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Abstract

A study of melodic similarity of pitch contours automatically obtained from audio
files in the context of Query by Humming is presented. Pitch contours are ex-
tracted directly from monophonic (query files) and polyphonic (commercial songs)
audio files using a state-of-the-art algorithm MFELODIA [SG12] for automatic esti-
mation of predominant melodic contours. The contours are then coded using the
Symbolic Aggregate Approzimation [LKWLOT] algorithm for the reduction of the
huge amount of information each sequence contains, avoiding any step of automatic
music transcription, and then compared using the subsequence matching and time
warping method Smith- Waterman [SW81], being then an audio-based comparison.

Results using the commented approach do not reach state-of-the-art results
obtained by other authors in audio-based Query by Humming and, analyzing the
results, the main conclusion is that Symbolic Aggregate Approximation might not
be appropriate for this task.

Resum

En aquesta Tesi es presenta un estudi sobre similitud entre contorns de freqiiencia
fundamental obtinguts de fitxers d’audio aplicat a Query by Humming. Els con-
torns de freqiiéncia fundamental sén extrets de fitxers d’audio monofénic (per a
les peticions dels usuaris) i polifénics (per a les cangons comercials) fent s de
lalgorisme MELODIA [SG12] per a l'estimacié automatica de contorns melodics
predominants. Aquestos contorns sén codificats utilitzant 1’algorisme Symbolic Ag-
gregate Approzimation [LKWLO7] per a poder reduir la gran quantitat de dades
que s’han de manejar, evitant la transcripcié automatica de miisica, i comparant-los
amb Dalgorisme Smith- Waterman [SW81], tenint per tant una comparacié basada
en audio i no informacié simbolica com si d’una partitura es tractara.

Els resultats no alcancen els que altres algorismes de Query by Humming basats
en informacié d’audio obtenen i, analitzant aquestos resultats, la principal conclusié
és que l'algorisme Symbolic Aggregate Approzimation no pareix apropiat per a aque-
sta tasca.
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‘Music in general is looking for something new overall.’
Leslie Edward “Les” Claypool

Introduction

Not so long ago, Internet did not exist, at least not as it is known and used
these days. Music was not as widespread as nowadays and people used other
means of finding new music to listen to as, for instance, asking friends, at-
tending concerts, watching TV, reading magazines or listening to the radio,
among many others. All of these are still used as sources of new music, but
today we mostly rely on the digital highway to look for that data.

The music-store clerk [PB03] used to be a key figure in the search and
retrieval of new or unknown music: people would go and ask this employee,
a sort of a living music library, about a tune they heard somewhere. In some
cases, the customers could provide some information about, for instance, the
band or the genre, but often some kind of humming was actually used to
query this music guru.

Music Information Retrieval (MIR), knowledge brach in which this The-
sis is located, can be defined as “[...] a field that covers all the research
topics involved in the understanding and modeling of music and that use
information processing technologies” [XS13]. In other words, MIR aims at
researching in music from different scientific points of view, such as engi-
neering, psychology or physics apart from many other disciplines, but using
computational approaches (information retrieval techniques) to deal with
the different issues proposed.

Among the different topics MIR, deals with, one of them is the aforemen-
tioned music recognition expert: tags describe music content and are used in
music-search systems [PB03, IKMI10], but the issue is that most of the times
these concepts are ill defined, since even human beings hardly agree on their
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meaning. If these queries could be directly hummed to an automated music-
store clerk, we might improve our retrieval accuracy. Systems which actually
implement this task are known as Query-by-Humming (QBH) systems.

Mbotivation and Research Problem

In real life it could happen that, and it is the most usual situation, a music-
store clerk might not be able to recognize the tune we are humming. Obvi-
ously it could be due to the simple reason that the tune we are producing
is not similar enough to the music we are looking for, so it might take the
clerk some time or even more information to retrieve the song. However, the
most undesirable situation, which is also the most common one, is that this
guru does not know the music we are looking for, in other words, the song
we want is not part of his/her database.

Among many drawbacks QBH systems have, the most limiting one is ac-
tually this lack of knowledge: when we hum a certain tune, the QBH system
compares it with its database so that it can later output a similarity result
but, if the tune is not present in its corpus, there will never be a correct result.

Most databases in QBH systems are constituted by MIDI transcriptions
of the main melody, which are usually obtained through manual annotation
[IKMI10, DNS07, RK08]. The need for a manual intervention constitutes a
major drawback since it is not possible to transcribe manually all existing
songs [SSG12]. This fact clearly limits QBH systems as they are not able to
grow by themselves.

In case we implement automatic melody transcription to improve the
system, it is important to point out two main issues these methods have:
the fundamental frequency estimation and the transcription to notes. The
former process introduces much noise in the system, mainly in polyphonic
tunes [CVGT08, IKMI10], since no known method is able to track perfectly
the fundamental frequency of a signal; on the other hand, the second pro-
cess may introduce errors as well since temporal segmentation might not be
precise.

On the other hand, melodic similarity is another topic we have to be
aware of. As we mentioned before, the music-store clerk would not be able
to recognize immediately the tune we are asking for since queries might be
sung in different keys, deviated from the original tempo, containing more or
less notes than the target tune, among many other errors [TTM12]. There-
fore, it is necessary to find a proper similarity measure able to deal with
these issues, which actually is quite related to the way the data (queries and
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database tunes) is represented in the system.

This Master Thesis aims at researching on melodic similarity for QBH
systems avoiding the aforementioned transcription step (that means, working
directly on audio-based similarity) for designing an algorithm able to create
automatically its own database by extracting the predominant melody from
polyphonic tunes. Our approach makes use of the MELODIA algorithm'
[SG12] by Justin Salamon from the Music Technology Group (MTG) in
Universitat Pompeu Fabra (Barcelona) to extract the fundamental frequency
contour of the main melody from both queries and songs in the database as
well as different time-series representations for coding the different contours.

Goals

The specific goals related to the present Thesis are:

1. Research on the usefulness of melody extraction (more precisely, the
MELODIA algorithm) in QBH.

2. Study the advantages and disadvantages of different pitch contour rep-
resentations.

3. Investigate on different distance measures for the comparison of the
queries and the database elements.

4. Use automatic music transcription to compare results obtained with
audio-based similarity and higher level representations.

5. Implement an approach and discuss/evaluate the obtained results.

Outline of the Thesis

The rest of the present Thesis is organized as it follows:

1. Chapter II introduces QBH systems, its structure and typical ap-
proaches used in this task, aside from music and melodic similarity,
which are also important concepts on which these systems rely.

2. Chapter III describes the selected approach for the task.

3. Chapter IV depicts the dataset used for the validation of the approach
as well as the measures used for its evaluation.

"http://www. justinsalamon.com/melody-extraction.html
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1.3. OUTLINE OF THE THESIS

4. Chapter V describes and analyzes the obtained results considering the
proposed approach and methodology.

5. Chapter VI points out the different conclusions obtained after using
the selected approach and proposes some work to be carried out in the

future.



‘Human beings, who are almost unique in having the
ability to learn from the experience of others, are also
remarkable for their apparent disinclination to do so.’

Douglas Noél Adams

State of the Art

This Chapter aims at setting a theoretical background of the topic the
present Thesis later develops. For that, an initial section is devoted to
explain what music similarity is, and more precisely melodic similarity, since
one of the core functions in QBH is to measure how similar two melodies are
to determine whether they represent approximately the same or not; after
that, the second section is dedicated to define what a QBH is, its relevance in
the MIR field and the major challenges this kind of systems involve; finally,
a review of previous work done in QBH is presented to the reader.

Music similarity

What does similarity mean? According to the Oxford English Dictionary
[Mur89], two or more things are similar when they “have a resemblance in
appearance, character, or quantity, without being identical”. Following this
idea, inferring that a chair and a sofa are similar since they somehow share
their shape (four legs and seat) and their aim (letting people rest) or that a
person and a snake are not similar since their appearance is quite different
seems to be a straightforward idea.

However, this is not the case in music [BGC'11] since music similarity is
a highly-subjective task that does not only depend on the user but also on
the context where it is defined [Kel12]: similar music could make reference to
different tunes belonging to the same genre, musical period, artist/composer,
mood and so on [Wie07]. An example of this in the MIR field is music rec-
ommendation [Kell2], where the goal is to retrieve music that is somehow
stmilar to what a given user likes.
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So, since music similarity is so context-dependent and has no specific
definition, which are the most common approaches to this field? Typically,
they have been divided in two categories [Wie07, BGCT11]: metadata-based,
which is the approach that bases its performance in the information that is
gathered without considering the physical content of the tune but from high-
level labels that describe it as, for instance, lyrics', genre or band among
many others, and content-based approach which refers to the techniques in
which the information is directly obtained from the physical signal itself (for
example, spectral descriptors, energy or key). Two well-known examples of
music-recommendation systems are Pandora Radio?, which is a content-
based system, and Last.fm?, thought as a metadata-based system.

