Journal article Open Access
Stefanos Georganos; Tais Grippa
{ "publisher": "Zenodo", "DOI": "10.5281/zenodo.3711905", "author": [ { "family": "Stefanos Georganos" }, { "family": "Tais Grippa" } ], "issued": { "date-parts": [ [ 2020, 3, 16 ] ] }, "abstract": "<p>This is a very-high-resolution map of Kampala derived from satellite imagery of Pleiades (0.5m) collected in February 2013.</p>\n\n<p>The pixel values related to the following legend:</p>\n\n<p>2: Water</p>\n\n<p>3: Tree vegetation</p>\n\n<p>4:Low vegetation</p>\n\n<p>5:Bare ground</p>\n\n<p>6: Artificial ground surface</p>\n\n<p>7:Buildin</p>\n\n<p>8:Shadow</p>\n\n<p>The Out of Bag error of the product is 14,14%. The class errors are:</p>\n\n<p>Water = 0.077748</p>\n\n<p>Tall Vegetation = 0.410714</p>\n\n<p>Low Vegetation = 0.087757</p>\n\n<p>Bare Ground = 0.336689</p>\n\n<p>Artificial Ground Surface = 0.197932</p>\n\n<p>Building = 0.058271</p>\n\n<p>Shadow = 0.062032</p>\n\n<p>References:</p>\n\n<p>[1] Grippa, Taïs, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and Eléonore Wolff. 2017. “An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.” <em>Remote Sensing</em> 9 (4): 358. <a href=\"https://doi.org/10.3390/rs9040358\">https://doi.org/10.3390/rs9040358</a>.</p>\n\n<p>[2] Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and Eléonore Wolff. 2017. “A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.” In <em>Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II.</em>, edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE. <a href=\"https://doi.org/10.1117/12.2278422\">https://doi.org/10.1117/12.2278422</a>.</p>\n\n<p>[3] Georganos, Stefanos, Taïs Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. “SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.” In <em>Proceedings of the 2017 Conference on Big Data from Space (BiDS’17)</em>.</p>\n\n<p>This research was funded by BELSPO (Belgian Federal Science Policy Office) in the frame of the STEREO III program, as part of the REACT (SR/00/337) project (<a href=\"http://react.ulb.be/\">http://react.ulb.be/</a>).</p>", "title": "Kampala Very-High-Resolution Land Cover Map", "type": "article-journal", "id": "3711905" }
All versions | This version | |
---|---|---|
Views | 143 | 143 |
Downloads | 28 | 28 |
Data volume | 7.9 GB | 7.9 GB |
Unique views | 124 | 124 |
Unique downloads | 23 | 23 |