 

𝒟𝑙=𝑖𝑓CE = −
𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗

E [𝛾̅𝑚1
∗ ,𝑑𝑠,𝑙

∗ ]
𝑚2
𝑟

 [A4.28] 

 

Otherwise (i.e., when 𝑙 ≠ 𝑖), the function being derived is a constant and therefore has a derivative = 0. 
 
Combining these conditions, we have 
 



 

𝒟𝑙 𝑓CE = {
−

𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗

E [𝛾̅𝑚1
∗ ,𝑑𝑠,𝑙

∗ ]
𝑚2
𝑟

        𝑙 = 𝑖

 0                             𝑙 ≠ 𝑖

 

 

[A4.29] 

For notation, we identify the element 𝑙 = 𝑖 as 𝑖.̃ 
 
We can verify that the dimensionalities of the Jacobians are proper for combination via dot products: 

𝒟(𝑓CE) (𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
𝑓S(MM)(𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) · 𝒟(𝑓S) (𝑓MM(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) · 𝒟(𝑓MM)(𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠). 

𝒟(𝑓CE) is 1 × 𝑘𝑚1
∗ , 𝒟(𝑓S) is 𝑘𝑚1

∗ × 𝑘𝑚1
∗ , and 𝐷(𝑓MM) is 𝑘𝑚1

∗ × 𝐶𝑚2
𝑘𝑚1

∗ . Thus, each of the two dot products 

has proper component matrices. In addition, the resulting matrix is 1 × 𝐶𝑚2
𝑘𝑚1

∗ , which heuristically matches 

the fact that the composite of the three functions maps the set of parameters (𝐶𝑚2
𝑘𝑚1

∗  in total) to a single 

scalar value of the cross-entropy loss. Having verified the dimensions, we combine the elements across the 

three Jacobians to determine the derivative of 𝑓CE of 𝑓S of 𝑓MM: 𝒟(𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)). 

𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) maps the 𝐶𝑚2
𝑘𝑚1

∗  parameters (each 𝜂́𝑠𝑚2𝑟 ,𝑐𝑚2𝑟 ,𝑖𝑚1∗
 entry in 𝜢́𝑚2

𝑟,𝑠) to a 

scalar output (cross-entropy loss), so the resulting Jacobian is of dimensions 1 × 𝐶𝑚2
𝑘𝑚1

∗ : 

 
 𝒟 (𝑓CE(S(MM))(𝜸̅𝑚1

∗ ,𝑑𝑠
∗ , 𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠))

= [𝒟1 𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) ⋯ 𝒟𝐶𝑚2𝑘𝑚1∗
𝑓CE(S(MM))(𝜸̅𝑚1

∗ ,𝑑𝑠
∗ , 𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)] 
[A4.30] 

 

Similar to the rows in 𝒟(𝑓MM), the single row of partial derivatives in 𝒟 (𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) 

corresponds to the column-major order linearized 𝜢́𝑚2
𝑟,𝑠. Following the indexing of 𝒟(𝑓MM), we will index 

𝒟(𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) with 𝑐 and 𝑖 (as 𝑐, 𝑖), where 𝑐, 𝑖 refers to column (element) 𝑐𝐶𝑚2
+ 𝑖 

in 𝒟(𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)). For a general entry 𝑐, 𝑖, then 

 
 

𝒟𝑐,𝑖 𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) = ∑𝒟𝑗(𝑓CE) (E[𝜸̅𝑚1
∗ ,𝑑𝑠

∗ ]
𝑚2
𝑟
) · 𝒟𝑐𝑖𝑓S(MM)(𝑗, 𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)

𝑘𝑚1
∗

𝑗=1

 

 

[A4.31] 

Since only the 𝑖 ̃element of 𝒟𝑗𝑓CE (E[𝜸̅𝑚1
∗ ,𝑑𝑠

∗ ]
𝑚2
𝑟
) is non-0, in which case it is −

𝛾̅
𝑚1
∗ ,𝑑𝑠,𝑖̃

∗

E[𝛾̅
𝑚1
∗ ,𝑑𝑠,𝑖̃

∗ ]
𝑚2
𝑟

, we can simplify 

this equation to  
 
 

𝒟𝑐,𝑖 𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) = −
𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖̃
∗

E [𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖̃

∗ ]
𝑚2
𝑟

· 𝒟𝑐𝑖𝑓S(MM)(𝑖,̃ 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) [A4.32] 

 
Substituting in the derivative of the softmax (of the matrix multiplication) of the parameters,  
 
 

𝒟𝑐,𝑖 𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) = −
𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖̃
∗

