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Abstract. A novel multiscale strategy is proposed for the damage analysis of masonry 

structures modeled as periodic composites. Such a computational strategy, whose aim is to 

reduce the typically high computational cost exhibited by fully microscopic numerical 

analyses, is based on a multiscale/multidomain model equipped with an adaptive capability, 

which allows to automatically zoom-in the zones incipiently affected by damage onset. The 

associated model refinement criterion requires the determination of microscopically informed 

first failure surfaces, which take into account both classical and bending deformation effects, 

by taking advantage of a couple-stress based homogenization technique. In order to assess 

the efficacy of the proposed multiscale modeling strategy, some numerical simulations are 

presented, involving a medium-sized wall test subjected to combined shear and flexure 

loading conditions. The related accuracy and computational performances of this 

methodology are investigated via suitable comparisons with a purely discrete model of 

masonry. Special attention is devoted to the analysis of the bending macroscopic deformation 

effects. Further comparisons with experimental results taken from the literature are carried 

out in order to validate its predictive capability in terms of peak and post-peak mechanical 

behavior. 
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1 INTRODUCTION 

At a conventionally defined microscopic scale, masonry can be regarded as a particle 

composite material, made of at least two components, i.e. the units (bricks, stones, blocks) 

and the mortar joints. This modeling is more indicated when studying modern masonry, but 

can be applied also to historic masonry, in which the units are separated by dry joints. In the 

latter case, the joints turn to be simply considered as cohesionless interfaces and the whole 

masonry may be modeled as an ensemble of rigid block interacting to each other according to 

contact with friction interactions. 

At this scale of observation, the most natural modeling strategy consist in using discrete 

models for the entire masonry structure, to be used for direct numerical simulations, able to 

take into account all the underlying microstructural details [1–4]. Obviously, this type of 

modeling requires an enormous amount of computational resources, especially when damage-

induced nonlinearities are included in the constitutive behavior of masonry components. 

On the other hand, continuous models are suitable for investigating the overall behavior of 

large masonry structures, due to their intrinsic computational efficiency. Continuous modeling 

has been successfully employed in many practical applications of civil engineering, and 

specifically for studying the behavior of real-life unreinforced masonry structures under 

seismic actions [5–7]. As a matter of fact, this type of analysis is mandatory when dealing 

with the design of retrofitting and strengthening interventions, as those based on the use of 

externally applied FRP or FRCM reinforcement systems [8–16]. 

In fact, these models don’t distinguish any masonry component, but consider masonry 

material as a whole at a conventionally defined macroscopic scale. To this end, a macroscopic 

constitutive behavior of masonry should be properly identified. The first approaches pursed in 

the technical literature to characterize the masonry material were of a phenomenological type 

[17–19]. These approaches often are difficult to handle, due to the high number of properties 

to be experimentally derived. This is related to the complexity of masonry response even in 

the linear range, due to its intrinsic anisotropic nature. 

As an alternative to phenomenological models, homogenized models have been 

extensively used to derive macroscopic models for masonry, where equivalent coarse-scale 

homogenized elements are used in place of the original combination of brick and mortar 

materials. These approaches have been shown to be very effective for modeling masonry in 

the linear range [20–24], but some difficulties have been experienced when the final aim is to 

capture the inherent nonlinear composite behavior. 

A more general framework for obtaining the overall response of heterogeneous materials 

(including masonry-like ones) taking into account the influence of all the microscopic 

nonlinearities is the so-called multiscale modeling, which combine the advantages of purely 

macroscopic (i.e. computational efficiency) and microscopic models (i.e. numerical accuracy) 

[25]. 

In the last decades, several multiscale methods have been used to predict the mechanical 

response of heterogeneous materials in both linear and nonlinear ranges, with a special 

attention to fiber- and particle-reinforced composites, polycrystals and concrete-like materials 

(see [26–33]). These methods have been applied also to simulate the damage phenomena in 

masonry structures under complex loading conditions, mainly based on the definition of the 

failure surfaces obtained through micro-mechanical homogenization approaches [34–41]. In 

this context, the most common strategy consists in deriving the overall nonlinear response via 

computational homogenization methods (also called global-local approaches) based on the 

concept of scale transition, by which the information is passed from lower to higher scales 

and vice versa (see, for instance, [37]). However, such a strategy is very effective in the 
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presence of moderate localization, but necessary fails when the size of localization band 

results to be smaller than the dimensions of the representative volume element (RVE) or 

repeating cell (RC). 

As an alternative to the well-established computational homogenization methods, different 

versions of concurrent multiscale methods have been applied for the first time to the damage 

analysis of masonry structures in previous works by some of the authors [42,43]. These 

methods, relying on the concept of scale embedding, can be considered as a multilevel version 

of well-known domain decomposition methods. In fact, the original spatial domain is 

decomposed into two sets of non-overlapping subdomains, the first being modeled at the 

macroscopic scale (with overall properties obtained via a first-order homogenization in the 

linear range) and the second described at a conventionally defined microscopic scale, 

responsible for taking into account the nonlinear effects due to microscopic damage evolution. 

As the location of damage initiation and evolution is not known a priori in general, these 

multiscale methods are equipped with an adaptive capability, meaning that the model is able 

to automatically refine itself according a suitable defined zooming-in criterion based on the 

first failure detection at the microscopic scale. 

Encouraged by the results obtained using these methods, we propose an enhanced 

multiscale model for the nonlinear analysis of periodic masonries under in-plane loading 

conditions. The main novelty of this model is the exploitation of a couple-stress 

micromechanical approach instead of a classical Cauchy first-order one, for deriving both the 

homogenized elastic moduli (in the linear range) and the first failure surface for periodic 

masonry 

Couple-stress homogenization has been used for deriving the overall elastic moduli of two-

phase composite materials by different authors [44,45], and here is applied to masonry 

structures within a concurrent multiscale strategy for the first time, to the best authors’ 

knowledge. 

The resulting couple-stress continuum for the macroscopic modeling of masonry, usually 

regarded as a constrained version of the more general Cosserat (or micropolar) continuum 

model [46,47], in able to account for the size dependence of the deformation behavior usually 

experienced in heterogeneous materials. 

The adoption of a couple-stress model within the proposed multiscale methodology allows 

for the injection of the characteristic length of masonry in its overall mechanical response in 

both linear and nonlinear ranges. This potentially leads to an increase in the numerical 

accuracy with respect to the use of a classical Cauchy macro-continuum, especially in the 

presence of high strain gradient components of the rotational type. 

