
A multiscale description of particle composites: from lattice
microstructures to micropolar continua

Patrizia Trovaluscia,∗, Maria Laura De Bellisb, Renato Masiania

aDepartment of Structural and Geotechnical Engineering, Sapienza University of Rome
bDepartment of Innovation Engineering, University of Salento, Lecce, Italy

Abstract

We present a two–steps multiscale procedure suitable to describe the constitutive behavior of hi-
erarchically structured particle composites. The complex material is investigated considering three
nested scales, each one provided by a characteristic length. At the lowest scale (micro), a periodic
lattice system describes in detail the mechanical response governed by interactions between rigid
grains connected through elastic interfaces. At the intermediate scale (meso), the material is per-
ceived as heterogeneous and characterized by deformable particles randomly distributed into a base
matrix, either stiffer or softer. At the macroscopic scale, the material is represented as a micropolar
continuum. The micro/meso transition is governed by an energy equivalence procedure, based on
a generalized Cauchy–Born correspondence map between the discrete degrees of freedom and the
continuum kinematic fields. The meso/macro equivalence exploits a statistically–based homoge-
nization procedure, allowing us to estimate the equivalent micropolar elastic moduli. A numerical
example illustrating the integrated multiscale procedure complements the paper.

Keywords: Random composites, multiscale procedures, micropolar continua, lattice
microstructures.

June 16, 2017

1. Introduction. A three–levels procedure: basics

The mechanical behavior of complex materials, characterized at finer scales by the presence
of heterogeneities of significant size and texture, strongly depends on their microstructural
features. By lacking in internal scale parameters, the classical continuum does not always
seem appropriate to describe the macroscopic behavior of these materials when it is im-
portant to take into account, besides the disposition, the size and orientation of the micro
heterogeneities.

∗Corresponding author
Email address: patrizia.trovalusci@uniroma1.it (Patrizia Trovalusci)

Preprint submitted to June 16, 2017



In the modeling of materials with microstructure such as particle composites in par-
ticular, the discontinuous and heterogeneous nature of the material must be taken into ac-
count, because interfaces and/or material phases dominate the gross mechanical behavior
[1]. This calls for the need of non–classical and non–local continuum descriptions that can
be obtained through multi–scale approaches aimed at deducing properties and relations by
bridging information at proper underlying sub–levels via energy equivalence criteria, as
widely acknowledged in literature [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
By adopting such approaches it is possible to preserve memory of the microstructure, and
in particular of the presence of material length scales, without resorting to the discrete
modeling, that can be often cumbersome.

In the framework of a multi–scale modeling aiming at deriving homogeneous anisotropic
continua suitable for coarsely represent the microstructure, the non–local character of the
description is crucial [19, 20, 21]. In particular, this occurs in problems in which a charac-
teristic internal length, l, is comparable to the macroscopic (structural) length, L [22, 20].
Among non–local theories, it is useful to distinguish between ‘explicit’ or ‘strong’ and
‘implicit’ or ‘weak’ non–locality [23, 24, 25], where the so–called implicit non–locality
concerns continua with extra degrees of freedom such as in the micropolar continuum for-
mulations [26, 27, 28, 29, 30] adopted herein. Basing on the proved effectiveness of the
micropolar continuum modeling for periodic media over years [3, 10, 14, 31, 32, 16], the
micropolar multiscale modeling has been here extended for deriving constitutive models
of random media such as ceramic/metal/polymer matrix composites, i.e. polycrystals with
interfaces (grain boundaries or thin/thick interfaces), or short fiber-reinforced composites,
or even masonry–like materials (Roman concrete, rocks) that frequently exhibit random
microstructure. For these materials a two-step multi-scale procedure has been developed.
At the microscopic level the material is described as a lattice system, at a mesoscopic level
as a two–phase micropolar continuum and at the macroscopic level as a homogeneous
micropolar continuum (Figure 1). The resulting continuum at the highest level is, thus,
dependent on the hierarchy of three characteristic lengths, namely: the structural size at the
macroscopic level, LM; a typical size, L, at the mesoscopic level, related to the size d of the
heterogeneities; the intrinsic material length, lµ, at the microscopic level.