Melodic similarity

As it can be seen, music similarity is a wide topic by itself and its study is
out of the scope of the present Thesis. Melodic similarity, which is actually
one subtopic of this vast branch of knowledge, is a special type of music
similarity in which the aim is finding out whether two or more melodies are
similar.

Justifying why melodic similarity is the relevant measure that must be
taken into account falls into the definition of QBH systems, which will be
addressed later in this Chapter. However, as music similarity is the topic
developed here, it makes sense to introduce this concept now.

Melody, as most if not all musicological concepts is quite related to human
perception, and basically due to this perceptual connotation, no definition
would fulfill two different tunes [PEET07]. In a practical sense, it can be
defined as follows: “[...] melody is the single (monophonic) pitch sequence
that a listener might reproduce if asked to whistle or hum a piece of poly-
phonic music, and that a listener would recognize as being the ‘essence’ of
that music when heard in comparison” [PEET07, SG12]). In other cases,
it would be defined as “[...]one of the most memorable and characteristic
features of Western music” [Typ07] or as “[...]main perceptive feature of a
song’ [QLL11].

Despite all the perceptual implications the previous definitions have, it
is quite clear that melody seems to represent quite well a tune by itself, even

Lyrics could also fall into content-based since they are actually sung in the audio file
but, as voice transcription still has many issues, they still remain as metadata-based.

2This system is only available in United States, New Zealand and Australia as of Febru-
ary 2013, but its official webpage is http://www.pandora.com/

Shttp://www.last.fm/
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if it is only a little excerpt of it, making it reasonable for QBH systems to
work with this feature. Also, as it has been pointed out by some authors, the
melody developed by the voice or a solo instrument would be the first part
somebody would sing rather than bass lines for instance [SSG12, DNSO07].

Before finishing this section, it is necessary to define one concept that
will later be used: melodic contour. By this term we understand how the
melody ‘evolves’ in intervals, that is, whether is goes up, maintains its value
or goes down [Typ07].

What is a QBH system?

As discussed in Chapter I, QBH might be seen as a computer-based version
of a music-store clerk [PB03], a person to whom somebody would hum/sing
a tune in order to gather more information about it. Another point of view,
but actually quite related to the previous one, is defining these systems as
an “automated version of the game ‘Name That Tune’” [DBTT04], game
in which somebody would sing/hum a tune expecting the other players to
guess it.

These definitions work fine for getting a general idea but, in a more
technical scope, QBH would be an example of content-based music similarity
system in which the input query is a sung/hummed/whistled tune [DNS07].
A basic diagram of this kind of systems can be found in Figure II.1.

Query obtention and conversion

)

% %} ADC Preprocessing
User Hummin
¢ Feature Extraction

Matching and ranking results A7

Ranked output Similarity Measure

DATABASE

Figure I1.1: Diagram of a QBH system.

As the basic diagram in Figure I1.1 shows, QBH systems have classically
been divided in two subtasks [RKO08]: (i) conversion of the query into a
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certain robust format and (ii) the comparison of the converted query with the
database. These two subtasks are now explained:

(i) Query formatting

Following what it is shown in Figure I1.1, it can be seen that the first
step is creating the query by singing/humming/whistling a certain
tune and recording it using a microphone. Since the QBH task is
meant to be performed during everyday life lacking any specialized
equipment, it is reasonable to think that these recordings may have
really low quality, forcing QBH systems to work in very noisy environ-
ments. Some preprocessing right after having digitalized the query
might be performed in order to reduce all the noise in the recorded
signal.

Once the signal has been obtained and some basic preprocessing has
been applied to it, the next step is the feature extraction. The main
question at this stage is: which feature/s would best represent a cer-
tain tune? Obviously, this depends on the particular problem we are
dealing with but, in the case of QBH, as it was explained in Section
I1.1.1, melody constitutes the best descriptor of a tune itself. There-
fore, the Feature Extraction step is, in most of the cases, devoted to
the extraction of melodic contours.

Depending on the representation these melodic contours receive, QBH
systems are typically divided in two categories [WLL™T06, JMC09,
Papl0]: (a) note-based approaches and (b) frame-based approaches.
The main difference between these two melodic contour coding ap-
proximations is that, while note-based approaches require a conversion
step of the contour into discrete notes, frame-based approaches do not
[JMCO09]. This difference is shown in Figure I1.2

Choosing one of these two approaches carries an important conse-
quence: note-based approaches require an extra transcription stage to
obtain the notes, step that is carried out by means of automatic tran-
scription. Since automatic transcription is not a completely solved
problem, this stage might introduce some noise in the system, which
is an undesired effect [JMCO09, MDO01]. However, even with that disad-
vantage, most of the research has focused in the note-based paradigm
[WLLT06, SBY02].

It is also important to comment that, as it is shown in Figure I1.2,
when talking about note-based and frame-based, the extracted melodic
contour remains neither as a classical score nor as a continuous se-
quence of pitches, but it has to be coded in a certain format. Some
possible formats are:
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Figure I1.2: Difference between note-based and frame-based approaches:
melodic contour (middle) is extracted from the audio (bottom) and then,
typically, we can either use a frame-based representation or transcribe and
use a note-based approach.

(a) Frame-based

Time-series coding has proved to be an important approach in
QBH systems without transcription stages: wavelets is a pos-
sible format [JMCO09], Symbolic Aggregate Approximation
[DNS07], melody slopes [ZKT02], direct fO contours or pitch
histograms [SSG12] are some examples of it.

Note-based

Pitches can be coded very easily using the MIDI standard: a pos-
sibility is to encode them using the equivalent of the note in the
MIDI scale, which is a way of absolute pitch encoding, or,
instead of that, storing the difference between two consecutive
values encoded in this MIDI scale (relative pitch encoding),
which actually makes the system invariant to key transpositions®
since the query might be sung in a different key compared to the
original tune [DBT"04], a quite common issue in QBH systems

4Singing the tune in a different key compared to the original one.
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[LRPO07]. Another possibility is to encode pitch information, tak-
ing as the initial point the absolute pitch code, using Parsons
code’ or a variant of it to obtain a melodic contour [GLCS95]
with no specific key information, as in relative pitch encoding.

Regarding tempo information, inter-onset-interval (I0I), which
stands for the time difference between two consecutive note on-
sets, along with IOI Ratio (IOIR), ratio between two consecutive
101 values, and Log I0I Ratio (LogIOIR), which is the 2-base
logarithm of IOIR, are the most commonly used codifications.
Note duration, on the other hand, does not perform so well in
QBH [DBT*04].

(ii) Query comparison
Taking a look back to Figure II.1, once the proper descriptors (most
of the times, the melodic contour) have been obtained from the query,
the system proceeds to the comparison with the database.

The first point here is that the elements in the database must have
the same representation as the query, at least when the comparison
is going to take place (it is not necessary to store the database in the
format we need for the comparisons, but it saves time since there is
no need to process the database each time the system is run).

The core in this subtask is the Similarity Measure stage for comput-
ing the melodic similarity. A initial reference that must be taken into
consideration is that the type of measure used is quite conditioned
by the representation the system uses for the query: frame-based ap-
proaches work with a time resolution equivalent to the size of the FFT
computation and, therefore, they are slow but accurate; on the other
hand, note-based approaches work at a note-level, offering faster but
less precise results [Papl0].

It is also important to point out that these measures must be quite
robust against noise since, as it is explained in Section I1.2.3 about
the errors in the query production, there is never an exact match be-
tween query and database element [DBTT04].

Focusing on particular melodic similarity algorithms, the most com-
mon ones used in QBH can be classified in three categories [TTM12,

5This coding system, which is actually thought for melodic contours, describes the
relation between two consecutive pitches: whether there is an increase (‘U’), decrease
(‘D’) or the pitch is maintained (‘S’), being the first reference (the first pitch) coded as ‘*’
[NTN10].

10
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KPHT12]: (a) Sequence Matching, (b) Model-based Matching and (c)
N-grams.

(a)

Sequence Matching

Sequence Matching/Alignment is a well-known topic in bioinfor-
matics because of all the research in DNA over the past years,
research from which other knowledge areas can take advantage of
[LKWLO7] as, for instance, MIR.

In melodic similarity, this technique is usually divided in two
groups [KPH'12, LPHA10]: whole sequence matching and sub-
sequence matching. In both cases, the most common approach
is to use Dynamic Programming (DP) algorithms, which is an
approach for optimizing a problem by dividing it into simpler
subproblems [SPB77].

Dynamic Time Warping (DTW) is a very well-known and com-
monly used whole sequence matching algorithm. Basically, the
idea behind this method is looking for the best alignment be-
tween two sequences which suffer from misalignment and time
warps [KPH'12], which means, for instance, that the two se-
quences might be exactly the same being one ‘played’ faster than
the other one.