The proposed couple-stress based multiscale model of masonry has been properly 

validated, by comparing it with a purely discrete model (regarded as the most accurate one), 

with reference to the numerical simulation of a shear wall test. The latter model, which takes 

into account all the microstructural details from the beginning of simulation, is considered as 

the reference one, but is unreasonable for practical purposes due to its huge computational 

cost.  

2 MULTISCALE/MULTIDOMAIN FRAMEWORK FOR MASONRY AS A 

PERIODIC COMPOSITE 

At the microscopic level, regular brick masonry is modeled as a two-phase periodic 

composite material, whose constituents are initially perfectly bonded to each other. Since only 

the in-plane behavior is considered here, this composite is characterized by a periodic 

microstructure in a 2D setting. 
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Under these hypothesis, a given masonry structure is represented by a (Cauchy) 

heterogeneous continuum made of units and mortar joints, occupying a bounded open set 
2R . Its external boundary, denoted as ∂Ω and assumed to be Lipschitz-continuous, is 

made of two disjoints portions, i.e. ∂DΩ and ∂NΩ, where Dirichlet and Neumann boundary 

conditions are prescribed, respectively. Moreover, ∂DΩ possesses a nonzero measure in order 

to avoid any arbitrary rigid-body motions (see Fig. 1a). The units (i.e. the bricks) are assumed 

unbreakable and made of linearly elastic material, whereas the mortar joints, modeled as zero-

thickness cohesive interfaces Γc placed in between the units, are assumed damageable 

according to a mixed-mode softening constitutive law accounting for crack initiation and 

propagation at mortar/brick contact surfaces. 

In the quasi-static setting, even under the simplifying assumptions of negligible body 

forces and small deformations, the response of a masonry structure to general loading 

conditions can be obtained as the solution of a highly complex nonlinear boundary value 

problem (BVP), being characterized by a large ratio between structural and brick size. 

 

 

Figure 1: Modeling approaches of regular masonry structures subjected to in-plane loading conditions: (a) 

microscopic modeling; (b) two-scale multi-domain modeling. 

In order to reduce the complexity of such a purely microscopic model, a multiscale 

strategy is proposed here, based on a two-level domain decomposition technique used in 

conjunction with a couple-stress homogenization method. The key idea of this strategy 

consists in using a homogenized model for masonry everywhere, except for properly defined 

critical regions, collectively referred to as zone of interest, where a failure onset criterion is 

reached. Such a zone includes all the hotspots subjected to incipient cracking (at mortar 

joints), for which both the assumptions of perfect periodicity and separation of scales needed 

for correctly applying the above-mentioned homogenization step cease to be valid. 

As a consequence, the original single-scale problem is replaced by an equivalent multiscale 

multi-domain problem, composed of simpler sub-problems involving two well-separated 

spatial scales (i.e. a couple-stress macroscopic and a Cauchy microscopic models) to be 

solved in a fully coupled manner. The computational domain Ω is partitioned in two non-

overlapping subsets ΩM and Ωm, as shown in Fig. 1b. ΩM is the macroscopic subdomain, on 

which the (undamaged) homogenized moduli are assigned, whereas Ωm denotes the 

microscopic subdomain, representing the zone of interest, for which all the structural details 

together with the associated microscopic damage phenomena are explicitly accounted for. 

Because of this partition, additional internal boundaries are introduced into the model, 

referred to as micro-to-macro interface and denoted as Γint. It follows that a new BVP is 

defined, stated as an interface variational problem which is based on the following Lagrange 

multiplier formulation: find (um, uM, λ)  Um × UM × Λ such that: 
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where the first two equations are the equilibrium conditions of the portions Ωm and ΩM, 

respectively, and the third one represents the kinematic compatibility condition at the micro-

to-macro interface. It is worth noting, here, that the first term of Eq. (1)2 denotes the internal 

virtual work in the context of couple-stress elasticity. 

In Eq. (1), um and uM are the micro- and macro-scale displacement fields, belonging to the 

spaces of admissible solutions, Um and UM, respectively, whereas δum and δuM denote the 

corresponding virtual fields, belonging to the spaces of test functions, Vm and VM, respectively. 

Moreover, mt  and Mt  are the restrictions of t  to the portions ∂NΩm and ∂NΩM of ∂NΩ (see Fig. 

1b), whereas λ denotes the unknown Lagrange multiplier field and δλ its arbitrary variation, 

belonging to the same space Λ, usually referred to as space of Lagrange multipliers. Then, ε 

and κ denote the strain and curvature operators, respectively, the second one being defined 

only for the (couple-stress) macroscopic model of masonry. Finally, the macroscopic stress 

σM and couple-stress μM tensors are related to the macroscopic strain ε(uM) and curvature 

κ(uM) tensors via a suitably identified constitutive law, resulting from the couple-stress based 

homogenization explained in Section 2.2. 

2.1 Microscopic modeling of masonry 

In the present multiscale model, masonry is described as a heterogeneous Cauchy 

continuum at the microscopic scale, only within the zone of interest, i.e. the region where all 

the nonlinearities due to damage initiation and evolution are assumed to occur. The so-called 

simplified micro-modeling is chosen for describing the microscopic response of masonry, 

meaning that artificially expanded units are modeled by bulk elements whereas the behavior 

of mortar joints is lumped into zero-thickness interface elements placed in between the units. 

It is worth recalling here that units are assumed to be unbreakable, such an approach is able to 

account for only mixed-mode cracking of mortar joints (and eventually masonry crushing), 

but cannot describe any vertical or diagonal tensile cracking of bricks. 

