Dataset Open Access

Post-stroke upper limb kinematics of a set of daily living tasks

Schwarz, Anne; Held, Jeremia P. O.; Luft, Andreas R.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3713449</identifier>
  <creators>
    <creator>
      <creatorName>Schwarz, Anne</creatorName>
      <givenName>Anne</givenName>
      <familyName>Schwarz</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8943-5673</nameIdentifier>
      <affiliation>Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland</affiliation>
    </creator>
    <creator>
      <creatorName>Held, Jeremia P. O.</creatorName>
      <givenName>Jeremia P. O.</givenName>
      <familyName>Held</familyName>
      <affiliation>Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland</affiliation>
    </creator>
    <creator>
      <creatorName>Luft, Andreas R.</creatorName>
      <givenName>Andreas R.</givenName>
      <familyName>Luft</familyName>
      <affiliation>Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Post-stroke upper limb kinematics of a set of daily living tasks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>kinematics</subject>
    <subject>upper limb function</subject>
    <subject>stroke</subject>
    <subject>motor impairment</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-03-18</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3713449</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3713448</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/uzh</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0.0</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This dataset contains upper limb kinematics of twenty chronic stroke-subjects and five healthy control subjects that were collected within a cross-sectional, observational study (Clinicaltrials.gov Identifier: NCT03135093). Participants were measured when performing a set of 30 daily living activities, including gesture movements, grasping actions and tool-mediated upper limb activities. Kinematic parameters were captured by use of inertial sensing and stored in software specific XML file format (.mvnx) allowing import to programs such as MATLAB and Microsoft Excel. Each mvnx-file represents one trial execution and is named according to the participant ID, task number, tested upper limb and repetition.&lt;/p&gt;

&lt;p&gt;This data collection is part of a large multimodal dataset collected and shared between collaborators of a European project under grant agreement No.688857.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/688857/">688857</awardNumber>
      <awardTitle>Synergy-based Open-source Foundations and Technologies for Prosthetics and RehabilitatiOn</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
292
127
views
downloads
All versions This version
Views 292292
Downloads 127127
Data volume 839.5 GB839.5 GB
Unique views 251251
Unique downloads 7777

Share

Cite as