Journal article Open Access

Kampala Very-High-Resolution Land Cover Map

Stefanos Georganos; Tais Grippa


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210329104603.0</controlfield>
  <controlfield tag="001">3711905</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Université Libre de Bruxelles</subfield>
    <subfield code="a">Tais Grippa</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">281728994</subfield>
    <subfield code="z">md5:813058fa5f6b3469ac6fd4b7ff9c4c3d</subfield>
    <subfield code="u">https://zenodo.org/record/3711905/files/Kampala_LC.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-03-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3711905</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Université Libre de Bruxelles</subfield>
    <subfield code="a">Stefanos Georganos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Kampala Very-High-Resolution Land Cover Map</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This is a very-high-resolution map of Kampala derived from satellite imagery of Pleiades (0.5m) collected in February 2013.&lt;/p&gt;

&lt;p&gt;The pixel values related to the following legend:&lt;/p&gt;

&lt;p&gt;2: Water&lt;/p&gt;

&lt;p&gt;3: Tree vegetation&lt;/p&gt;

&lt;p&gt;4:Low vegetation&lt;/p&gt;

&lt;p&gt;5:Bare ground&lt;/p&gt;

&lt;p&gt;6: Artificial ground surface&lt;/p&gt;

&lt;p&gt;7:Buildin&lt;/p&gt;

&lt;p&gt;8:Shadow&lt;/p&gt;

&lt;p&gt;The Out of Bag error of the product is 14,14%. The class errors are:&lt;/p&gt;

&lt;p&gt;Water =&amp;nbsp;0.077748&lt;/p&gt;

&lt;p&gt;Tall Vegetation =&amp;nbsp;0.410714&lt;/p&gt;

&lt;p&gt;Low Vegetation =&amp;nbsp;0.087757&lt;/p&gt;

&lt;p&gt;Bare Ground =&amp;nbsp;0.336689&lt;/p&gt;

&lt;p&gt;Artificial Ground Surface =&amp;nbsp;0.197932&lt;/p&gt;

&lt;p&gt;Building =&amp;nbsp;0.058271&lt;/p&gt;

&lt;p&gt;Shadow =&amp;nbsp;0.062032&lt;/p&gt;

&lt;p&gt;References:&lt;/p&gt;

&lt;p&gt;[1]&amp;nbsp;Grippa, Ta&amp;iuml;s, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and El&amp;eacute;onore Wolff. 2017. &amp;ldquo;An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.&amp;rdquo;&amp;nbsp;&lt;em&gt;Remote Sensing&lt;/em&gt;&amp;nbsp;9 (4): 358.&amp;nbsp;&lt;a href="https://doi.org/10.3390/rs9040358"&gt;https://doi.org/10.3390/rs9040358&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;[2]&amp;nbsp;Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and El&amp;eacute;onore Wolff. 2017. &amp;ldquo;A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.&amp;rdquo; In&amp;nbsp;&lt;em&gt;Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II.&lt;/em&gt;, edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE.&amp;nbsp;&lt;a href="https://doi.org/10.1117/12.2278422"&gt;https://doi.org/10.1117/12.2278422&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;[3]&amp;nbsp;Georganos, Stefanos, Ta&amp;iuml;s Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. &amp;ldquo;SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.&amp;rdquo; In&amp;nbsp;&lt;em&gt;Proceedings of the 2017 Conference on Big Data from Space (BiDS&amp;rsquo;17)&lt;/em&gt;.&lt;/p&gt;

&lt;p&gt;This research was funded by BELSPO (Belgian Federal Science Policy Office) in the frame of the STEREO III program, as part of the REACT (SR/00/337) project (&lt;a href="http://react.ulb.be/"&gt;http://react.ulb.be/&lt;/a&gt;).&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3711904</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3711905</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
143
28
views
downloads
All versions This version
Views 143143
Downloads 2828
Data volume 7.9 GB7.9 GB
Unique views 124124
Unique downloads 2323

Share

Cite as