Therefore, all the joints are equipped with an intrinsic mixed-mode cohesive law, involving 

a scalar state variable D indicating the current interface damage level (the value 0 indicates a 

perfect interface, whereas the value 1 is associated with a completely failed interface). A 

modified version of the cohesive law described in [48] is used here, where an additional 

compressive cap is introduced in order to correctly represent the so-called masonry crushing 

phenomena. It is worth noting that, unlike the tensile response, the compressive one is 

assumed to be reversible. This approximation, which is valid in the absence of unloading after 

the initiation of masonry crushing, allows us to avoid the introduction of damage variables 

that take into account the entire compressive deformation history. The elastic and inelastic 

material parameters of the nonlinear springs representing the mortar joints are: normal, Kn, 

and tangential, Ks, elastic stiffness parameters, tensile, ft, and shear, c, cohesive strengths, 

(masonry) compressive strength, fc, friction angle,  , and both mode-I, GIc, and mode-II, GIIc, 

fracture energies. The elastic stiffness parameters of the interface are not intended as penalty 

values, but have a precise physical meaning, being derived from the properties of both 

masonry constituents and the joint thickness, according to the approach followed in [49]. 
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2.2 Macroscopic modeling of masonry 

Outside the zone of interest, a couple-stress model is used for representing masonry at the 

macroscopic scale. The couple-stress theory can be considered as a special case of the second 

gradient model for which only the effect of the gradient of the material rotation (or macro-

rotation), i.e. the skew-symmetric part of the displacement gradient, is taken into account 

[44,45]. Alternatively, this theory can be regarded as a constrained version of more general 

Cosserat theory, in which the micro-rotation (treated as independent degree of freedom in 

unconstrained Cosserat theory [46,47]) is equal to the macro-rotation. 

The main feature of the couple-stress model is the presence of additional work-conjugated 

stress and strain measures, i.e. the couple-stress   and the curvature   tensors, respectively. 

The overall (i.e. macroscopic) behavior of the undamaged brick masonry modeled as a 

couple-stress continuum is here obtained via a Cauchy/couple-stress homogenization 

technique under plane stress assumptions. To this end, a proper repeating cell (RC) is defined, 

which is representative of the given periodic microstructural arrangement. In the case of 

classical running bond, the most commonly adopted RC is that shown in Fig. 2a. 

As a preliminary step of the above-mentioned homogenization scheme, the (Cauchy) 

microscopic displacement field u = (u1, u2)
T can be expressed as the superposition of a 

quadratic part and a fluctuation field w = (w1, w2)
T, as follows [50]: 
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, (2) 

where 11 , 22  and 12  are the Cauchy macroscopic strains, 31  and 32  are the macroscopic 

(bending) curvatures of an effective couple-stress medium, whereas x1 and x2 are the local 

coordinates of a centered Cartesian system aligned with the orthotropic axes of the RC, as 

shown in Fig. 2b. 

 

 

Figure 2: Couple-stress homogenization of running bond masonry: (a) adopted repeating cell (RC); (b) local 

coordinate system for the microscopic field description. 

In order to derive the macroscopic moduli of masonry, five different microscopic BVPs are 

solved over the given RC, corresponding to the pure (three Cauchy and two bending) macro-

deformation modes (see Fig. 3). Periodic fluctuations are applied for the Cauchy deformation 

modes, whereas the special mixed boundary conditions used in [51] are imposed for the 

bending deformation modes. These boundary conditions involve a combination of periodic, 

antiperiodic and zero fluctuation on different portions of the RC boundary, as shown in Fig. 4. 
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Figure 3: Pure macroscopic deformation modes for the couple-stress homogenization. 

In fact, as argued in [52], there in general no reason for assuming a periodicity requirement 

on the fluctuation field in the presence of overall bending curvatures. 

 

 

Figure 4: Boundary conditions required for the couple-stress homogenization of masonry. 

Due to the assumed orthotropic nature of the masonry microstructure, only six overall 

elastic moduli have to be identified via the proposed Cauchy/Couple-Stress homogenization. 

The complete homogenized constitutive law for masonry written in matrix form reads as 

follows: 
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where ij  and ij  (i,j = 1,2) are the classical macroscopic stress and strain components, 

respectively; ijhkA  (i,j,k,h = 1,2) are the classical overall moduli; 3i  and 3i  (i = 1,2) are the 

couple-stress and curvature components, respectively; 3 3i iC  (i = 1,2) are the bending moduli, 

responsible for the introduction of a length scale parameter, intimately related to the brick size. 

3 DESCRIPTION OF THE MULTISCALE SIMULATION ALGORITHM 

In this section, the proposed multiscale simulation algorithm is illustrated, together with 

the related computational details. It is worth recalling here that the proposed multiscale 

procedure belongs to the class of adaptive model refinement methods, so named by analogy 

with the most used adaptive model refinement methods. The key feature of the present 

algorithm consists in replacing the homogenized macroscopic model by the original 
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microscopic model after a properly defined zooming-in criterion is satisfied, in an automatic 

matter during the simulation. Such a criterion essentially is a microscopically derived first 

failure criterion for the homogenized masonry. To this end, coherently with the adopted 

homogenization scheme, a couple-stress first failure surface has to be constructed for the 

given RC prior to the multiscale simulation, according to the procedure discussed in Section 

3.1. 

At the beginning, the computational domain is partitioned in a finite number of coarse-

scale finite elements (called macro-elements) whose size coincides with that of the considered 

repeating cell (see Fig. 5a). In other words, there exists a unique link between a model 

parameter (i.e. the microstructural characteristic size) and a numerical parameter (i.e. the 

macroscopic mesh element size), analogously to what is assumed in the so-called couple-

volume approach [53]. It is worth noting here that the presence of macro-elements cut by the 

external boundaries of the computational domain is not allowed in the present multiscale 

strategy, due to the fact that the couple-stress overall first failure strengths are related to the 

internal length of the microstructure and thus to the entire cell size. As a consequence, cut 

macro-elements are suitable replaced with the underlying microstructure in the pre-processing 

step. 

At a given load step, the macro-elements for which the zooming-in criterion is satisfied are 

flagged as critical, and replaced by finely meshed repeating cells, as shown in Fig. 5b. Such a 

model refinement operation is repeated during the simulation within an incremental-iterative 

strategy until the final collapse occurs or the maximum number of load increments is reached 

(see Fig. 5c). 

 

 

Figure 5: Schematic representation of the adaptive model refinement strategy: (a) initial coarse mesh composed 

of homogenized macro-elements; (b) intermediate multi-level mesh with partial structural damage; (c) final 

multi-level mesh at incipient collapse. 

The above-described adaptive model refinement algorithm has been implemented within 

the commercial finite element simulation environment COMSOL Multiphysics® [54], by 

exploiting its versatile scripting capabilities in MATLAB® language. The built-in quasi-static 

continuation solver has been employed in order to perform displacement-controlled nonlinear 

analyses, equipped with an additional stop condition responsible for verifying the satisfaction 

of the above-mentioned zooming-in criterion for all the macro-elements in the current model. 