Despite whole sequence matching has been used in QBH, it seems
more suitable to use subsequence matching in these systems. Al-
gorithms such as Smith-Waterman or, more recently, SMBGT
are examples of this trend which have been applied to QBH
[KPH"12]. There is also a possibility of using whole sequence
matching algorithms by applying a sliding window and retrofitting
the system or cutting the database sequences in small pieces and
then perform the algorithms. Obviously, these hybrid approaches
are not free from drawbacks and, for instance, the former ap-
proach is quite computationally expensive and the latter one can
cause problems when the small pieces have a different size than
the query [LPHA10]. As an example, SPRING [LPHA10] consti-
tutes a modification of DTW for suitable subsequence matching.

Model-based Matching

In this particular approach, the idea is to create models, usually
Hidden Markov Models (HMM), of the melodies in the database
that can be later compared to the queries produced by the users
[KPH12]. Despite being Model-based Matching quite similar in
performance to Sequence Matching (the first one performs slightly
worse than the second) [TTM12], the main drawback this ap-
proach has is that it requires a previous training stage for each

11
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model, which can be a quite tough task depending on the size of
the database [KPHT12].

N-grams

This technique has been widely used in string matching and, de-
spite having a lower computational complexity compared to the
two previous techniques [TTM12], it has been proved that for
QBH, because of the noisy input data, this approach does not
perform as well as the previous two do [TTM12, KPH"12].

Finally, as a result of the comparison stage, QBH systems give an
output score of the similarity between the query and the elements in
the database. It is important to point out that this output is actually
a rank (Ranked output in Figure I1.1) and not a single result as it
would be, in principle, expectable since QBH systems retrieve the K
most similar tunes® to the produced query. As a consequence of this
particular output format, the main evaluation criteria are ranking
evaluation measures that, in the case of QBH, are typically two:

(a)

Mean Reciprocal Rank (MRR)
When a user produces a query Q related to a certain tune A, the
QBH system returns a rank of a certain length N in which the

tune A is located at position r’.

The particular reciprocal rank for that A query is defined as
1/r [DBT"04]. Generalizing this concept, Mean Reciprocal Rank
stands for the mean value of the reciprocal ranks obtained when
the system is evaluated with n queries. It can be described math-
ematically as in Equation II.1.

MRR =

Bl

L
: (IL1)
ZZ; r(Q;)

Top-X Hit Rate

Taking as an initial point an N-length rank, this measure consid-
ers just two cases: whether the position r of the correct result of
the search is in the first X positions or whether it is not (mathe-
matically, r(Q;) < X). By doing this, we can obtain the average
of how many times the QBH system retrieves the correct result
among the first X positions [SSG12].

5This number is something fixed in the system that could be varied or not by the user.
"This values ranges from 1 to N, being 1 the best result (correct result is ranked first).
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Database generation

Once these two basic subtasks in QBH systems have been introduced, it
is important to point out a basic issue that has not been given much at-
tention in previous work: in most of the research in QBH, the availability
of databases is given for granted, that means, there are annotated tran-
scriptions® (most of the times, MIDI files) [SSG12] for all the existing
tunes, transcriptions that can be easily processed to obtain the necessary
information. However, this assumption is quite unrealistic since there are
not annotated transcriptions for every single tune in the world [IKMI10],
constituting a great drawback in QBH research.

As a possible solution to the previous paradigm, there are systems that,
instead of relying on these annotations, what they do is that they store
the queries each user makes to build up a database [SSG12]. The main
advantage of this approach is that, although we have audio elements in the
database, they are all monophonic’, so the feature extraction can be ‘easily’
performed [DBT'04], at least when compared to a polyphonic tune. How-
ever, this approach also suffers from a drawback: the first time a user hums a
certain tune not present in the database no correct results can be retrieved,
since there are no proper matches in the database. This issue is called cold-
start problem and will always happen in systems with this approach since
there is no way to have previous information about every single tune.

A third possibility, which actually would solve the previously exposed
limitations, is using a fully automated approach for extracting the fea-
tures from real audio files (polyphonic files) [SSG12, RKO0S8]: the database
could contain any song since there is no human factor involved and there
would be no cold-start problem. In this case, the limitations for feature ex-
traction in polyphonic audio files must be taken into consideration: although
melody extraction did not achieve great results in the past [[IKMI10, SBY02]
and it still remains an unsolved issue, results have improved noticeably
[SG12], making this third possibility a proper option to explore.

Relevance of QBH

As introduced in Chapter I, the idea of QBH seems quite an attractive al-
ternative to classic text-based retrieval [PB03, IKMI10] since no musical
knowledge is needed [DBTT04].

8By annotated transcriptions we refer to those produced by humans as opposed to
the automatically obtained ones.

9Queries are monophonic and we are storing them as the elements of the database since
they represent certain tune that might be later needed to retrieve.
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Currently, QBH is one of the tasks that is evaluated every year in the
Music Information Retrieval eXchange (MIREX'?), in which it appeared for
the first time in 2006. Moreover, QBH is not only an academic/research
topic, but there are also a number of ‘real’ applications (both commercial
and free) that make use of this music retrieval approach as, for instance,
Musipedia'' or SoundHound'?, among others.

For finishing, it is also important to point out that QBH is not the
only alternative to classic text-based retrieval. In Query-by-Tapping sys-
tems, which are also evaluated in MIREX and constitutes one of the search
possibilities in Musipedia, the queries are created by tapping or clapping
the rhythmic section of a tune [HR09]. Also, systems for music recognition
such as Shazam'® or Gracenote’s MusicID'? constitute a special case
of retrieval in which the query is actually the song (useful, for instance, for
situations in which we hear a tune coming from a radio and we want to
identify it).

Main issues in QBH

As some of the issues researchers in QBH systems have to deal with have
already been introduced, it might seem unnecessary to comment them again.
However, these issues are the research subtopics in which QBH can be di-
vided, so it is important to remark them to get a clear idea of what QBH
comprises.

The main issues in QBH systems are:

(a) Transpositions
As previously commented, when producing the query, singers may go
out of tune (either instantaneously or during the whole query) or sing
in a different key [LRPO07], mainly because of the user’s vocal skills
and/or a not proper recall of the tune [LMLT03].

(b) Tempo deviations
Tempo tends to be different in the query and in the real piece [TTM12,
LRP07, IKMI10] and, since tempo has been proved to be as important
as pitch information in QBH [KPH'12], it is important to manage
those errors for a better search and retrieval.

Yhttp://www.music-ir.org/mirex/wiki/MIREX_HOME
Yhttp://www.musipedia.org/
2http://www.soundhound. com/
Bhttp://www.shazam. com/

Yhttp://www.gracenote. com/music/recognition/
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(c)

(d)

Some proposed solutions for this issue are forcing the user to sing in
a certain tempo by producing clicking sounds when doing the query
[IKMTI10], time-scaling the target data using fixed values [DBT*04] or
using Dynamic Programming (DP) techniques to look for the optimal
alignment between sequences [KPH'12].

Databases

The creation of the database is another of the major issues in QBH
[RKO8]: as it has already been commented, many systems use ei-
ther annotated transcriptions of the tunes or sung queries as the
database, however these two approaches are limited by the availability
of transcriptions and the cold-start problem respectively [SSG12].

The most suitable solution for this issue seems to be using a fully au-
tomated approach for feature extraction, typically the main melodic
contour, able to work in polyphonic audio files [SSG12, RK08].

Indexing

Due to the huge size of the databases, a basic search method (for in-
stance, linear search) is not acceptable since it would take too much
time to be computed [RKO08], getting even worse when the distance
function has a higher complexity. In a case like this one, it is necessary
to create an indexing structure to speed up this retrieval task.

However, it is also important to point out that some similarity mea-
sures used in melodic similarity are not metric, making necessary to
use special approaches, able to deal with this drawback, to create the
indexing structure [TWT10].

Previous work

This last section aims at introducing the reader to different real implemen-
tations of QBH and relate them to all what has been exposed in the previous
sections of this Chapter II.

As it has been commented, note-based QBH systems have classically been
the ones in which research has focused the most. Actually, the first QBH
system, proposed by Ghias et al. in 1995 [GLCS95], is one of those: queries
are transcribed (using autocorrelation for pitch tracking) and then converted
into melodic contour using a similar technique to Parsons Code; database is
comprised of MIDI songs; search is performed using an approximate string
matching algorithm (referred to it as ‘fuzzy’ matching algorithm).

15
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Dannenberg et al. in 2007 [DBT104] compared different search algo-
rithms for note-based QBH systems under the MUSART testbed project, a
framework created for automatically comparing various search algorithms
and summarize the results.

Ryynénen and Klapuri in 2008 [RK08] proposed another system in which
queries are transcribed using frame-wise pitch salience functions, for estimat-
ing pitch values, and a musicological model, for estimating note lengths and
transitions; database is also comprised of MIDI tunes; search is done us-
ing Locality Sensitive Hashing (LSH), which also allows indexing for fast
retrieval.