For the transition from the discrete micro–level to the two–phases continuum meso–
level (i), a coarse–graining procedure based on a generalized Cauchy–Born correspondence
maps and energy equivalence has been adopted [10, 13, 16]. For the meso/macro level
transition instead (ii), a statistical homogenization procedure has been developed [33, 34].
This procedure is based on the solution of Boundary Value Problems (BVPs), posed on
Statistically Representative Elements (SVEs), under Boundary Conditions (BCs) derived
from a generalized macrohomogeneity condition of Hill’s type [35]. Through hierarchies
of bounds for the elastic moduli, the result is the estimation of the size of the Representative
Volume Element (RVE) to adopt for performing homogenization. In this framework, a
new criterion of convergence has been introduced and the elastic, classical and micropolar,
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Figure 1: Schematic of the three scales homogenization procedure. Lattice system (micromodel); two-phases
continuum (mesomodel); homogenized continuum (macromodel).

constitutive moduli have been identified for particular classes of particle composites.
As an example of material to which apply such a multiscale approach, we consider a

special case of particulate composite: the ceramic matrix composites (CMCs), comprising
micro– or nano–scale metallic particles in a ceramic matrix. In these materials the particles
are discrete and they typically provide a toughening increment by plastically deforming and
preventing the advance of cracks. Among others, we consider Alumina–Zirconia CMC of
Figure 2, where the SEM images show different assemblies ranging from pure Alumina
to pure Zirconia. These CMCs are very promising as structural materials, combining the
properties of the Alumina matrix (high hardness and Young’s modulus) with additional
toughening effects, due to the Zirconia dispersion, see [36]. At the microscopic scale the
material exhibits a complex microstructure pertaining both to matrix and inclusions that
appear as spatial assemblies of irregular particles seamlessly arranged, as reported in Figure
3a, where a sketch of the micro–structure is shown. A schematic of the meso and micro
levels for the aforementioned Al2O3 − ZrO2 CMC composite is presented in Figure 3b.

The content of the paper is resumed in the following.
Section 2 - step (i). We begin with illustrating the discrete–continuum approach adopted
to perform the micro/meso transition. Considering the reference material made of particles
embedded in a matrix, with different material properties, we assume that each constituent
is a material with microstructure that can be described as a lattice system. At the under-
lying micro–level, due to the high volume fraction of particles (grains) composing each
constituent (Figure 2, 3b), the microstructure of both materials is considered deterministic.

Thus, we focus on physically–based discrete–continuous models, as originated by the
molecular models of Nineteenth century to give explanations ‘per causas’ of elasticity [38,
39]. In particular, a discrete–continuum deterministic approach – based on a generalization
of the so-called Cauchy–Born rule currently used in crystal elasticity as well in the classical
molecular theory of elasticity [40] – is used for deriving a continuum equivalent in terms of
energy to lattice models made of interacting particles, inside which no–forces are accounted
for [19]. These interactions can be represented by central forces along the line connecting
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Figure 2: SEM images of different types of Alumina matrix Al2O3 and Zirconia ZrO2 inclusions composites,
ranging from pure Alumina (first) to pure Zirconia (last), [37].

(a) (b)

Figure 3: a) Sketch of Alumina-Zirconia Ceramic Matrix Composite. b) Meso and Micro scales of Al2O3 −

ZrO2 CMC composite.
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the particle centers or by forces and couples, and in this sense the discrete system can be,
respectively, reconnected to truss–like or beam–like networks [41, 32, 42], or even to other
kind of ‘structured’ lattice systems, as in [9, 13]. The derived equivalent continuum retains
memory of the fine organization of the material by means of additional field descriptors
and it is named multifield continuum.

Once defined the lattice system, basing on such a generalized rule and assuming proper
response functions for the lattice interactions, the requirement of the preservation of the
strain energy in the micro/meso transition, for any admissible deformation field over a
REV, allow us to identify the (classical and non-classical) constitutive parameters of the
mesomodel, in terms of the geometry of the microstructure (shape, size, orientation, tex-
ture).

The meso–scale model is then obtained as the result of such a discrete–continuum,
coarse–graining, procedure, that in the case of a truss–like scheme leads to a classical con-
tinuum, while in the case of a beam–like scheme generates a multifield continuum with
rigid local structure (micropolar). The latter case is here considered, since in the case of
polycrystals with thin interfaces (Figure 2) the microscopic bending deformation mech-
anisms are expected to be predominant. Although it is not trivial, the procedure can be
extended to fiber–beam networks, representing fiber reinforced composites or cellular ma-
terials, or other kind of ceramic/metal matrix composites, up to concrete, masonry–like and
geo–materials, for which micro–bending has also a significant role.

Section 3 - step (ii). The second step of the multiscale procedure concerns the tran-
sition from a micropolar two–phases continuum to a micropolar homogeneous continum
through an average–field homogenization procedure. This procedure is based on the solu-
tion of BVPs, defined at the meso–level, under Dirichlet and Neumann BCs derived from a
macrohomogeneity condition of Hill’s type, here generalized in order to take into account
the additional degrees of freedom of the micropolar continuum, namely the relative rotation
and curvature [35].