The progressive update of the computational model (including geometry, mesh and micro-to-

macro boundary conditions) is made possible by adding to the standard Newton-Raphson loop 

a further model refinement loop performed via a dedicated MATLAB® code linked to the 

adopted simulation environment. 
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3.1 Couple-stress first failure locus for masonry 

The main ingredient of the proposed adaptive concurrent multiscale model is the first 

failure locus, formulated for a perfectly periodic masonry subjected to arbitrary quasi-static 

macroscopic loading paths, initially proposed for a Cauchy macro-continuum (see [42,43]) 

and here extended to a couple-stress homogenized model. Such a locus is defined for a given 

masonry repeating cell under plane stress assumptions, as the set of macroscopic strain states 

corresponding to the microscopic crack onset in the most stressed point along the cohesive 

interfaces. From a numerical point of view, the first failure locus is derived by interpolating 

the failure points obtained considering a finite subset of macrostrain paths. 

The boundary conditions assumed for the repeating cell subjected to the mixed macrostrain 

paths are not coinciding with those employed for pure macrostrain path directions (sketched 

in Fig. 4). As a matter of fact, the actual boundary conditions to be used for mixed loading 

paths are not known in the literature, to the best of the authors’ knowledge. For the sake of 

simplicity, an approximate approach has been pursed in the present work, by which the 

microscopic fluctuation field associated with a given macrostrain path direction is expressed 

as the linear combination of the five microscopic fluctuation fields associated with the pure 

macrostrain paths, by exploiting the linearity of the mechanical response up to failure. It 

follows that the resulting microscopic stress and strain fields are simply obtained by 

combining those pertaining to the three Cauchy and two couple-stress modes, by adopting the 

same combination coefficients used for the prescribed macroscopic strain field. It is worth 

noting that this simplified approach provides exact results only in the case of pure macrostrain 

path directions and in the absence of bending contributes (for which periodic boundary 

conditions are always valid). 

Given a suitable angular coordinate system ( 1 , 2 , 3 , 4 ) defined over the 5-dimensional 

couple-stress macrostrain space, any point representing a given macrostrain state can be 

expressed as follows: 

 

31 1

32 1 2

12 1 2 3

11 1 2 3 4

22 1 2 3 4

cos

sin cos

sin sin cos

sin sin sin cos

sin sin sin sin

  

   

    

     

     











, (4) 

λ being the loading parameter which controls the magnitude of the prescribed macrostrain. 

The considered set of loading directions covers the ranges 0 ≤ 1 , 2 , 3  ≤ 180° and -180° ≤ 

4  ≤ 180°. For each macrostrain path direction, the critical load factor λc can be easily 

computed in the post-processing step, by exploiting the linearity of the interface constitutive 

law up to this value. As the first failure locus is expected to be non-smooth, it must be 

discretized in a fine manner, in order to accurately compute the critical load factor even in the 

neighborhood of corner points. Such a fine discretization can be reached by choosing always 

very small angular increments. 

3.2 Computational details 

As already stated, the macroscopic behavior of masonry is represented by a couple-stress 

continuum modeling, whose elastic properties have been properly identified. Within a 

standard finite element setting, such a modeling is directly derived from an unconstrained 

Cosserat modeling, in which displacements and rotations are taken as independent nodal 
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variables, thus avoiding the higher order continuity requirement typical of pure displacement 

formulations. The additional internal constraint enforcing the equality between micro- and 

macro-rotations is introduced in the variational formulation by means of the penalty approach 

proposed in [55]. 

Due to the presence of both coarse- and fine-scale discretizations in the same model, a non-

conforming mesh at the double-sided micro-to-macro interface Γint necessarily appears, 

characterized by the presence of nonmatching nodes, referred to as “hanging nodes”, at the 

microscopic side of this interface. The displacement continuity along Γint is enforced 

pointwise by using a Linear Multi-Point Constraint approach, resulting in a strong coupling 

between micro- and macro-displacements [56]. Furthermore, the micro-rotations at the 

macroscopic side of the interface are kept free in the present approach. In fact, there is no 

need of restraining them, due to the presence of the above-mentioned internal constraint, 

introduced to (approximately) enforce the couple-stress kinematics. It is worth noting here 

that the adopted coupling technique automatically enforces any crack opening at the micro-to-

macro interface to be suppressed, thus allowing no damage percolation outside the zone of 

interest, coherently with the basic assumptions of the model. 

4 NUMERICAL SIMULATIONS: THE SHEAR WALL TEST 

In this section, the proposed couple-stress based adaptive multiscale strategy has been 

validated, with reference to the failure analysis of a masonry wall subjected to a shear test. 

Such a test, introduced in [57], has been chosen as an example of brick masonry exhibiting a 

complex in-plane shear-flexure behavior, which is typical of real-life traditional structures 

subjected to seismic actions. 

4.1 Description of the test specimen and the boundary conditions 

The test specimen here employed for assessing the validity of the proposed multiscale 

method is the small-sized wall shown in Fig. 6. Its dimensions are L = 980 mm and H = 1106 

mm, with a resulting width-to-height ratio of about one. The wall presents a central opening 

of 220 × 372 mm2. The loading history is made of two steps. In the first one, a confinement is 

applied by prescribing a vertical displacement of the wall top until a compressive stress of 

0.30 MPa is reached in average. In the second one, a top horizontal displacement is 

monotonically increased in a confined way, i.e. by blocking both the rotation and the vertical 

displacement of the wall top. The overall horizontal reaction force is found as the summation 

of nodal forces computed at all the nodes belonging to the top constrained edge. 

The wall is made of bricks of 210 × 52 × 100 mm3 periodically arranged according to a 

running bond pattern. The thickness of mortar joints is equal to 10 mm. The elastic behaviors 

of both brick and mortar materials are assumed linearly elastic and isotropic, whose material 

constants, i.e. Young’s moludus E and Poisson’s ratio ν, are listed in Table 1. The associated 

inelastic parameters, i.e. the tensile ft and shear c cohesive strengths, the (masonry) 

compressive strength fc, the friction angle  , and the mode-I GIc and mode-II GIIc fracture 

energies, taken as in [58], are listed in Table 2. 

4.2 Results of the multiscale numerical simulation (MNS) 

As a preliminary step needed for the subsequent multiscale analysis, the homogenized 

moduli for the given masonry have been derived under the assumption of plane stress state, as 

explained in Section 2.2. The obtained overall moduli are listed in Table 3. The adopted finite 

element discretization consists in a sufficiently refined mapped mesh whose size is 2 mm. 
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Figure 6: Masonry wall subjected to a shear test: geometry and boundary conditions. 