Tsai et al. introduced in 2012 [TTM12] a note-based method in which
the comparison is performed in the frequency domain: queries are converted
to notes using an approach based on average magnitude difference function
(AMDF), which first of all obtains pitch values for every 1/64 s and then con-
verts it to a MIDI value; melody in target tunes is extracted from MIDI files;
queries and target melodies are processed with the Fast Fourier Transform
(FFT) so that they have the same length and comparison can be performed
in a fast way.

Regarding frame-based approaches, Duda et al. in 2007 [DNS07] pro-
posed a system in which different features (Mel-Frequency Cepstrum Co-
efficients (MFCCs), Audio Power, f0 contour, Formants and Chroma) are
extracted from the melodies (both the ones extracted from the queries and
the ones obtained from the tunes in the database) and coded using Sym-
bolic Aggregate Approzimation (SAX); melodies from polyphonic tunes in the
database are extracted using something similar to the “karaoke effect”, that
is, using panning information to keep the singer’s voice; search is performed
using edit-distance and N-grams. This approach is particularly important
for the development of the present Thesis since it uses the same codification
method as the one used here.

Jeon et al. in 2009 [JMCO09] published a system in which f0 contours
are represented using wavelets; regarding database melodies, this paper uses
both a MIDI database approach and a method for real-world music based
on pitch extraction from polyphonic music using Constant-QQ Transform;

search and indexing is performed using K-D Trees, which performs faster
than DTW.

Ito et al. in 2010 [IKMI10] came up with a system in which, instead of
obtaining a single melodic contour in the elements in the database, multiple
F0 candidates are obtained using a variation of the PreFEst algorithm; sim-
ilarity and search is performed using a basic scoring function.
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In Salamon et al. in 2012 [SSG12], melody is extracted, both from queries
and database tunes, using a method based on salience function [SG12], avail-
able as a vamp-plugin'® called MELODIA'S; comparison is performed using
the Qmaz algorithm [SSA09].

Regarding automatic generation of databases, topic developed in Section
I1.2.1, as it has been seen from the previously commented approaches, most
of the QBH systems that perform automatic extraction of melodic contours
from audio files belong to frame-based approaches. From a chronological
point of view, some of the systems that have addressed this issue are:

(a) Song et al. in 2002 [SBY02] implemented a system in which, at each
frame, the spectrum of the excerpt is analyzed in order to find a har-
monic structure that leads to a series of probable notes for each frame
(sort of an automatic transcription system but without all the precision
that those systems are expected to have).

(b) Ryynénen and Klapuri in 2008 [RKO08] stated the importance of auto-
matic generation of databases despite the work in this publication is
focused on annotated MIDI databases.

(c) Jeon et al. in 2009 [JMCO09] carried out a basic experiment on real-work
music for assessing the performance of their QBH system in melodic
contours not extracted from annotated MIDI files.

(d) Ito et al. in 2010 [IKMI10] published a fully-automated QBH systems
in which elements in the databased are analyzed in order to estimate
multiple FO candidates and match them to the f0 contour extracted
from the query.

(e) Salamon et al. in 2012 [SSG12] used MELODIA for automatically
extracting the main melody of polyphonic tunes and compared them
to the melody extracted from the monophonic queries.

Current results in QBH

As a final note on QBH systems, it is interesting not only to know about
the different approaches people have developed but also to know about the
state-of-the-art accuracy results to have, at least, a reference on what it is
possible to obtain with the current technology.

The three best results are:

Yhttp://www. vamp-plugins . org/
Yhttp://www. justinsalamon.com/melody-extraction.html
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(i) Note-based Query VS Note-based Database
The best result is credited in MIREX 2012 by Lei Wang, who de-
scribes a QBH system with an accuracy of MRR = 0.9689'".

(ii) Frame-based Query VS Note-based Database
In this case, the best results are credited by Ryynédnen and Klapuri
in 2008 scoring an accuracy of MRR = 0.885 [RKO08].

(iii) Frame-based Query VS Frame-based Database
In this last approach, the best result is credited by Salamon et al. in
2012 with a basic accuracy of MRR = 0.45 using an initial dataset,
and a better result of MRR = 0.56 using the initial dataset extended
using covers of the songs in the database [SSG12].

It is quite noticeable that there is still much room for improvement, spe-
cially in the approaches (ii) and (iii), supporting what was exposed before
about the fact that QBH is still a not solved issue in the MIR field.

"http://nema.lis.illinois.edu/nema_out/mirex2012/results/qbsh/qbsh_
tasklb_thinkit/summary.html
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‘A lot of music is mathematics. It’s balance.’
Melvin Kaminsky “Mel Brooks”

Approach

The present Chapter describes the actual approach that, once having stud-
ied the background described in Chapter II, has been chosen to tackle our
research topic. For that, the first step is to depict the melody extraction
algorithm to the reader; the following section is devoted to explain the dif-
ferent time-series representations used; finally, the third section is dedicated
to the time-series alignment and its application to melodic similarity.

II1.1 Melody extraction

As commented in Chapters I and II, the main melody of a tune is a very
appropriate descriptor in the task of QBH since it represents, in a general
way, the first part of a song a person would try to reproduce’.

In the present Thesis, the algorithm for extracting this main melody
from the different tunes is the MELODIA algorithm published in Salamon
and Gémez 2012 [SG12], which can be downloaded from http://mtg.upf.

edu/technologies/melodia as a vamp plug-in.

'Section I1.1.1 in Chapter I discusses this statement more in depth.
2Justin Salamon’s personal website also provides much information about this algo-
rithm: http://www.justinsalamon.com/melody-extraction.html.
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Figure II1.1: Logo given to the MELODIA algorithm for melody extraction

m

in Salamon and Gémez 2012 [SG12].

A basic introduction to this particular approach for predominant melody
extraction is now given. MELODIA comprises four basic stages, as shown in
Figure 111.2: Sinusoid extraction, Salience function, Pitch contour creation

and Melody selection.
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Figure I11.2: General scheme of MELODIA. Obtained from Salamon and

Gémez 2012 [SG12].
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1. Sinusoid extraction
In this first step of the algorithm, the aim is to find the frequencies
present in the signal at every point in time. The core of this step is the
Short-Time Fourier Transform (STFT), which is applied after using an
equal loudness filter thought to enhance frequencies human beings are
prone to listen to. Also, due to the limited resolution of the STFT, a
frequency and amplitude correction step is performed.

Figure I11.3 shows an example of the result of this particular step.

Figure I11.3: Example of the Sinusoid extraction step from MELODIA ap-
plied to the chorus section of Spirit of Radio from Rush (album Permanent
Waves, 1980).

2. Salience function
Using the result obtained from the Sinusoid extraction step, the idea is
to create a representation of pitch salience over time covering a range
of approximately five octaves, from 55 Hz to 1.76 kHz.

The Salience function is constructed by looking for harmonic series in
the sinusoid representation.

An example of this step can be found in Figure I11.4.

3. Pitch contour creation
From the Salience function previously obtained and using the main
peaks from that function, the possible contours are extracted by using
a set of rules based on Auditory Scene Analysis (ASA).
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Figure II1.5 shows the result of this step applied to the results shown
in Figure II1.4.

Figure I11.4: Example of the Salience function step from MELODIA applied
to the chorus section of Spirit of Radio from Rush (album Permanent Waves,
1980).

Figure I11.5: Example of the Pitch contour creation step from MELODIA
applied to the chorus section of Spirit of Radio from Rush (album Permanent
Waves, 1980).
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4. Melody selection
Finally, from the possible contours obtained in the previous step, a
melody is obtained filtering non-melodic parts of the contours using a
set of rules extracted from previous studies of contours belonging to
melodies.

The melody extracted from the previous example can be seen in Figure
111.6.

5000~ —
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Figure I11.6: Example of the Melody selection step from MELODIA applied
to the chorus section of Spirit of Radio from Rush (album Permanent Waves,
1980).
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Time-series representation

The extracted melody has to be somehow coded for its later processing. A
clear option for representation would be to code the melody into a note rep-
resentation but, as introduced in Chapter II, automatic transcription might
introduce errors in the system [CVGT08, IKMI10], reason why this Thesis
focuses in non-transcription methods.

However, QBH systems based on transcribed music constitute a quite
common approach in this field, so apart from non-score representations, an
automatic transcription algorithm is used in this case for the comparison
between methods.

Non-transcription methods

As it has already been commented, the main aim in the present Thesis is to
research on melodic similarity applied to QBH using non-transcribed repre-
sentations®. In Chapter II, more precisely in the Frame-based approach for
Query formatting, a technique called Symbolic Aggregate Approxi-
mation was introduced to the reader, which is the actual method used for
melodic contour representation chosen for the present work.

e Symbolic Aggregate Approximation
Symbolic Aggregate Approximation (from now on, SAX) was
introduced by Lin et al. in 2007 [LKWLO07]* as a novel symbolic repre-
sentation® for general time-series analysis, that means, not related to
MIR or any music knowledge field.