Due to the generally low volume fraction at the meso–level, the material is perceived
as a random aggregate of inclusions embedded in a matrix [43], either softer or stiffer.
As a result of the coarse–graining procedure (i), both the inclusions and the matrix are
described as isotropic micropolar continua. The macroscopic continuum is also supposed
to be micropolar, able to naturally account for scale and skew–symmetric shear effects
[10, 16]. In this framework, the adopted generalized macrohomogeneity condition ensures
a one–to–one correspondence between the two scales, avoiding the introduction of kind of
internal constraints for the deformation mechanisms, as occurs in the case of continua of
different type [2, 14].

With the aim of investigating the gross mechanical response of this special class of
random composites, we adopt a statistically–based multiscale procedure which allow us
to detect the size of the RVE, that is unknown in the case of random media [44, 45], and
to estimate the constitutive moduli of the energy equivalent homogeneous micropolar con-
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tinuum [33, 34]. The RVE is obtained by increasing a scale factor representing the ratio
between the size of a control window (SVE) and the particle size, until the statistical con-
vergence, defined through an ad hoc conceived criterion, is reached.

Section 4. Some results obtained for an ideal material that mimics the internal micro/meso
structure of a CMC material are presented. Two material case studies, with inclusions
either stiffer or softer than the matrix, are compared. These examples, representative of
different kind of composites – ranging from metal or ceramic matrix composites up to
concrete or masonry–like materials – highlight the possibility to detect the constitutive pa-
rameters at the three scales of description, starting from the knowledge of the geometry
and the material parameters of the internal structure at the discrete micro–level. The effect
of the randomness of the spatial distribution of inclusions at the meso–level in identifying
the shear and bending moduli of the equivalent homogeneous micropolar continuum is also
taken into account. We consider this three–level homogenization procedure to be promising
for grossly describing the material non–linear behavior starting from the accurate descrip-
tion of damaging and/or fracture phenomena, that often onset at the level of microscopic
interfaces [46, 47].

2. Micro/Meso transition (ii) - Coarse–graining

At the first level – the finest one, conventionally defined as micro–level – the reference
material (Figure 3) is described as a lattice system made of rigid particles of hexagonal
shape and elastic interfaces (Figure 4).

Since many years it has been shown that in such systems the gross mechanical behav-
ior is strongly influenced by the particle size and orientation and that this microstructural
feature can be properly taken into account by identifying continua of the Cosserat type
[48, 49, 50, 3] Here below we adopt the procedure described in [51], and then extended
and generalized in [10, 16], for deriving a micropolar continuous model energy equivalent
to a lattice system made of particles interacting through forces and couples, as in a beam–
like network [41]. The micropolar continuum is identified by assuming the conservation
of the power expended in the transition from the micro (discrete) to the meso (continuous)
model, for a given class of regular motions. The constitutive functions for the meso–level
continuous materials are then derived in terms of the geometrical and mechanical proper-
ties of the rigid particles and interfaces. Particular attention is devoted to the evaluation
of the characteristic intrinsic length, lµ, of each micropolar constituent as directly gathered
by the underlying microstructure. These parameters, adopted in the constitutive law at the
mesoscopic level, are, indeed, difficult to estimate through experimental tests [52] and the
calibration of their values is a very debated issue.
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2.1. Lattice system
In this paragraph the methodological aspects of the procedure are developed within the

framework of linearized elasticity, where velocity and angular velocity stand for infinitesi-
mal displacement and rotations, respectively. It is worth noting, however, that the procedure
can be employed in more general contexts, even if the generalization is not trivial.

Let us assume that each particle, A, is a rigid body. The vector wa and the skew-
symmetric tensor Wa (Wa = −(Wa)T ) respectively denote the velocity of the particle center,
ga, and the particle angular velocity.

Under the rigid body assumption, for any point belonging to the particle (·), it is:

wa(·) = wa + Wa((·) − ga) ,
Wa(·) = Wa . (1)

LetA and B be two interacting rigid particles and select a pair of points (pa ∈ A, pb ∈

B), along the interface between A and B, that we call a ‘test pair’. As strain measures for
the test pair (pa, pb) we then assume the following quantities:

wp = wa(pa) − wb(pb) ,
Wp = Wa(·) −Wb(·) , (2)

that, using Equations (1), can be rewritten as follows:

wp = wa − wb + Wa(pa − ga) −Wb(pb − gb) ,
Wp = Wa −Wb . (3)

Furthermore, we assume that the contact interaction between the two particles A and
B is described by a force and a couple through the test pair (pa, pb). The vector ta (tb) and
the skew-symmetric tensor Ca (Cb) respectively represent the force and the couple that B
(A) exerts onA (B).