 

Component  E [MPa] ν [-] 

Brick  16,700 0.15  

Mortar  782  0.14  

Table 1: Elastic material properties of bricks and mortar joints. 

 

ft [MPa] c [MPa] fc [MPa]   [deg] GIc [N/mm] GIIc [N/mm] 

0.25  0.35 10.5 36.9 0.018 0.125  

Table 2: Inelastic material parameters of mortar joints. 

 

1111A  [MPa] 2222A  [MPa] 1122A  [MPa] 1212A  [MPa] 3131C  [MN] 3232C  [MN] 

9983.4 3935.9 404.20 3054.7 6.3357 6.5059 

Table 3: Homogenized moduli for the undamaged masonry modeled as a couple-stress macro-continuum. 

Using the same RC and the same mesh as for the determination of the homogenized 

moduli, the first failure surface has been also derived, according to the methodology 

illustrated in Section 3.1. In practice, several (linear) microscopic problems have been solved 

for different macroscopic strain directions, each of which is associated with a critical point of 

this locus. Each critical point represents the macrostrain state corresponding to the occurrence 

of the first nonlinearity in the cohesive response of mortar joints. A constant increment of 2° 

for the angular coordinates has been chosen, in order to obtain a sufficiently accurate 

representation of this locus. 

Since this numerically derived locus is defined over a 5-dimensional space, it may be 

effectively represented as a family of contour graphs. For the sake of clarity, only the contour 

lines obtained as the intersection of the locus with the coordinate planes are depicted in Fig. 7. 
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Figure 7: Contour representation for the microscopically informed first failure surface of regular masonry. 
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The multiscale numerical simulation (MNS) has been conducted by using the algorithm 

described in Section 3. Fig. 8 shows the structural response for the shear wall test obtained via 

MNS, in terms of load-displacement curve. This response presents an initial quasi-linear 

behavior followed by a nonlinear hardening branch. A load peak of about 43 kN is found, 

after which a moderate softening branch can be identified. It is worth noting here that the 

multiscale analysis has experienced some convergence issues due to the adopted displacement 

control continuation method. 

By more closely analyzing the structural response shown in Fig. 8, a number of 

discontinuity points can be detected, which can be attributed to the superposition of 

homogenization and micro-to-macro coupling errors. These errors, unlike discretization ones, 

cannot be controlled during the adaptive model refinement step via the proposed multiscale 

methodology. These errors are associated with a non-negligible delay for micro-crack 

nucleation and propagation in the neighborhood of the micro-to-macro interface and 

potentially lead to the loss of validity of the numerical simulation. To this end, the following a 

posteriori error is introduced: 

 
pred corr

corr

100F

F F
e

F


  , (5) 

defined as the percent variation in the applied force before (Fpred) and after (Fcorr) the iterative 

correction associated with adaptive model refinement within each load incremental step. The 

maximum value attained for this error during the multiscale numerical simulation is of about 

4%, thus confirming the validity of the proposed approach. 

Fig. 8 shows also the deformed configurations of the multiscale model for three different 

incremental steps, associated with increasing extensions of the zone of interest. In this zone, a 

damage variable map is added, in order to present a deeper insight into the mechanical 

behavior of mortar joints during the simulation. In detail, the coarse-level elements outside the 

zone of interest are shaded in grey, whereas the damage variable defined on the cohesive 

interfaces ranges from 0 (blue) to 1 (red). 
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Figure 8: Force vs displacement curve obtained from the multiscale numerical simulation (MNS). 
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4.3 Comparisons with direct numerical simulation (DNS) and experiments 

In order to illustrate the effectiveness of the multiscale numerical simulation (MNS), the 

previously presented results have compared with those coming from a direct numerical 

simulation (DNS), here considered as the reference ones, and from some experimental data 

found in the literature. 

In Fig. 9, the comparison between MNS and DNS is shown in terms of force versus 

displacement curve. It is worth noting that a direct numerical simulation (DNS), for which all 

the microstructural details are explicitly taken into account from the beginning, is usually very 

costly for the complete failure analysis of masonry structures, especially for larger ones, and 

its only advantage consists in a very high accuracy. The proposed multiscale methodology is 

able to obtain a structural response which is almost superposed to that resulting from the DNS, 

in particular in the neighborhood of the peak load. It follows that the carrying capacity of 

masonry is well predicted, as confirmed by the very small percentage error on the peak load 

between the two analyses (less than 1%). 

Fig. 9 also shows the comparison of the present results with the experimental ones found in 

[57]. The numerically predicted response of the masonry wall is very close to the measured 

one, but the overall stiffness appears to be slightly overestimated probably due to the fact that 

brick are here assumed unbreakable. On the other hand, the predicted peak load is lower than 

the experimental one, with a percentage error of about 8%. This provides a further 

confirmation of the validity of the proposed numerical methodology. 
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Figure 9: Comparison in terms of force vs displacement curve among multiscale numerical simulations (MNS), 

direct numerical simulation (DNS), and experiments by Raijmakers and Vermeltfoort [57]. 

 

 δ = 0.10 mm δ = 0.80 mm δ = 1.75 mm 

DNS (reference) 1,060,460 8,483,680 18,558,050 

MNS (present)  65,110 1,792,198 6,414,300 

Table 4: Number of cumulative DOFs for MNS and DNS, computed at three different incremental steps. 
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Finally, the computational performances exhibited by the proposed multiscale algorithm 

have been investigated. These performances have been measured by monitoring the 

cumulative number of total degrees of freedom (DOFs) over the incremental steps of 

simulation, for the multiscale (MNS) and direct (DNS) numerical simulations, as shown in 

Table 4. It is worth noting that, whereas the number of DOFs remains constant in the DNS, 

the number of DOFs rapidly increases in the MNS as the zone of interest is progressively 

enlarged. The resulting cumulative DOF ratio between MNS and DNS is of about 35% is 

obtained. 

The associated CPU time ratio between MNS and DNS is of about 47%, corresponding to 

a significant speed-up value. Nevertheless, it is believed that the efficiency of the proposed 

multiscale method is not fully exploited, since the computational cost could be further 

reduced by adopting a more efficient communication between the MATLAB scripting code 

and COMSOL Multiphysics finite element environment. 

