Journal article Open Access
Stefanos Georganos; Tais Grippa
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3711905</identifier> <creators> <creator> <creatorName>Stefanos Georganos</creatorName> <affiliation>Université Libre de Bruxelles</affiliation> </creator> <creator> <creatorName>Tais Grippa</creatorName> <affiliation>Université Libre de Bruxelles</affiliation> </creator> </creators> <titles> <title>Kampala Very-High-Resolution Land Cover Map</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <dates> <date dateType="Issued">2020-03-16</date> </dates> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3711905</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3711904</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>This is a very-high-resolution map of Kampala derived from satellite imagery of Pleiades (0.5m) collected in February 2013.</p> <p>The pixel values related to the following legend:</p> <p>2: Water</p> <p>3: Tree vegetation</p> <p>4:Low vegetation</p> <p>5:Bare ground</p> <p>6: Artificial ground surface</p> <p>7:Buildin</p> <p>8:Shadow</p> <p>The Out of Bag error of the product is 14,14%. The class errors are:</p> <p>Water =&nbsp;0.077748</p> <p>Tall Vegetation =&nbsp;0.410714</p> <p>Low Vegetation =&nbsp;0.087757</p> <p>Bare Ground =&nbsp;0.336689</p> <p>Artificial Ground Surface =&nbsp;0.197932</p> <p>Building =&nbsp;0.058271</p> <p>Shadow =&nbsp;0.062032</p> <p>References:</p> <p>[1]&nbsp;Grippa, Ta&iuml;s, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and El&eacute;onore Wolff. 2017. &ldquo;An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.&rdquo;&nbsp;<em>Remote Sensing</em>&nbsp;9 (4): 358.&nbsp;<a href="https://doi.org/10.3390/rs9040358">https://doi.org/10.3390/rs9040358</a>.</p> <p>[2]&nbsp;Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and El&eacute;onore Wolff. 2017. &ldquo;A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.&rdquo; In&nbsp;<em>Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II.</em>, edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE.&nbsp;<a href="https://doi.org/10.1117/12.2278422">https://doi.org/10.1117/12.2278422</a>.</p> <p>[3]&nbsp;Georganos, Stefanos, Ta&iuml;s Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. &ldquo;SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.&rdquo; In&nbsp;<em>Proceedings of the 2017 Conference on Big Data from Space (BiDS&rsquo;17)</em>.</p> <p>This research was funded by BELSPO (Belgian Federal Science Policy Office) in the frame of the STEREO III program, as part of the REACT (SR/00/337) project (<a href="http://react.ulb.be/">http://react.ulb.be/</a>).</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 143 | 143 |
Downloads | 28 | 28 |
Data volume | 7.9 GB | 7.9 GB |
Unique views | 124 | 124 |
Unique downloads | 23 | 23 |