Let us consider now a reference portionM of the system of particles made of n particles
of total volume V , defined as the sum of the elementary volumes pertaining to the particles.
The power of the internal actions acting onM can be expressed in the form:

π =
∑

i

(ti · wi +
1
2

Ci ·Wi) , (4)

with i ranging from 1 to n. By taking into account the balance equations for each pth test
pair:

ta + tb = 0

Ca + Cb −
1
2
{[(pa − pb) ⊗ ta − ta ⊗ (pa − pb)]} = 0 , (5)
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the following mean power formula overM can be derived in the form:

π =
1
V

∑
p

πp, πp = tp · [wp −Wa(pa − pb)] +
1
2

Cp ·Wp , (6)

where tp = ta = −tb and Cp = Ca = −Cb + 1
2 {[(pa − pb) ⊗ tb − tb ⊗ (pa − pb)]}, and where

the range of p being the number of the test pairs in P.
We finally assume the following linear constitutive functions for each test-pair inM:

tp = Kpwp ,

Cp = KpWp , (7)

where the elastic second order tensor Kp and the fourth order tensor Kp have as components
the normal, tangential and rotational stiffness at the pth interface.

2.2. Identification of the micropolar continuum
Let us consider a continuum body occupying the region B, a place x ∈ B, and an open

neighborhood, P, of x. The deformation of any point p ∈ P is assumed to be homogeneous
and approximated by the functions:

w(p) = w(x) + H(x)(p − x)
W(p) = W(x) + H(x)(p − x) , (8)

with H = ∂w(x)/∂x and H = ∂W(x)/∂x.Equation (8) is a generalization of the Cauchy–
Born rule, [38].

If we assume that the lattice system has a modular structure, the deformation of the
lattice representative elementM (module) can be related to the deformation of P by postu-
lating that:

wa = w(x) + H(x)(ga − x)
Wa = W(x) + H(x)(ga − x) (9)

Finally, by using Equations (8) and (9), the expressions (3) can be rewritten as:

wp = H(x)(ga − gb) −W(x)(ga − gb)
+[H(x)(ga − x)](pa − ga) − [H(x)(gb − x)](pb − gb) ,

Wp = H(x)(ga − gb) . (10)

Using the deformation correspondence proposed above (9), it is then possible to obtain
an expression of the power of the contact actions in the discrete model in terms of the
kinematic quantities pertaining to the continuum ones. With regard to a generic test pair

8



(pa, pb), from (6) and using Equations (10), we obtain the test–pair power as function of
continuous kinematic fields H(x), W(x), H(x):

πp = tp · {[H(x) −W(x)](ga − gb)
+[H(x)(ga − x)](pa − ga) − [H(x)(gb − x)](pb − gb)}

+
1
2

Cp ·H(x)(ga − gb) . (11)

By performing simple algebra, the above expression can be rewritten in the form:

πp = (H −W) ·
[
tp ⊗ (ga − gb)

]
+

1
2
H ·

{
2tp ⊗ [(pa − ga) ⊗ (ga − x) − (pb − gb) ⊗ (gb − x)]

+ Cp ⊗ (ga − gb) } . (12)

where the dependence on x of the kinematic fields has been understood.
The constitutive functions for the contact actions of the equivalent continuum can thus

be obtained by requiring that the mean power of the lattice system over the module, ex-
pressed as function of the strain fields (H −W), W, equals the stress power density at x in
such a way that:

π[(H −W), H] =
1
V

∑
p

πp[(H −W), H]

= (H −W) · S +
1
2
S ·H , ∀ (H −W), H , (13)

where S and S are the stress measures of the micropolar continuum power conjugated to
(H −W) and W, respectively.

In Equation (13) V denotes the volume ofM, supposed as centered at x, and the sum-
mation is extended to all the ‘test pairs’ appearing in the selected module M. Enforcing
this equivalence and taking into account Equations (12), (7) and (10) again, we have:

S =
1
V

∑
p

tp ⊗ (ga − gb)

S =
1
V

∑
p

{ 2 tp ⊗ [(pa − ga) ⊗ (ga − x) − (pb − gb) ⊗ (gb − x)]

+Cp ⊗ (ga − gb) } (14)

with

tp = Kp { (H −W)(ga − gb)
+[H(ga − x)](pa − ga) − [H(gb − x)](pb − gb) }

Cp = Kp [H(ga − gb)] (15)
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3. Meso/Macro transition (ii) - Homogenization

As a result of the coarse–graining procedure presented in Section 2, both the inclusions
and the matrix are described as micropolar continua which deterministic structure is en-
coded in the power density formula (13). The macroscopic continuum is also supposed to
be micropolar, which in the case of periodic media have been proved to be able to naturally
account for scale and skew-symmetric shear effects [16].