4.4 Investigation of the role of bending deformation effects on the multiscale failure 

analysis 

The proposed multiscale approach is regarded as a generalization of the approach proposed 

in [42], obtained by including the effect of bending deformations modes on both the overall 

moduli tensor and the first failure surface of masonry. In order to better investigate the role of 

these effects, a comparison between the present model, denoted as CSM2 (Couple-Stress 

Multiscale/Multidomain) model, and the original model, denoted as CM2 (Cauchy 

Multiscale/Multidomain), is presented here. 

This comparison is shown in terms of force-displacement curves obtained via these two 

approaches (see Fig. 10). It can be noted that the apparent stiffness in the linear range is 

correctly predicted by both models, confirming that the size effect related to bending behavior 

is not relevant in the linear response of the considered masonry structure. 
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Figure 10: Comparison in terms of force vs displacement curve between the present model (Couple-Stress 

Multiscale/Multidomain or CSM2) and the model proposed in [42] (Cauchy Multiscale/Multidomain or CM2). 



Lorenzo Leonetti, Fabrizio Greco, Patrizia Trovalusci, Raimondo Luciano, Renato Masiani 

16 

 

Conversely, considering explicitly the bending deformation modes in the mechanical 

behavior of homogenized masonry has a direct influence on the predicted overall structural 

response in the nonlinear range. In particular, the response predicted by the previously 

proposed multiscale approach based on a (micro/macro) Cauchy/Cauchy homogenization is 

stiffer than that obtained via the present (micro/macro) Cauchy/Couple-Stress homogenization. 

These numerical results can be easily explained, by observing that the Cauchy-based first 

failure criterion is less restrictive than the newly proposed Couple-Stress based one. This 

means that the CM2 approach inevitably leads to a delay of the zooming-in operations with 

respect to the CSM2 approach, and thus to an artificial damage arrest in the neighborhood of 

the micro-to-macro interface. 

In summary, the proposed enhanced multiscale methodology is able to better predict the 

stress redistribution during the microscopic damage propagation, and ultimately to derive a 

more accurate estimate of both carrying capacity and ductility properties of masonry 

structures. 

5 CONCLUSIONS  

A Couple-Stress/Cauchy multiscale approach has been proposed for the nonlinear analysis 

of periodic masonries under in-plane loading conditions. Such an approach relies on a two-

scale domain decomposition method, used in conjunction with an adaptive model refinement 

technique, able to zoom the masonry zones undergoing microscopic damage initiation in an 

automatic manner. 

Model adaptivity is a fundamental ingredient of the present multiscale strategy, because it 

highly affects the overall computational cost of the numerical simulations. The main novelty 

of the present work consists in using as zooming-in criterion a microscopically derived first 

failure criterion for the homogenized masonry in the framework of couple-stress elasticity. In 

fact, unlike the criteria proposed in the previous works [42,43] by some of the authors, the 

new approach explicitly takes into account the effect of bending macro-deformation modes on 

the damage onset at mortar joints as well as on the homogenized elastic moduli. 

The present multiscale model has been suitably validated by applying it for the numerical 

derivation of the structural response of a masonry wall subjected to a shear wall test. The 

results obtained via the proposed multiscale numerical simulation (MNS) have been compared 

with those coming from both a direct numerical simulation (DNS) and experiments found in 

the literature. The MNS has been found to predict very accurately both the peak and the post-

peak responses. In detail, the error on the peak load has been found to be very small (less than 

1%). The high level of accuracy obtained in the MNS is essentially due to the fact that no 

simplifications in the structural behavior beyond the elastic limit of the masonry material have 

been made, thus allowing an accurate evaluation of damage evolution under complex loading 

paths. 

As far as the computational performances exhibited by the proposed model is concerned, 

the number of cumulative DOFs during the MNS has been monitored. A multiscale to direct 

DOF ratio of about 0.35 has been found, associated with a rather good speed-up value (about 

47%). This value is specific for the considered structural application, and is susceptible to be 

reduced for other applications involving a more localized damage evolution. 

Finally, the proposed multiscale methodology based on a couple-stress homogenization 

approach has been shown to better predict the carrying capacity of masonry structures with 

respect to existing approaches based on a classical (Cauchy) first-order homogenization, 

confirming the importance of explicitly taking in account the (bending) higher-order 

deformation effects on the homogenized response of masonry material. 
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Encouraged by the present numerical results, the following improvements of the present 

strategy could be object of future investigations. 

Firstly, the proposed multiscale algorithm could be extended to more general loading and 

failure modes, in order to incorporate the so-called out-of-plane failure mechanisms, whose 

investigation still represents an open issue in the current research. The main differences could 

be the adoption of 3D or shell finite elements (for both bulk and interfaces), and, thus, the 

computation of additional homogenized moduli, as well as of more complex first failure 

surfaces incorporating also the influence of out-of-plane deformation modes on the masonry's 

strength. In particular, the use of shell finite elements could improve the computational 

efficiency of the multiscale model, but requires the development and implementation of new 

Cosserat-type shell elements into the adopted simulation environment, involving extra 

degrees of freedom for the in-plane behavior (which is valid only in the case of blocks laid as 

stretchers). 

Secondly, the present multiscale strategy could be used for investigating the so-called size 

effects in masonry structures usually experienced in both linear and nonlinear ranges. In detail, 

the incorporation of a characteristic length via the proposed couple-stress homogenized model 

should be able to predict the different behaviors exhibited by small- and large-sized masonries, 

characterized by significant variations of the ratio between microstructural and overall sizes. 

Thirdly, a more sophisticated multiscale model could be developed, able to capture the 

influence of higher-order deformation modes on both linear and nonlinear ranges of the 

structural response of masonry subjected to arbitrary loading conditions. Such a model should 

be based on the synergistic application of both concepts of scale transition and scale 

embedding, eventually exploiting a new multiscale method based on a two-step 

homogenization involving three scales of interest (i.e. micro/meso/macro-scales), as recently 

proposed in [59] for ceramic matrix composites. The introduction of a further intermediate 

scale of observation (i.e. the mesoscopic scale) should increase the overall accuracy in 

predicting the structural behavior of masonry, especially in the presence of severe strain 

localization phenomena. 

 

ACKNOWLEDGMENTS 

This work is supported by Italian Ministry of University and Research (P.R.I.N. National 

Grant 2015, B86J16002300001; Sapienza and Calabria Research Units) and by Sapienza 

University Grant 2016, B82F16005920005. 