E [𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖̃

∗ ]
𝑚2
𝑟

· 𝑓S𝑖̃(𝛿𝑖𝑖̃ − 𝑓S𝑖)𝑥𝑚2
𝑟,𝑑𝑠,𝑐,𝑖

 [A4.33] 

 



Noting that, by our definition, 𝑓S𝑖̃ = E[𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖̃

∗ ]
𝑚2
𝑟
, we can further simplify this equation: 

 
 

𝒟𝑐,𝑖 𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) = −
𝛾̅𝑚1

∗ ,𝑑𝑠,𝑖
∗

𝑓S𝑖̃
· 𝑓S𝑖̃(𝛿𝑖𝑖̃ − 𝑓S𝑖)𝑥𝑚2

𝑟,𝑑𝑠,𝑐,𝑖
 

                                                                 = −𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ · (𝛿𝑖𝑖̃ − 𝑓S𝑖)𝑥𝑚2
𝑟,𝑑𝑠,𝑐,𝑖

 

                                                              = 𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ · (𝑓S𝑖 − 𝛿𝑖𝑖̃)𝑥𝑚2
𝑟,𝑑𝑠,𝑐,𝑖

 

[A4.34] 

 

This row matrix 𝒟(𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠)) holds the 𝐶𝑚2
𝑘𝑚1

∗  partial derivatives associated with 

the 𝐶𝑚2
 parameters and the 𝑘𝑚1

∗  topics. With these functions, we can calculate the full set of partial 

derivatives required to evaluate the Jacobian for the loss equation without the penalty, the remaining 
component to be added.  
 

Following the sum rule, given that we need to calculate the partial derivative of the loss with respect 

to each of the 𝐶𝑚2
𝑘𝑚1

∗  model parameters 𝜢́𝑚2
𝑟,𝑠, we start with 

 
 

ℒ𝑚2
𝑟,𝑠

∗ = − ∑ 𝑢𝑑𝑠 (𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) + 𝑓P(𝜢́𝑚2
𝑟,𝑠))

𝑀
𝑚2
𝑟,𝑠

𝑑𝑠=1

 [A4.35] 

 

focus in on a specific document 𝑑𝑠, 
 
 

ℒ𝑚2
𝑟,𝑑𝑠

∗ = −(𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) + 𝑓P(𝜢́𝑚2
𝑟,𝑠)) [A4.36] 

 

and take the derivative with respect to a particular parameter 𝑐𝑖 in the set,  
 
 𝒟𝑐,𝑖 (ℒ𝑚2

𝑟,𝑑𝑠
∗ ) = 𝒟𝑐,𝑖 𝑓CE(S(MM))(𝜸̅𝑚1

∗ ,𝑑𝑠
∗ , 𝒙𝑚2

𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) + 𝒟𝑐,𝑖𝑓P(𝜢́𝑚2
𝑟,𝑠) [A4.37] 

 
Therefore, we need to calculate the partial derivative of the penalty function with respect to a particular 

parameter 𝑐, 𝑖. Remembering that the penalty function is,  
 
 

𝑓P(𝜢́𝑚2
𝑟,𝑠) = ∑∑𝜆𝑚2

(𝜂́𝑚2
𝑟,𝑠,𝑖,𝑐)

2

𝐶𝑚2

𝑐=1

𝑘𝑚1
∗

𝑖=𝑖

 [A4.38] 

 

the partial derivative of the penalty with respect to 𝑐, 𝑖 is  
 
 

𝒟𝑐,𝑖𝑓P(𝜢́𝑚2
𝑟,𝑠) = ∑∑

𝜕𝜆𝑚2
(𝜂́𝑚2

𝑟,𝑠,𝑖,𝑐)
2

𝜕(𝜂́𝑚2
𝑟,𝑠,𝑖,𝑐)

𝐶𝑚2

𝑐=1

𝑘𝑚1
∗

𝑖=𝑖

 [A4.39] 

 
which evaluates to 
 
 

𝒟𝑐,𝑖𝑓P(𝜢́𝑚2
𝑟,𝑠) = ∑∑2𝜆𝑚2

𝜂́𝑚2
𝑟,𝑠,𝑖,𝑐

𝐶𝑚2

𝑐=1

𝑘𝑚1
∗

𝑖=𝑖

 [A4.40] 



 

Given that we also know that 𝒟𝑐,𝑖 (ℒ𝑚2
𝑟,𝑑𝑠

∗ ) = 𝒟𝑐,𝑖 𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) + 𝒟𝑐,𝑖𝑓P(𝜢́𝑚2
𝑟,𝑠) and 