At the meso–level the kind of composites here considered (Figure 3) has particles em-
bedded in a matrix, randomly distributed according to a so-called dilute concentration (low
volume fraction of max 40%) and they cannot be treated as periodic. The transition from
the mesoscopic to the macroscopic scale is then performed resorting to a statistical homog-
enization approach applied to a material with randomly distributed inclusions, either stiffer
or softer than the matrix. The procedure, set at the meso–level, is based on the solution of
BVPs consistent with a generalized macrohomogeneity condition of Hills type [33].

3.1. The micropolar model
In the context of the linearized theory, each material point is characterized by the ve-

locity vector w and the angular velocity skew–symmetric tensor W. The strains measures
are the strain, U, and curvature, U, tensor, which are defined according to the compatibility
equations:

U = H −W = E +Θ −W ,

U = H , (16)

where E = (H+HT )/2 andΘ = (H −HT )/2, respectively, are the symmetric and the skew-
symmetric part of H = ∂w/∂x and H = ∂W/∂x.

The power conjugated stress measures, respectively, are: the stress tensor S and the
couple stress tensor S. If we decompose the stress tensor into its symmetric, T = (S+ST )/2,
and skew-symmetric, A = (S − ST )/2, part, S = T + A, the stress density formula of the
micropolar continuum can be written:

π = S · U +
1
2
S · U = T · E + A · (Θ −W) +

1
2
S · U (17)

The balance equations for the continuum, occupying an Euclidean region B, with no
external body forces and couples, can be then derived from a generalized formulation of
the virtual power theorem as:

div S = 0 ,
divS + 2A = 0 , (18)
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while, accounting for a generalized version of the Cauchy theorem, the boundary conditions
on ∂B for the surface tractions and couples, respectively represented by the vector t and the
skew–symmetric tensor C (C = −CT ), are:

S n = t ,
Sn = C , (19)

n being the outward normal to the boundary ∂B.
The stress–strain relations for the linear elastic anisotropic micropolar material can be

written:

S = AU + BU ,
S = CU + DU , (20)

where A and D are fourth, and sixth order constitutive tensors with the major symmetries,
respectively, while B and C, are fifth order constitutive tensors respecting the symmetry
relation: BV · V = CV · V, ∀V,V. It is worth noting that in the presence of central
symmetries, the tensors B and C are null and Equations (20) reduce to:

S = AU ,

S = DU . (21)

Taking into account the decomposition in the symmetric and skew–symmetric part of the
stress and strain tensors, Equations (21) can be also written:

T = AYYE + AYK(Θ −W) ,
A = AKYE + AKK(Θ −W) ,
S = DU , (22)

where the constitutive tensors Aαβ (α, β = Y, K ) have components obtained as linear
combination of the components of the constitutive tensors in (21).

3.2. The meso–level micropolar model
The constitutive equations for the meso–level two–phase elastic materials (inclusions

and matrix) are identified, using Equations (14, 15), in the general anisotropic form (20),
which specialize in the form (21) or (22) in the case of central symmetry.

Let us now consider a two–dimensional portion of the reference material, in the case in
which the result of the coarse–graining procedure identifies two linear elastic (micropolar)
isotropic phases. By reordering into vectors the components of the symmetric and skew–
symmetric stress (T, A) since and strain (E, Θ) tensors, together with the sole independent
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components of the couple–stress S (denoted as s1, s2) and curvature U (denoted as u1, u2)
tensors, the constitutive equations can be written as:



T11

T22

T12

A12

s1

s2


=



λ + 2µ λ 0 0 0 0
λ λ + 2µ 0 0 0 0
0 0 2µ 0 0 0
0 0 0 −2µc 0 0
0 0 0 0 2µl2

c 0
0 0 0 0 0 2µl2

c





E11

E22

E12

Θ12 −W12

u1

u2


, (23)

given that any second order tensor, V, has components defined as: Vi j = V · ei ⊗ e j (where
{ei, e j}, i, j = 1, 2, defines an orthonormal base for the two-dimensional space).

Equations (23) show that the non–null constitutive tensors A and D in (21) have com-
ponents depending on four independent elastic constitutive parameters: the Lamé constants
λ and µ, the Cosserat shear modulus µc, and the so–called characteristic length lc, which is
responsible for the bending stiffness. These parameters are those resulting from the identi-
fication procedure of Section 2 applied to the the case of our reference material (Figure 3),
as it will be described in Section 4.

3.3. The macro-level micropolar model
The effective elastic components of the micropolar macro–level continuum are directly

obtained from the homogenization procedure, consistent with a properly defined general-
ized macrohomogeneity condition, which establishes an energetic equivalence between a
portion of the heterogeneous material at the mesoscopic level and the material point at the
macroscopic level.