The main advantage of using symbolic representations for time-series
is that bioinformatics have developed much this particular field (for
instance, alignment of DNA sequences) so these representations offer
both a solid knowledge base for research and a great catalog of tech-
niques.

However, and despite symbolic representation has already been con-
sidered for time-series analysis, most of the algorithms proposed suffer

3 Automatic transcription is used for setting a comparison between the two philosophies.

1Official webpages about SAX maintained by the authors:
http://www.cs.ucr.edu/~eamonn/SAX.htm
http://www.cs.gmu.edu/~jessica/sax.htm

5Tt is important to point out that, as commented, SAX does not have its origin in any
music-related topic, but it is thought for generic time-series, so here symbolic representation
does not refer to a score representation as it might be understood from a MIR-related point
of view.

24


http://www.cs.ucr.edu/~eamonn/SAX.htm
http://www.cs.gmu.edu/~jessica/sax.htm

CHAPTER III. APPROACH

from two major drawbacks that SAX is able to cope with:

i) Dimensionality reduction: Algorithms are not able to reduce
the data (reduce its dimensionality) and that can cause issues
since data mining algorithms do not scale properly with dimen-
sionality.

ii) Lower bounding issue: No method is able to calculate a dis-
tance in the symbolic domain while providing a lower bounding
guarantee.

The steps for coding a certain time-series into the symbolic SAX rep-
resentation are the ones that follow:

1. Normalization of the time-series
SAX codes the different time-series assuming that they follow a
certain statistical distribution®, originally a Gaussian distribu-
tion.

However, a normalization stage is applied to the sequence so that
this Gaussian distribution assumption is closer to the reality. For
that, Equation III.1 is applied.

o= 27  GithieN (IIL.1)

where x; represents each element of the initial time-series, u is
the mean value and ¢ the standard deviation.

It is important to say that, in the case of the present Thesis and
as it has been commented several times, the sequences to be nor-
malized are melodic contours, which in the case of MELODIA,
they are groups of frequency values in hertz. In order to avoid
the logarithmic behavior of the hertz scale when related to music,
the cents scale is used. This conversion is done using Equation
I11.2.

F
Fepnrs = 1200 - logy —t” (I11.2)
FREF
being Frer a reference frequency for the transformation in cents,
which in the present Thesis is set to 55 Hz since it constitutes the
minimum value MELODIA is able to track.

5The reason why this is like that is explained later.
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2. Piecewise Aggregate Approximation
Piecewise Aggregate Approximation (from now on, PAA)
is a non-symbolic time-series representation that constitutes part
of the SAX coding process. PAA maps the initial signal into M
equally sized frames, being the value for each frame the average of
the values in the initial signal frame. This can be seen in Figure
IT1.7.

Normalized pitch contour
——— PAA approximation

Normalized deviation in cents from 55 Hz

Figure IT1.7: PAA representation (red) of the melodic contour corresponding
to Query 1 in the corpus described in Chapter IV (blue).

In a more mathematically way, PAA approximates a time-series
x of length n into a vector X = (X1, X2, ..., XM ) of length M using
Equation III.3.

n g
M
M
_’L‘i:—-
n

oo (I11.3)

J=2(i-1)+1

In this stage it can already be seen a dimensionality reduction
from n to M.
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3. Symbolic Representation

The idea in this step is, taking the results previously obtained
with PAA, quantize the vertical axis in different regions’ and
code each area using a certain symbol. The size a of the alpha-
bet, which represents the amount of symbols we have available, is
a parameter to be chosen. The fact of assigning the symbol to re-
gions and not to each individual value obtained with PAA (what
we called before z;) is what eventually leads to a dimensionality
reduction®.

Taking into account that in SAX symbols are expected to be
equiprobable, the regions in which we have to quantize the vertical
axis have to follow a certain law. For that, SAX assumes that the
time-series follows a Gaussian distribution’ and divides it into
several regions that assure this equiprobability, which are mapped
as the breakpoints for the different symbol areas in the vertical
axis of the pitch contours. This can be seen in Figures I11.8 and
1I1.9.

Figure I11.8: Breakpoint for the Gaussian distribution ( ) for a dis-
cretization of 4 regions.

In more formal terms, the group B of breakpoints is basically
a series of a values B = 31, (2, ..., Ba—1 such that B;_1 < i and
Bo = —oo and f, = +oo. Each interval [3;_1, ;) represents a
certain symbol «;.

“In the previous step we quantized the horizontal or time axis.
8The second one since, as it has been commented, PAA already reduces dimensionality.
9As introduced in the first step, Normalization of the time-series.
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Normalized pitch contour

——— PAA approximation

ts from 56 Hz

A A L
AL dm

Normalized deviatior

| |

Figure I11.9: Example of vertical discretization using 4 regions and Gaussian
distribution for Query 1 from the corpus described in Chapter IV.

The conversion of the vector of PAA coefficients C' into the string
C' is done as shown in Equation II1.4.

G =a; if ¢ eBj-1,5) (I1L.4)

Graphically, this can be seen in Figure I11.10.

—— Normalized pitch contour

——— PAA approximation

from 55 H
o
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N
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Figure I11.10: Example of string encoding using 4 regions and gaussian dis-
tribution for Query 1 from the corpus described in Chapter IV.
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o SAX Extensions
As it has been shown, SAX has no direct relation with MIR in the
sense that it does not use any musical knowledge in the core of its
approximation algorithm. This generality, according to all the infor-
mation found in its official webpages, does not limit the algorithm to
non-MIR fields but makes it suitable for a wide range of applications.

In order to check how a more musical representation might affect to the
overall performance, two extensions have been applied to the original
method:

i) Semitone discretization with fixed time divisions
The first extension performed to the initial SAX algorithm is dis-
carding the codification using a certain statistical distribution: as
the sequences to code represent musical information, more pre-
cisely pitch contours that represent melodies, it is possible to use
certain musical tuning to describe the different values of the sig-
nal.

Based on an equal-tempered scale, the vertical axis is divided in
semitones using a semi-fized pattern. The reasons for calling this
pattern semi-fixed are the ones that follow:

— Fixed divisions: The divisions have a fixed size of one semi-
tone (100 cents), starting at 55 Hz, which is the minimum
value the MELODIA algorithm might retrieve from the au-
dio signal.

— Adaptive tuning reference: Since the reference note in
which the melody is produced is not known, a process of
alignment between the theoretical grid and the tuning is per-
formed. This process is done by obtaining a histogram of the
frequencies of the contour and then, considering the three
most prominent peaks, aligning the semitone-division grid
with them by minimizing the distance between peaks in the
histogram and the theoretical semitone divisions. Figure
ITI.11 shows graphically the mentioned process.

As a consequence of using this extension, the normalization step
performed in SAX is now not needed: the idea of the normaliza-
tion of the initial sequence is not only forcing it to be more similar
to a gaussian distribution but also limiting the possible values of
the sequence to a certain range'’. In this case, as no statistical
distribution is used for coding, there is no need to force the se-
quence to follow a gaussian distribution or to limit the range of

10This range is [~30, +30], being o the standard deviation of the sequence.
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[ Histogram of the contour
4 Selected peaks
*  Semitone divisions
Grid aligned to the tuning

200~ -

100~ —

0
2000 2500 3000 3500
Desviation in cents with respect to 55 Hz

Figure II1.11: Example of the adaptive tuning reference for the semitone
discretization in the extension to the SAX coding algorithm. The figure
represents the histogram of Query 1 from the corpus described in Chapter
IV, red triangles (/) point out the three peaks for the alignment, black
asterisks (x) represent the initial grid and the green diamonds (<) show the

grid once

it has been aligned to the histogram.

possible values, being the normalization step avoided.

In a general way, what this extension implements is somehow
a basic ‘automatic music transcription’ system: each coded seg-
ment represents now a certain frequency value, which might be
seen as a music note. Because of that, and as it was mentioned
in Chapter II, to avoid key transpositions, a proper solution is
using relative pitch coding, i.e. coding the differences between
notes (for instance, semitones) rather than the absolute value of
the pitch itself.

Figure I11.12 shows an example of coding approach.

Semitone discretization with pitch-change transitions
This second extension to the original SAX algorithm is also exten-
sion to the already commented modification: taking the previous
approach as the initial point, instead of using PAA for doing a
fixed-time temporal segmentation, the idea is to dynamically cre-
ate new segments whenever there is a pitch change in the melodic
contour.
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Pitch contour (cents)
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Figure I11.12: Example of the semitone discretization with fixed time divi-
sions. Upper image shows pitch contour of Query 1 from the corpus described
in Chapter [V, center image represents the approximated contour before us-
ing the relative pitch coding and a PAA time approximation of 0.3 seconds
and lower image shows the relative pitch coding.

However, it is important to take into consideration that the con-
tours obtained using MELODIA might have artifacts as well as
fast changes in the pitch values. Looking for pitch changes in
the contour might produce several false segments that actually
should be part of the same segment, so a process for softening the
contour is required:

— Signal smoothing: An initial smoothing is applied to the
signal by applied an average filter using a sliding window.