REFERENCES  

[1] B. Chetouane, F. Dubois, M. Vinches, C. Bohatier, NSCD discrete element method for 

modelling masonry structures, International Journal for Numerical Methods in 

Engineering, 64, 65-94, 2005. 

[2] J.V. Lemos, Discrete Element Modeling of Masonry Structures, International Journal 

of Architectural Heritage, 1, 190-213, 2007. 

[3] D. Baraldi, E. Reccia, A. Cazzani, A. Cecchi, Comparative analysis of numerical 

discrete and finite element models: The case of in-plane loaded periodic brickwork, 

Composites: Mechanics, Computations, Applications, 4(4), 319-344, 2013. 

[4] D. Baraldi, E. Reccia, A. Cecchi, In plane loaded masonry walls: DEM and FEM/DEM 

models. A critical review, Meccanica, 1-16, 2017. 



Lorenzo Leonetti, Fabrizio Greco, Patrizia Trovalusci, Raimondo Luciano, Renato Masiani 

18 

 

[5] P.B. Lourenco, Computations on historic masonry structures, Progress in Structural 

Engineering and Materials, 4, 301-319, 2002. 

[6] C. Calderini, S. Cattari, S. Lagomarsino, In-plane strength of unreinforced masonry 

piers, Earthquake Engineering and Structural Dynamics, 38, 243-267, 2009. 

[7] M. Valente, G. Milani, Seismic assessment of historical masonry towers by means of 

simplified approaches and standard FEM, Construction and Building Materials, 108, 

74-103, 2016. 

[8] L. Ascione, L. Feo, F. Fraternali, Load carrying capacity of 2D FRP/strengthened 

masonry structures, Composites Part B: Engineering, 36(8), 619-626, 2005. 

[9] A. Caporale, L. Feo, D. Hui, R. Luciano, Debonding of FRP in multi-span masonry arch 

structures via limit analysis, Composite Structures, 108, 856-865, 2014. 

[10] F.G. Carozzi, G. Milani, C. Poggi, Mechanical properties and numerical modeling of 

Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry 

structures, Composite Structures, 107, 711-725, 2014. 

[11] A. D’Ambrisi, F. Focacci, A. Caporale, Strengthening of masonry-unreinforced 

concrete railway bridges with PBO-FRCM materials, Composite Structures, 102, 193-

204, 2013. 

[12] L. Feo, R. Luciano, G. Misseri, L. Rovero, Irregular stone masonries: Analysis and 

strengthening with glass fibre reinforced composites, Composites Part B: Engineering, 

92, 84-93, 2016. 

[13] A. Garofano, F. Ceroni, M. Pecce, Modelling of the in-plane behaviour of masonry 

walls strengthened with polymeric grids embedded in cementitious mortar layers, 

Composites Part B: Engineering, 85, 243-258, 2016. 

[14] A. Monaco, G. Minafò, C. Cucchiara, J. D'Anna, L. La Mendola, Finite element 

analysis of the out-of-plane behavior of FRP strengthened masonry panels, Composites 

Part B: Engineering, 115, 188-202, 2017. 

[15] G.P. Lignola, C. Caggegi, F. Ceroni, S. De Santis, P. Krajewski, P.B. Lourenço, M. 

Morganti, C. (Corina) Papanicolaou, C. Pellegrino, A. Prota, L. Zuccarino, Performance 

assessment of basalt FRCM for retrofit applications on masonry, Composites Part B: 

Engineering, 128, 1-18, 2017. 

[16] M. Malena, F. Focacci, C. Carloni, G. de Felice, The effect of the shape of the cohesive 

material law on the stress transfer at the FRP-masonry interface, Composites Part B: 

Engineering, 110, 368-380, 2017. 

[17] P.B. Lourénço, R. De Borst, J.G. Rots, A plane stress softening plasticity model for 

orthotropic materials, International Journal for Numerical Methods in Engineering, 40, 

4033-4057, 1997. 

[18] L. Berto, A. Saetta, R. Scotta, R. Vitaliani, An orthotropic damage model for masonry 

structures, International Journal for Numerical Methods in Engineering, 55, 127-157, 

2002. 

[19] L. Pelà, M. Cervera, P. Roca, Continuum damage model for orthotropic materials: 

application to masonry, Computer Methods in Applied Mechanics and Engineering, 

200(9-12), 917-030, 2011. 



Lorenzo Leonetti, Fabrizio Greco, Patrizia Trovalusci, Raimondo Luciano, Renato Masiani 

19 

 

[20] A. Anthoine, Derivation of the in-plane elastic characteristics of masonry through 

homogenization theory, International Journal of Solids and Structures, 32(2), 137-163, 

1995. 

[21] P. Trovalusci, R. Masiani, Material symmetries of micropolar continua equivalent to 

lattices, International Journal of Solids and Structures, 36(14), 2091-2108, 1999. 

[22] A. Cecchi, K. Sab, A multi-parameter homogenization study for modeling elastic 

masonry, European Journal of Mechanics A/Solids, 21, 249-268, 2002. 

[23] F. Cluni, V. Gusella, Homogenization of non-periodic masonry structures, International 

Journal of Solids and Structures, 41, 1911-1923, 2004. 

[24] P. Trovalusci, A. Pau, Derivation of microstructured continua from lattice systems via 

principle of virtual works: the case of masonry-like materials as micropolar, second 

gradient and classical continua, Acta Mechanica, 225(1), 157-177, 2014. 

[25] Y.W. Kwon, D.H. Allen, R. Talreja, Multiscale modeling and simulation of composite 

materials and structures. Springer, 2008. 

[26] F. Feyel, J.L. Chaboche, FE multiscale approach for modelling the elastoviscoplastic 

behaviour of long fibre SiC/Ti composite materials, Computer Methods in Applied 

Mechanics and Engineering, 183(3), 309-330, 2000. 

[27] S. Ghosh, K. Lee, P. Raghavan, A multi-level computational model for multi-scale 

damage analysis in composite and porous materials, International Journal of Solids and 

Structures, 38(14), 2335-2385, 2001. 

[28] F. Greco, L. Leonetti, P. Lonetti, A two-scale failure analysis of composite materials in 

presence of fiber/matrix crack initiation and propagation, Composite Structures, 95, 

582-597, 2013. 