In this respect, let us now consider a representative portion of the heterogeneous mate-
rial at the meso–scale, i.e. a region Bδ of volume Vδ and size L (where δ = L/d is the scale
factor, with d being the average inclusion size). By taking into account the splitting into
symmetric and skew–symmetric strain and stress components the generalized macrohomo-
geneity condition writes:

T · E + A · (Θ −W) +
1
2
S · U =

1
Vδ

∫
Bδ

(T · E + A · (Θ −W) +
1
2
S · U ) dV , (24)

where overbars denote macroscopic quantities obtained as volume averages of the corre-
sponding mesoscopic variables, i.e.: (·) = 1

Vδ

∫
Bδ

(·) dV .
The generalized macrohomogeneity condition (24) requires that the power expended

by the stress in the strain at the mesoscopic level equals the power of the stress at the
macroscopic level. As the meso– and the macro–model are both micropolar continua,
this condition ensures a one–to–one correspondence between the two scales, avoiding the
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introduction of kind of internal constraints for the deformation mechanisms, as occurs when
continua of different type are connected [14]. The condition is verified providing that the
following BCS hold.
- Dirichlet’s boundary conditions (D–BC):

w |∂B = E x,
Θ |∂B = Θ −W , W|∂B = U x . (24)

where x is the position vector of a point on boundary. Alternatively:
- Neumann’s boundary conditions (N–BC):

T n |∂B = T n ,

Sn |∂B =
1
2

[(x ⊗ A n − A n ⊗ x) + Sn] . (24)

Consistently with the above, the effective macroscopic stress–strain relations result in the
(in general anisotropic) form:

S = A U + B U ,
S = C U + D U , (24)

Considering two–dimensional assemblies for which the central symmetry holds, we have
B = C = 0, and the constitutive equations, and taking into account the decomposition into
symmetric and skew–symmetric parts of the stress and strain tensors, can be written as:

T = A
YY

E + A
YK

(Θ −W) ,

A = A
KY

E + A
KK

(Θ −W) ,

s = D u , (23)

The independent strain and stress components of the stress and strain tensors can be conve-
niently ordered into vectors, and considering the Voigt notation derived as described above,
Equations (23) specialize in:



T11

T22

T12

A12

s1

s2


=



A
YY

1111 A
YY

1122 A
YY

1112 A
YK

1121 0 0

A
YY

2211 A
YY

2222 A
YY

2212 A
YK

2221 0 0

A
YK

1211 A
YK

1222 A
YK

1212 A
YK

1221 0 0

A
KY

1211 A
KY

1222 A
KY

1212 A
KK

1212 0 0
0 0 0 0 D11 D22
0 0 0 0 D21 D22





E11

E22

E12

Θ12 −W12

u1

u2


(24)
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The components of the constitutive tensors in Equation (24) are expressed as linear com-
bination of the components of the tensors in (24), which in the special case of orthotropy
coincide with the ones of Equation (28) in [53]. The components of any tensors V, of order
N, in (24) are defined as: Vi j...N = V · (ei ⊗ e j, ...,⊗ eN), {ei , e j, ...., eN} (i, j, ....,N = 1, 2)
being an orthonormal base of size N.

4. Numerical simulations

In the exemplifying case study here presented, the material is characterized by particles
randomly arranged into a base matrix, either stiffer, case (a), named higher contrast mate-
rial, or softer, case (b), named lower contrast material; where the term contrast refers to the
ratio between elastic moduli of inclusions and matrix.

The three–scale procedure described in Sections 2 and 3 has been implemented and
adopted to evaluate the equivalent micropolar elastic response of a two–dimensional, ide-
ally homogeneous, material that qualitatively mimics the internal microstructure of a Ce-
ramic Matrix Composite, as the Alumina-Zirconia qualitatively described in Section 1.

Going from the micro– up to the meso– and then the macro–scale, the material is de-
scribed as follows. At the micro–scale the microstructure, of both matrix and inclusions,
is made of a periodic assemblage of hexagonal rigid particles, regularly arranged and con-
nected by axial, translational and rotational springs. This assumption certainly represents
a simplification in the detailed description of polycristalline microstructures in which the
porosity, as well as development of local plasticity and internal microdefects during loading
can play important roles [46, 54, 55, 56]. With this microscopic model, however, the over-
all elastic, possibly isotropic, behavior of kinds of microstructures, high volume fraction as
CMC of Figure 2, can be derived resorting to a limited set of parameters, i.e. the stiffness
of the springs, that via energy equivalence criteria can properly calibrate the elasticities of
the microscopic level (topologies different from the hexagonal one are needed in the case
of anisotropy, as for instance in the orthotropic assemblies of [53]).