— Glitches removal: Pitch segments shorter than a certain
threshold are merged to the previous segment.

Figure I11.13 shows an example of the softening process applied to a
melody extracted using MELODIA.
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Figure 111.13: Example of the softening process applied to the melodic con-
tour of Query 1 from the corpus described in Chapter IV obtained using
MELODIA. Initial pitch contour (top left), smoothed contour using average
filter (top right), smoothed contour quantized to semitones (bottom left)
and melodic contour smoothed without glitches (bottom right).

Automatic transcription algorithm

As it was commented in the introduction of the section, despite the present
Thesis mainly deals with the idea of using methods that do not require au-
tomatic music transcription, it seems interesting to explore this option in
order to check whether this approach might improve or not the results.

The approach used is the one in Gémez and Bonada in 2013 [GB13],
which has been mainly applied to automatic transcription of flamenco. Fig-
ure II1.14 shows the general scheme of the algorithm.

The algorithm, as shown in Figure I11.14, comprises four stages, which
are now introduced to the reader:

1. Low-level feature extraction
The aim in this first stage is dividing the signal into frames'' and
computing the spectrum, energy and fundamental frequency for each
of them.

11

For the f0 estimation, three different approaches are compared: Time-
domain autocorrelation represented by the well-known yin algorithm

1 Overlapping frames of 50 msec, with approximately 5.8 msec between frames onsets,
giving a figure of approximately 172 frames per second.
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Iterative Note
Transcription
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Low-level Tuning Short-note é *
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v

Note Pitch
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Figure II1.14: General scheme for the transcription algorithm reproduced
from Gémez and Bonada in 2013 [GB13].

[dCKO02]; Frequency-domain harmonic matching, represented by an al-
gorithm, which is based on Two-Way Mismatch (twm) [MB94], that
tries to match the spectral peaks to a harmonic series [Can98]; frequency-
domain autocorrelation using a method called SAC (Spectrum Auto-
Correlation), presented in this same paper, based on the computation
of amplitude correlation in the frequency domain.

2. Tuning Frequency Estimation
In this step an initial estimation of the tuning frequency is performed
by computing the maximum of the histogram of f0 deviations from an
equal-tempered scale tuned to 440 Hz.

3. Short-note Transcription
As a third step, the audio signal is segmented into short notes, which
will be later processed in the last step of the algorithm, by finding the
segmentation that maximizes a certain likelihood function.

4. Iterative Note Transcription
In this last step an iterative process takes place with a double aim:

(a) Note consolidation: Notes from the previous process may be merged
since they might be the same note. This process only merges notes
if the pitch is maintained and a certain stability measure of their
connection falls below a certain threshold.

(b) Tuning frequency refinement: Despite tuning frequency had pre-
viously been obtained directly using the fO contour, it is computed
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again using the note transcription obtained since it might benefit
the estimation.

This iterative process takes place until no more notes can be consoli-
dated.

As an example of the algorithm, Figure I11.15 shows the Visualization
Tool developed for the algorithm in which a certain transcription is shown.

TL$ SMSTools2 | S|
File View Analysis Synthesize Regions Window Help

Input sound - Ci\UsersiMac\Desktop\Automated_transoription!AudioFiles'gl. wav. =
e
pe S P e T e I n

1 n

o i 2
[e[aTT]6 a & i )
For Help, press F1

Figure I11.15: Example of the graphic tool of the transcription algorithm by
Gémez and Bonada in 2013 [GB13]. Upper window represents the initial
signal (Query 1 in the corpus described in Chapter IV); lower window rep-
resents the extracted fO contour and the consolidated notes (represented as
ovals).

Once the sequences have been transcribed, and as it was pointed out in
Chapter 11, it is necessary to code them in a certain format able to deal with
the common difficulties in QBH'?. As the main aim in the present Thesis
is studying audio-to-audio comparison, the results using music transcription
are simply for comparing these two different approaches. Because of that, a
single coding format for transcribed sequences is applied in this case.

12 As a remainder, the reader may check Section I1.2.3 in Chapter II.
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The coding format used is the Note Interval Matching commented in
Dannenberg et al. in 2004 [DBT"04]: melodies are represented as a series of
tuples with the shape < Pitch, Rhythm > that code the difference/intervals
between notes:

1. Pitch: Pitch information is coded as relative pitch encoding, i.e.
the difference in semitones between two consecutive notes.

2. Rhythm: Temporal information is coded using the LogIOIR repre-
sentation, i.e. from an initial computation of the difference between
onset intervals of the notes (IOI), the ratio between those values is
obtained (IOIR) and 2-base logarithm is applied to that result. Since
the possibility of having many different values is high, the LogIOIR
results are quantized to the nearest integer ranging from -2 to +2.

Once all the note intervals have been coded using this representation,
the whole melody is represented as the combination of all the tuples:

< Tupleg, Tupley, Tuples, ..., Tuplen >

Figure I11.16 shows an example of the commented coding approach.

)

® 72 d <»
——@

e

MIDI NOTE 72 67 69 64 72

RELATIVE
PITCH

101 2 1 05 0.5 4
IOIR 0.5 05 1 8

LoglOIR -1 -1 0 3

(not quantizing)

LoglOIR 1

(quantized)

Figure I11.16: Example of the Note Interval Matching described in Dannen-
berg et al. in 2004 [DBT*04].

The melody in Figure I11.16 would be coded as the following list of tuples:

<< —=5,—-1>,<2,—-1> < -50>,<8,2>>
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I11.3. SIMILARITY MEASUREMENT AND SEQUENCE
ALIGNMENT

Similarity measurement and sequence
alignment

Once the pitch contours have been coded using a certain method, the next
step is comparing them. For that, in basic terms, two methods are used in
this case: one of them is SAX itself since it does not only describe a way of
representing time-series but also a way of comparing them; the second one
is a local alignment algorithm called Smith-Waterman.

SAX similarity

SAX proposes a distance measure thought for equal length!'® time-series
coded with the same amount of levels.

The method is based on comparing element by element the two represen-
tations, which is possible since we have the same amount of SAX coefficients
in both series, using a previously obtained lookup table that summarizes the
distance between symbols so that the general result is calculated fast. This
lookup table is defined as shown in Table IIL.i"*.

- a b C
a || dist(a,a) | dist(b,a) | dist(
b || dist(a,b) | dist(b,b) | dist(
c || dist(a,c) | dist(b,c) | dist(c,c)
Table I11.i: Example of lookup table in SAX similarity for 3
symbols.

The dist function is the one that defines the distance between individual
symbols, which in SAX is defined as in Equation IIL.5.

if |r—¢| <1

dist (r,c) = {0 (I11.5)

BrAX (re)-1 — BMIN(re) Otherwise

where 3; are the breakpoints previously defined for the amplitude dis-
cretization in the SAX codification.

In case two sequences differ significantly in length before being coded,
SAX proposes obtaining subsequences of the long sequences and comparing

3 The series may not have the same length before the coding, but they have to result in
the same number of SAX coefficients when coding.
YFor an example of an alphabet of 3 symbols.
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every single subsequence in one of the time-series to all the other subse-
quences in the other time-series. Figure I11.17 shows how these subsequences
are obtained.

0 40 60 80 100 120

o

Figure II1.17: Method for comparing sequences with different length once
they have been coded with SAX. Figure extracted from Lin et al. in 2007
[LKWLOT].

Smith-Waterman

The previous SAX similarity approach has a clear limitation in the sense
that if two sequences are temporally misaligned, the method will fail. As
commented in Chapter II'°, some time warping methods have been clas-
sically used for dealing with these misalignments for different tasks, being
QBH one of them.

The Smith-Waterman algorithm, introduced in Chapter II, is a subse-
quence matching method originally published by T. F. Smith and M. S.
Waterman in 1981 [SW81] for DNA sequences alignment. The idea behind
this algorithm is to find the most similar subsequences in larger sequences,
even if there are time warps.

For doing that, this algorithm generates an (n + 1) x (m + 1) similarity
matrix (being n and m the lengths of the sequences A and B to be com-
pared), notated as H, which is filled following Equation III.6.

0 ifi=0
ifj=0
0
H(i,j) = . (I1L6)
Match/Mismatch )
max . otherwise
Insertion
{ Deletion

15 As a summary, the reader may refer to Section 11.2.3 in the commented Chapter.
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where maz is a function that returns the maximum of the four values
and Match/Mismatch, Insertion, Deletion are defined as it follows:

e Match/Mismatch: This part of the algorithm tries to match the two
sequences assuming that there is no temporal misalignment between
them. Mathematically, this can be define as shown in Equation III.7

H(i—1,j—1)4w(A; Bj) (111.7)

were w is a function that gives a positive value (+Match) when A4,
and B;'® are the same and a negative value (-Mismatch) otherwise.

e Insertion: This is a penalty score that is given in case there is a
missing value (a temporal misalignment) in one of the sequences, more
precisely, the one that leads the horizontal evolution of the matrix.
Mathematically, it is represented using Equation III.8.