𝒟𝑐,𝑖 𝑓CE(S(MM))(𝜸̅𝑚1
∗ ,𝑑𝑠

∗ , 𝒙𝑚2
𝑟,𝑑𝑠
, 𝜢́𝑚2

𝑟,𝑠) = 𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ · (𝑓S𝑖 − 𝛿𝑖𝑖̃)𝑥𝑚2
𝑟,𝑑𝑠,𝑐,𝑖

, the partial derivative of penalized 

loss with respect to input 𝑐𝑖 (𝒟𝑐,𝑖 (ℒ𝑚2
𝑟,𝑑𝑠

∗ )) is now fully defined: 

 
 

𝒟𝑐,𝑖 (ℒ𝑚2
𝑟,𝑑𝑠

∗ ) = 𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ · (𝑓S𝑖 − 𝛿𝑖𝑖̃)𝑥𝑚2
𝑟,𝑑𝑠,𝑐,𝑖

+∑∑2𝜆𝜂́𝑚2
𝑟,𝑠,𝑖,𝑐

𝐶𝑚2

𝑐=1

𝑘𝑚1
∗

𝑖=𝑖

 [A4.41] 

 
This equation determines the gradient of the loss across with respect to each input (parameter-topic 

combination 𝑐, 𝑖) within a single document. Acknowledging multiple documents fall under the same 

parameter combination, we simply sum across all 𝑑𝑠𝑚2𝑟
: 

 
 

𝒟𝑐,𝑖 (ℒ𝑚2
𝑟,𝑠

∗ ) = ∑ [𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ · (𝑓S𝑖 − 𝛿𝑖𝑖̃)𝑥𝑚2
𝑟,𝑑𝑠,𝑐,𝑖

+∑∑2𝜆𝜂́𝑚2
𝑟,𝑠,𝑖,𝑐

𝐶𝑚2

𝑐=1

𝑘𝑚1
∗

𝑖=𝑖

]

𝑀𝑚2
𝑟,𝑠

𝑑𝑠

 [A4.42] 

 
and distribute the summation 
 

 

𝒟𝑐,𝑖 (ℒ𝑚2
𝑟,𝑠

∗ ) = ∑ 𝛾̅𝑚1
∗ ,𝑑𝑠,𝑖

∗ · (𝑓S𝑖 − 𝛿𝑖𝑖̃)𝑥𝑚2
𝑟,𝑑𝑠,𝑐,𝑖

𝑀
𝑚2
𝑟,𝑠

𝑑𝑠

+ ∑ ∑∑2𝜆𝜂́𝑚2
𝑟,𝑠,𝑖,𝑐

𝐶𝑚2

𝑐=1

𝑘𝑚1
∗

𝑖=𝑖

𝑀𝑠
𝑚2
𝑟

𝑑𝑠=1

 [A4.43] 

 
to achieve the completely defined general entry to the Jacobian for the penalized loss equation used to fit a 
multinomial model to a chunk of documents’ topic proportions.  
 
  



Appendix 5: Segment Function Mapper 
 

 The function 𝑓𝑓(𝑠) is used to map a function to segments of data and has three inputs: [1] the 

function to map, [2] the matrix multiplication to map it onto, and [3] the indication matrix that defines the 

mapping. Specifically here, we use 𝚵𝑚2
𝑟 to map the softmax function to the matrix multiplication 𝑿𝑚2

𝑟𝜢́𝑚2
𝑟: 

 
 E[𝜞𝑚1

∗ ]
𝑚2
𝑟 = 𝑓𝑓(𝑠)(softmax, 𝑿𝑚2

𝑟𝜢́𝑚2
𝑟 , 𝚵𝑚2

𝑟) [A5.1] 

 

The operation of 𝑓𝑓(𝑠) can be considered algorithmically: 

 

For each column in 𝚵𝑚2
𝑟 , which corresponds to a segment 𝑠 (in 1…𝑆𝑚2

) 

Select the rows from 𝑿𝑚2
𝑟 where 𝛏𝑚2

𝑟,𝑠 = 1 (the document is in the segment) and columns 

𝐶𝑚2
(𝑠 − 1)+1 to 𝐶𝑚2

𝑠 from: 𝑿𝑚2
𝑟,𝑠 

 Select rows 𝐶𝑚2
(𝑠 − 1)+1 to 𝐶𝑚2

𝑠 from 𝜢́𝑚2
𝑟 (the regressors are for the segment): 𝜢́𝑚2

𝑟,𝑠 

Apply the softmax function to the selected entries: 𝑿𝑚2
𝑟,𝑠𝜢́𝑚2

𝑟,𝑠 

 