In Figure 4 a schematic of a periodic cell (module), that can be representative both
of the matrix and of the inclusions, is shown: each cell is a hexagon, surrounded by six
hexagons interacting through six ‘test pairs’ (black circles, represented by springs located
at the center of each side of the hexagons). It is worth noting that this illustrative example
is not directly related to a specific material; it represents the ideal material that qualitatively
mimics CMC with high volume fraction of nearly hexagonal particles.

The micro/meso transition (i), described in Section 2, is thus performed by respectively
adopting for the two phases, matrix and inclusions, the geometric and mechanical param-
eters shown in Table 1; where lµ is the side length of the rigid hexagonal block, Kp is the
stiffness tensor in Equation (7a), collecting the axial and shear stiffness of the springs, while
(Kp) is the sole independent component of the stiffness tensor in (7b), i.e. the rotational
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(a) (b)

Figure 4: (a) Hexagonal periodic cell: assemblage of rigid particles connected by point–like springs;(b)
Schematic of the contact (‘test pair’): axial; rotational; translational spring.

(a)matrix/(b)inclusions lµ = 7 (Kp) =

(
2000 0

0 3450

)
; (Kp) = 6125

(a)inclusions/(b)matrix lµ = 0.6 (Kp) =

(
785 0
0 780

)
; (Kp) = 17.66

Table 1: Geometric and elastic coefficients of the interfaces. lµ is the side length of the rigid hexagonal block,
Kp collects the axial and shear stiffness of the springs and (Kp) is the rotational stiffness of the spring.

stiffness of the spring. In this way it is possible to gather information related to micropo-
lar moduli, usually very difficult to measure in experimental tests, directly from the inner
microstructure of the polycristalline material. One of the advantages of this three steps pro-
cedure, that moves from a physically–based discrete description at the micro–level, is that,
on the tracks of the classical molecular theory of elasticity [40], we can rationally derive the
micropolar constants generally difficult to obtain resorting to standard experimental results
[52]. As our aim is to explain the identification procedure, all the parameters describing
the spring stiffness are assumed known and expressed in dimensionless form.

For the two phases, the result of the coarse–graining process is an isotropic materials
with the elastic coefficients expressed in Equation (23). These homogenized values are then
adopted as material parameters at the mesoscopic level. In particular, our interest is here re-
stricted to the evaluation of the Cosserat shear modulus µc and the bending modulus related
to the characteristic length lc. The results of the coarse–graining (first–step) procedure are
expressed in terms of material contrasts (i.e. the ratio between the inclusions and matrix
constants), focusing on Cosserat shear and bending moduli. The identified ratios between
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the micropolar constants of inclusions and matrix (non–standard material contrast) for the
material (a) are: µi/µm = 4.93 and lci/lcm = 10, while for the material (b), in which the
parameters of matrix and inclusions are exchanged, are: µi/µm = 0.202 and lci/lcm = 0.1.
For the chosen module with elastic coefficient of Table 1, the derived constitutive coeffi-
cients of the matrix in (23) are strictly diagonal and, as a consequence, no Poisson’s effects
are accounted for. However, more general assumptions are possible [3], also by resort-
ing to multiple interactions [57]. Adopting this three steps procedure, that moves from a
physically–based discrete description at the micro–level on the tracks of [40], we can ratio-
nally derive the multifield continua parameters, focusing on the micropolar constants that
are generally difficult to obtain resorting to standard experimental results.

The meso/macro homogenization (ii) of Section 3 is then carried out, in turn. We
exploit the statistically–based multi–scale procedure, developed and detailed in [33], in
order to achieve the twofold purpose of detecting the RVE size, LRVE, and estimating the
constitutive moduli of the energy equivalent homogeneous micropolar continuum.

Briefly, by fixing some parameters (as: inclusions density; size, d; shape and the ma-
terial parameters of constituents obtained at the step (i)) and randomly varying other pa-
rameters, as the number and position of the particles, under hypotheses of statistical homo-
geneity and mean ergodicity, the solution of series of Boundary Value Problems (BVPs)
on representative square regions Bδ of size L, called Statistical Volume Elements (SVEs),
is obtained using a so–called moving window technique. The windows are chosen in such
a way that their edges randomly intersect the particles. Then, by varying the scale factor
δ = L/d and by solving both the Dirichlet and Neumann BVPs for all the random repre-
sentations of the internal structure Bδ(ω), ω being an elementary event over a sample space
(a frozen moving window, namely the SVE), the procedure provides hierarchies of bounds
for the elastic coefficients that allow us to estimate of the size of the RVE for performing
homogenization. The convergence to the RVE is ensured by a statistical criterion of conver-
gence specifically defined. This criterion allow us to stop the procedure when the number
of simulations, necessary to obtain averages of elastic coefficients that do not differ from
a given tolerance, is small enough (where the interval is evaluated at 95% over a normal
standard distribution).