H (i,j — 1) + Insertion_Cost (IT1.8)

e Deletion: The concept is the same as Insertion but now the tempo-
ral misalignment is produced by the sequence set in the vertical axis.
Mathematically, it is represented using Equation III.9.

H (i — 1, 7) + Deletion_Cost (II1.9)

Figure II1.18 shows graphically how the H similarity matrix is con-
structed.

Bi-i Bi Bi+i
MATCH/
A MISMATCH
v INSERTION
A.
: ¥ DELETION
Aj+|

Figure I11.18: Construction of the similarity matrix of the Smith-Waterman
algorithm.

16 A; and B, refer to each element of sequences A and B respectively.
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As an example to check the result of the commented algorithm, Figure
I11.19 shows the H similarity matrix obtained after aligning two sequences:
one of the sequences is “Hello all you boys and ¢irls’'” and the other one
is “all you” (exact excerpt of the first sequence). Analyzing the H matrix,
it can be seen that, in several regions, the algorithm give some positive
similarity results between the strings but, despite those partial results, there
is a clear match between sequence and subsequence.

hel loallyouboysandgirls

Figure I11.19: Example of subsequence matching using Smith-Waterman.

Excerpt of the song Frizzle Fry by the band Primus from the album Frizzle Fry.
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‘I have not failed. I've just found 10,000 ways that won’t
work.’

Thomas Alva Edison

Evaluation Methodology

The idea for evaluating the proposed approach is to use a similar method-
ology as the one used in Salamon et al. in 2012 [SSG12] so that results
can be directly compared since, as it has been already mentioned, this work
constitutes the previous step to the work presented in the present Thesis.

These results are obtained using an already existing QBH database,
which already comprises both a set of sung/hummed queries and a real-world
music collection acting as possible target songs, being no need of creating a
new dataset, and standard measures typically employed in QBH evaluation.
Both elements are described in this Chapter.

Evaluation dataset

The dataset has two parts: a music collection, which constitutes the target
songs a user might want to retrieve, and a query corpus, which is a set of
melodies sung/hummed by some users. This dataset can be found in
http://mtg.upf.edu/download/datasets/MTG-QBH.

Music collection

The music collection is comprised of 2125 commercial songs originally used
in Serra et al. in 2011 [SKSA11] for the evaluation of a cover detection algo-
rithm. This collection is divided in 523 song sets, being each set a group of
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Figure IV.1: Logo given to the dataset created for Salamon et al. in 2012
[SSG12].

versions of the same song (on average, there are 4.06 songs per set, ranging
from 2 to 18), having each tune an average length of 3.6 minutes (ranging
from 0.5 to 8 minutes). In terms of genre, the elements in the collection
correspond to a variety of genres: pop/rock (1226 songs), electronic (209),
jazz/blues (196), world music (165), classical music (133) and miscellaneous
(196).

The commented database is actually divided in two, as in Salamon et al.
2012 [SSG12], for the experimentation:

e Music collection with only the original/canonical songs: In
this subgroup of the initial collection, the idea is that each query
sung to the system has one and only one equivalent in the database,
which should be the original /canonical' version of the target song. As
33 of the initial 523 sets before introduced do not contain the origi-
nal/canonical version of the tunes they represent, they are removed,
resulting in a subset of 481 canonical songs.

e Whole music collection: On the other hand, the whole music
collection explained before (canonical + covers) can be used as our
database of possible target songs. An increase of the size of the music
collection may mean a worse performance overall but, since the songs
that are being added are actually covers of the canonical songs, there
are now more possible targets, which might also increase the overall
results.

IV.1.2 Query corpus

The group of queries was recorded for the experimentation in Salamon et
al. 2012 [SSG12] using a basic laptop microphone and no post-processing
to simulate a realistic situation. A total of 118 queries were recorded by 17

!By either original or canonical we understand the song as it was published by the
artist who composed/played the song.
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users (9 female and 8 male), whose musical knowledge ranged from none to
amateur musicians, choosing songs from the canonical subset (481 songs) of
the music collection described before. Each user recorded an average of 6.8
queries, being the 1 minimum amount of queries recorded by a certain user
and 11 the maximum. On average, the length of the queries is 26.8 seconds,
ranging from 11 seconds to 98 seconds.

Evaluation subsets

From the commented evaluation dataset, four subsets are done for the prac-
tical evaluation of the QBH system:

1. 9 Queries: This subset is thought for the SAX similarity measure? in
which sequences must have a similar length before being coded. These
9 queries are chosen since they represent the same canonical songs and,
therefore, they seem suitable to be used for checking the commented
approach when having sequences with similar length. This corpus sub-

set is described in Table IV .i.

Song Artist Query  Duration (s)
Number

6 47

More Than Words Extreme 13 23

105 37

45 46

Over The Rainbow Judy Garland 51 27

85 24

46 17

Sweet Home Alabama | Lynyrd Skynyrd 55 25

113 16

Table IV.i: Subset of the Query corpus for the SAX similarity
method.

2. 10 queries/100 songs: With this subset, an initial adjustment of the
different parameters for optimizing the results can be done without the
large time consumption of the other subsets. The 10 chosen queries are
the initial one (1-10) and, regarding the songs, 10 of them correspond
to the 10 songs that represent the first queries and, the rest, are the
first 90 songs from the canonical dataset. In Chapter V it is labelled
as 10x100.

2Described in Section I11.2.1 of Chapter III.
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3. All queries/canonical dataset: This subset provides the perfor-
mance of the QBH system when the music collection comprises only
canonical songs, i.e. only one example of each song. In Chapter V it
is labelled as 118x481.

4. All queries/whole music collection: As shown in Salamon et al.
2012 [SSG12], including covers might improve the performance of the
system. With this subset (actually, the whole evaluation dataset), this
improvement is evaluated when comparing results to the ones obtained
with the previous subset. In Chapter V it is labelled as 118x2133.

An initial evaluation of the SAX similarity for similar length sequences
is carried out using an excerpt of the Query corpus described in Chapter IV
since, as commented, they have a similar length: as some queries represent
the same canonical songs, an evaluation of the algorithm can be done to
check whether SAX is able to find the ‘repeated’ songs.

Evaluation measures

As it was introduced in Chapter II, the output of a QBH system is not a
single result of similarity between the query and an element of the music
collection but a vector of K* most similar elements of the music collection to
the query ranked. Because of that, QBH systems are evaluated using raking
measures, particularly two:

(a) Mean Reciprocal Rank (MRR)
When a user produces a query Q related to a certain tune A, the QBH
system returns a rank of a certain length N in which the tune A is lo-

cated at position r.

The particular reciprocal rank for that A query is defined as 1/r [DBT+04].
Generalizing this concept, Mean Reciprocal Rank stands for the mean
value of the reciprocal ranks obtained when the system is evaluated with
n queries. It can be described mathematically as in Equation IV.1.

MRR =

Bl

L |
: (IV.1)
; r(Q))

3This number is something fixed in the system that could be varied or not by the user.
*This values ranges from 1 to N, being 1 the best result (correct result is ranked first).
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(b) Top-X Hit Rate
Taking as an initial point an N-length rank, this measure considers just

two cases: whether the position r of the correct result of the search is in
the first X positions or whether it is not (mathematically, r(Q;) < X).
By doing this, we can obtain the average of how many times the QBH
system retrieves the correct result among the first X positions [SSG12].
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‘Science never solves a problem without creating ten
more.’

George Bernard Shaw

Results and Discussion

Once the selected approach (Chapter III) and the evaluation methodology
(Chapter 1V) have been stablished and described, the results obtained are
now introduced to the reader.

In the present Chapter, the first results commented are the ones related
to the study of the statistical distribution of the query corpus for the SAX
coding algorithm. After that, the results from the similarity measures are
shown: first of all, results from the SAX similarity measure are commented,
followed by the ones obtained using the Smith-Waterman algorithm and, fi-
nally, the figures obtained using the automatic music transcription approach.
For a better comprehension of the results, a section after the description of
the results for each approach is devoted to a summary of the results. Finally,
in the last section of the Chapter, a discussion about the results is shown.

Statistical distribution study

The idea in this first section is to perform a statistical analysis of query
corpus described in Chapter IV since the SAX algorithm, introduced to the
reader in Chapter III, is based on the premise of coding sequences using the
statistical distribution followed by them.

The original description of SAX, as a general way of sequence coding, uses
a gaussian distribution as the statistical distribution to be used [LKWLO7].
Moreover, Duda et al. in 2007 [DNS07] made an initial evaluation of SAX for
coding different audio and music descriptors for QBH purposes, being one of
them audio fundamental frequency, descriptor quite related to the melodic
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contours in the present Thesis, which they stated followed an distribution
for their dataset.