[29] F. Greco, L. Leonetti, P. Lonetti, P. Nevone Blasi, Crack propagation analysis in 

composite materials by using moving mesh and multiscale techniques, Computers and 

Structures, 153, 201-216, 2015. 

[30] R. Barretta, R. Luciano, J.R. Willis, On torsion of random composite beams, Composite 

Structures, 132, 915-922, 2015. 

[31] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase Ceramic Matrix 

Composites, Computational Materials Science, 50, 1336-1346, 2011. 

[32] L. Feo, F. Greco, L. Leonetti, R. Luciano, Mixed-mode fracture in lightweight 

aggregate concrete by using a moving mesh approach within a multiscale framework, 

Composite Structures, 123, 88-97, 2015. 

[33] F. Greco, L. Leonetti, R. Luciano, A multiscale model for the numerical simulation of 

the anchor bolt pull-out test in lightweight aggregate concrete, Construction and 

Building Materials, 95, 860-874, 2015. 

[34] R. Luciano, E. Sacco, Homogenization technique and damage model for masonry 

material, International Journal of Solids and Structures, 34(24), 3191-3208, 1997. 

[35] P. Trovalusci, R. Masiani, Non-linear micropolar and classical continua for anisotropic 

discontinuous materials, International Journal of Solids and Structures, 40(5), 1281-

1297, 2003. 



Lorenzo Leonetti, Fabrizio Greco, Patrizia Trovalusci, Raimondo Luciano, Renato Masiani 

20 

 

[36] G. Milani, P.B. Lourenco, A. Tralli, Homogenised limit analysis of masonry walls, Part 

I: Failure surfaces, Computers & Structures, 84(3-4), 166-180, 2006. 

[37] T.J. Massart, R.H.J. Peerlings, M.G.D. Geers, An enhanced multi-scale approach for 

masonry wall computations with localization of damage, International Journal for 

Numerical Methods in Engineering, 69, 1022-1059, 2007. 

[38] S. Marfia, E. Sacco, Multiscale damage contact-friction model for periodic masonry 

walls, Computer Methods in Applied Mechanics and Engineering, 205-208, 189-203, 

2012. 

[39] N. Cavalagli, F. Cluni, V. Gusella, Strength domain of non-periodic masonry by 

homogenization in generalized plane state, European Journal of Mechanics, A/Solids, 

30(2), 113-126, 2011. 

[40] A. Caporale, F. Parisi D. Asprone, R. Luciano, A. Prota, Critical surfaces for adobe 

masonry: Micromechanical approach, Composites Part B: Engineering, 56, 790-796, 

2014. 

[41] G. Milani, A. Taliercio, In-plane failure surfaces for masonry with joints of finite 

thickness estimated by a Method of Cells-type approach, Computers and Structures, 

150, 34-51, 2015. 

[42] F. Greco, L. Leonetti, R. Luciano, P. Nevone Blasi, An adaptive multiscale strategy for 

the damage analysis of masonry modeled as a composite material, Composite Structures, 

153, 972-988, 2016. 

[43] F. Greco, L. Leonetti, R. Luciano, P. Trovalusci, Multiscale failure analysis of periodic 

masonry structures with traditional and fiber-reinforced mortar joints, Composites Part 

B: Engineering, 118, 75-95, 2017. 

[44] S. Forest, K. Sab, Cosserat overall modeling of heterogeneous materials, Mechanics 

Research Communications, 25(4), 449-454, 1998. 

[45] F. Bouyge, I. Jasiuk, M. Ostoja-Starzewski, A micromechanically based couple-stress 

model of an elastic two-phase composite, International Journal of Solids and Structures, 

38, 1721-1735, 2001. 

[46] R. Masiani, P. Trovalusci, Cosserat and Cauchy materials as continuum models of brick 

masonry, Meccanica, 31(4), 421-432, 1996. 

[47] A. Pau, P. Trovalusci, Block masonry as equivalent micropolar continua: the role of 

relative rotations, Acta Mechanica, 223(7), 1455-1471, 2012. 

[48] A. Lisjak, G. Grasselli, A review of discrete modeling techniques for fracturing 

processes in discontinuous rock masses, Journal of Rock Mechanics and Geotechnical 

Engineering, 6(4), 301-314, 2014. 

[49] P.B. Lourenco, J.G. Rots, Multisurface Interface Model for Analysis of Masonry 

Structures, Journal of Engineering Mechanics, 123(7), 660-668, 1997. 

[50] S. Forest, D.K. Trinh, Generalized continua and non-homogeneous boundary conditions 

in homogenisation methods, ZAMM - Journal of Applied Mahematics and Mechanics, 

91(2), 90-109, 2011. 



Lorenzo Leonetti, Fabrizio Greco, Patrizia Trovalusci, Raimondo Luciano, Renato Masiani 

21 

 

[51] D. Addessi, M.L. De Bellis, E. Sacco, Micromechanical analysis of heterogeneous 

materials subjected to overall Cosserat strains, Mechanics Research Communications, 

54, 27-34, 2013. 

[52] X. Yuan, Y. Tomita, T. Andou, A micromechanical approach of nonlocal modeling for 

media with periodic microstructures, Mechanics Research Communications, 35, 126-

133, 2008. 

[53] I.M. Gitman, H. Askes, L.J. Sluys, Coupled-volume multi-scale modelling of quasi-

brittle material, European Journal of Mechanics - A/Solids, 27(3), 302-327, 2008. 

[54] COMSOL AB., COMSOL Multiphysics reference manual, 2017. 

[55] N. Garg, C.S. Han, A penalty finite element approach for couple stress elasticity, 

Computational Mechanics, 52(3), 709-720, 2013. 

[56] O. Lloberas-Valls, D.J. Rixen, A. Simone, L.J. Sluys, On micro-to-macro connections 

in domain decomposition multiscale methods, Computer Methods in Applied Mechanics 

and Engineering, 225-228, 177-196, 2012. 

[57] T.M.J. Raijmakers, A.T. Vermeltfoort, Deformation controlled tests in masonry shear 

walls - report B-92-1156, Technical Report, Delft, The Netherlands: TNO-Bouw, 1992. 

[58] P.B. Lourenco, Computational strategies for masonry structures, Doctoral Thesis, Delft 

University Press, 1996. 

[59] P. Trovalusci, M.L. De Bellis, R. Masiani, A multiscale description of particle 

composites: From lattice microstructures to micropolar continua, Composites Part B: 

Engineering, 128, 164-173, 2017. 