With regard to the reference material here considered, we can observe that this also
exhibits, at the macroscopic level, a nearly isotropic homogenized behavior. In this case
the micropolar shear stress, A12, is a scalar term related to the relative rotation, (Θ12−W12),
through the constitutive component A

KK

1212, while the couple stress, s, and the curvature, u,
are related through the modulus trD; thus the following relations hold:

A12 = A
KK

1212 (Θ12 −W12)

{s} =
1
2

tr D{u} , (24)
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(a) (b)

Figure 5: Effective bending modulus lc (normalized to the RVE modulus lcRVE) versus scale parameter δ
obtained under Dirichlet-BC and Neumann-BC. (a): inclusion stiffer than the matrix ; (b): inclusion softer
than the matrix. (Dashed line at δREV ).

where these equations are extracted from (24), which in this isotropic case specialize with
the components: A

YY

1111 = A
YY

2222 = λ + 2 µ, A
YY

1122 = A
YY

2211 = λ, A
YY

1212 = 2 µ, A
KK

1212 = 2 µc,

D11 = D22 = 2 µc lc
2
, while all the other constitutive components being null.

We then consider the modulus lc =

√
tr D/A

KK

1212, related to the micropolar bending
and shear stiffness, for representing the convergence trend to the RVE of the micropolar
material response obtained by varying the scale ratio δ, while maintaining the inclusion
size d constant. This modulus represents the characteristic internal length of the micropolar
continuum, and allow us to focuses on the main peculiarity of this multifield model, that is
to account of the size and the stress and strain skew–symmetric effects.

In Figure 5a the average of the characteristic length lcδ versus the scale parameter δ, nor-
malized with respect to the RVE value lcRVE, is reported for the material (a). Solutions of
both boundary value problems under Dirichlet and Neumann boundary conditions are plot-
ted. The adopted convergence criterion indicates that the RVE is achieved for δRVE = 15.
Analogously, in Figure 5b the same normalized bending modulus lcδ versus δ is shown
for material (b). In this case the size of the RVE corresponds to a higher value of δRVE

(δRVE = 20). The different contrasts between material parameters characterizing materials
(a) and (b) influence the convergence trend of the constitutive parameters, as the dimen-
sion L of the SVE increases. The material (b) shows a slower convergence than material
(a), nevertheless the occurrence of horizontal plateau indicates that, independently on the
material contrast, the RVE is reached and that the corresponding homogenized modulus is
obtainable as the average value between the Dirichlet and Neumann solutions.

5. Final remarks

We have developed a multi–scale homogenization approach for the study of composite
materials characterized by microstructural length scales not negligible with respect to the
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mesoscopic and macroscopic characteristic lengths. The proposed procedure is able to de-
scribe the material behavior following a complete hierarchy of scales from the microscopic
up to the macroscopic scale.

The material is modeled at three levels. The micro–level, characterized by the length
scale lµ, where each constituent is described as a modular discrete system; at this level,
even if this is not a necessary option, the material is supposed deterministic, due to the high
volume fraction of the material (high concentration of particles) or to the actual regularity
of the microstructure. The meso–level, where a material sample of length L is considered
and modeled as a two–phases micropolar material made of inclusions of size d randomly
embedded in a matrix. The macro–level, characterized by structural length LM, where an
equivalent homogeneous micropolar material is obtained as final result of the multi–scale
procedure.

The micro/meso transition is performed via a coarse–graining procedure based on a
generalized Cauchy–Born correspondence map and energy equivalence between the mi-
croscopic periodic lattice system, describing each material constituent, and the equivalent
micropolar material. For the meso/macro transition, instead, a statistical homogenization
procedure has been developed, basing on the solution of boundary value problems posed on
statistically representative elements, under boundary conditions derived from a generalized
macrohomogeneity condition of Hill’s type. The paper extends two approaches previously
independently developed [51], [33] and here organically combined into an integrated mul-
tiscale approach.

An illustrative numerical example is finally provided to assess the capabilities of the
procedure. An ideal material that mimics the internal microstructure of a ceramic matrix
composite is studied starting from its hexagonal discrete microstructure. At the mesoscopic
scale the random nature of the material is taken into account and the overall homogenized
macroscopic micropolar elastic moduli are finally obtained. We showed that the micro–
level description allow us to derive the micropolar elastic moduli that cannot be detected
using standard experimental equipments.

This procedure provides an appropriate base framework for future investigation of the
non–linear behavior of microstructured materials. We expect that the multiscale paradigm
allow us to describe the occurrence of damage/fracture phenomena at the micro–scale [46],
and then, by exchanging information with the coarser scales, to obtain the non-linear ef-
fective/macroscopic response of the micropolar continuum taking into account the size and
spatial random distribution of particles, as successfully done for regular masonry [10].
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