As the dataset used in this case is different from the one Duda et al. in
2007 [DNSO07], this study has to be done. For that, the main tool used in
this case is the probability plot. A probability plot is basically a graph that
compares the distribution followed by the data to a theoretical distribution.
An example of it can be seen in Figure V.1.

Normal Probabily Plot

Figure V.1: Example of a probability plot: comparison between the statistical
distribution of real sequence (blue) and the tendency of a theoretical gaussian
distribution (red).

Using this tool it is quite easy to check visually whether a sequence fol-
lows a certain statistical distribution since the more similar the two curves
are, the more probable it is that both two represent the same distribution.

However, with this simple approach, it is only possible to say that a
sequence follows a certain distribution qualitatively, but not quantitatively.
For that, it is possible to obtain the r? coefficient that represents the how
well the two sequence get adjusted, which ranges from 0 (worst adjustment)
to 1 (best adjustment).

An important point to take into consideration is the initial format of
the sequence: as commented in Chapter 111, MELODIA retrieves melodic
contours using a hertz scale, which has a logarithmic scale, but in order to
avoid that behavior, the cents scale is used'. As a direct consequence of
this transformation in the representation format, the statistical distribution
followed by the data might be affected.

!The transformation from hertz into cents is shown in Equation IIL.2.
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Once the tool for analyzing the distribution has been defined, it is now
important to set a methodology for the statistical evaluation of the se-
quences. Two possibilities may arise in this case: the first one would be
analyzing all sequences together, assuming statistical independence among
them, and the second one would be analyzing each sequence separately from
the rest.

The first approach seems to be quite appropriate but it has a great draw-
back: the Central Limit Theorem (CLT) [Ric01] states that the statistical
distribution of the sum 5, of a large amount of statistically independent vari-
ables V1, V5, ..., V,, can be approximated to a Gaussian distribution. There-
fore, merging all sequences to a single one and analyzing it may always result
in a Gaussian distribution independently of the individual distributions of
the single sequences.

On the other hand, the second approach assures that every sequence is
analyzed and CLT is avoided, being then the most suitable approach to use.

As it has already been commented, SAX originally approximates se-
quences using a Gaussian distribution [LKWLOT7] but the study by Duda
et al. in 2007 [DNS07] states that their dataset works better using an Expo-
nential. In order to find out a possible distribution that represents the query
corpus introduced in Chapter IV, it seems appropriate to initially evaluate
these two distributions since they have already been used with SAX?. How-
ever, other distributions are also tested in order to find the best possible
candidate.

Figure V.2 shows graphically and example of the difference between us-
ing a cents (columns 3 and 4) or hertz representation (columns 1, 2 and 5).
Also, the difference between the two main distributions commented can be
seen: Gaussian distribution in columns 1 to 3 and Exponential distribution
in columns 4 and 5.

From what can be seen in Figure V.2, it seems that the best fitting is
using a cents representation against a Gaussian distribution. However, and
as it was commented before, this visual analysis is not enough, and a more
analytical approach is needed: each query from the corpus in Chapter 1V is
adjusted to a certain distribution, being the previously commented 2 coeffi-
cient obtained. Table V.i shows the median and average values of the factor®.

2Tt is important to point out that Gaussian distributions, as opposed to Exponential,
have not been used for QBH purposes.

3 Average and median refers to, once the r2 coefficient has been obtained for each query,
average and median are computed. This is done to get a general idea of the adjustment
for all queries at the same time while avoiding CLT.
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STATISTICAL DISTRIBUTION STUDY
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Figure V.2: Probability plots of Queries 1, 2 and 3 (one per row) from the
corpus in Chapter IV. Each column differs from the others in the query
representation or in the statistical distribution to compare with: 1) query in
cents against a Gaussian distribution; 2) normalized query in cents against a
Gaussian distribution; 3) query in hertz against a Gaussian distribution; 4)
query in hertz against an Exponential distribution; 5) query in cents against

an Exponential distribution.

Statistical distribution ‘

r? fitting value

‘ Average Median

Gaussian 0.9714 0.9758
Exponential 0.8664 0.8815
Arcsine 0.9347 0.9415
Cauchy 0.2493 0.2397
Anglit 0.9710 0.9780
Cosine 0.9726 0.9782

Table V.i: Results of the adjustment of the Query corpus
introduced in Chapter IV to different statistical distributions
when represented using cents.

Analyzing the results in Table V.i, it can be clearly seen that represent-
ing the sequence using cents against a Cosine distribution gives the best
adjustment score, both on average and median terms. However, Gaussian
distribution also gives great result in the adjustment and, since SAX is orig-
inally thought for using a Gaussian distribution, it seems a good idea to use
it instead of the others.
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Similarity results

Once it has been checked that a certain distribution, which in this case turns
out to be Gaussian, is able to represent the dataset introduced in Chapter
IV, the similarity measures can be obtained.

In the two following sections, the results from the SAX similarity mea-
sure and the Smith-Waterman algorithm are presented to the reader?,
being then followed by a last section where the results using automatic
music transcription are presented as well’.

SAX similarity

As commented in Chapter 111, SAX not only proposes a fast similarity mea-
sure for sequences with a similar length before being coded (which results in
sequences of the same length after the coding process), but also a procedure
for using it with sequences that differ significantly in length using a sliding
window.

For the evaluation of this approach, the best subset from the ones de-
scribed in Chapter IV is 9 Queries because of two reasons:

1. All elements in the subset have a similar length, which is appropriate
for the evaluation of the SAX similarity technique when not using the
sliding window approach.

2. The duration of the elements is around 30 seconds (on average), which
is useful for the evaluation of the SAX similarity technique with sliding
window, not only in terms of the similarity itself but also in terms of
computational cost, since the amount of resulting windows may not be
large.

The results from applying the SAX similarity technique for similar length
sequences to the mentioned subset can be checked in Figure V.3, where it
can be seen that the best MRR score is, roughly, 0.09.

On the other hand, processing the same subset but with the sliding win-
dow approach, there is a significant different in the results, which can be
checked in Figure V.4. In this case, the size of the window is 23 seconds
and the best MRR result is, roughly, 0.18. It is also important to point out
that, despite it cannot be seen in the graphs, this approach is really time
consuming.

4For the description of these approach, reader may refer to Section II1.2.1 in Chapter
I11.
5This approach is introduced in Section I11.2.2 in Chapter III.
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MRR Results using SAX with different time/amplitude discretizations
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Figure V.3: Results obtained using the SAX similarity measure for similar
length sequences for the subset described in Table IV.i: MRR is displayed
in the Y-axis while the number of levels in the SAX coding is shown in the
X-axis. Each line depicts a different temporal discretization (PAA approxi-
mation).
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Figure V.4: Results obtained using the SAX similarity measure with sliding
window for the subset described in Table IV.i: MRR is displayed in the Y-
axis while the number of levels in the SAX coding is shown in the X-axis.
Each line depicts a different temporal discretization: the equivalence between
a symbol and the time, in seconds, it represents (PAA approximation). The
size of the window is 23 seconds.
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Smith-Waterman

The Smith-Waterman algorithm, as commented in Chapters II and III, is
thought for dealing with temporal misalignments as well as being able to
find subsequences inside larger sequences, characteristics that make it quite
suitable for QBH. However, this characteristics have their cost and, in this
case, it results in the introduction of four new parameters, which have al-
ready been commented in Chapter II1.

These four parameters in the Smith-Waterman algorithm are typically
set by ‘Trial and error’. The four different configurations tried in the present
Thesis are shown in Table V.ii.

Configuration ‘ Weights
‘ MATCH MISMATCH INSERTION DELETION
CONF 1 1 -0.5 -0.5 -0.5
CONF 2 1 -1 -0.5 -0.5
CONF 3 1 -1 -1 -1
CONF 4 1 -0.5 -1 -1

Table V.ii: Smith-Waterman tested configurations.

Using the commented configurations for the Smith-Waterman algorithm
it is possible to apply the four approaches described in Chapter I1I for time-
series representation, both the non-transcription methods and the au-
tomatic transcriptionone.

a) SAX
In terms of coding, and as commented in Chapter I1I, SAX requires two
parameters two be set, which have a ‘Trial and error’ behavior, just as
the Smith-Waterman parameters. These two parameters have been given
the following values:

e Time discretization: 0.3, 0.5, 0.8, 1 and 2 seconds.
e Amplitude discretization: 3, 4, 6, 8, 12, 16 and 20 levels.

Table V.iii shows the MRR scores obtained for the subsets 2 to 4% de-
scribed in Chapter IV together with the parameters used for obtaining
them.

5As commented in Chapter IV, subset 1, which is the 9 Queries one, was simply
thought for the evaluation of the SAX similarity measure.
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Evaluation Time Amplitude Smith-Waterman
subset MRR  discretization discretization configuration
(s) (levels)
10x100 0.2613 0.5 4 CONF 2
118x481 0.0398 0.3 6 CONF 1
118x2133 | 0.0890 0.3 6 CONF 2

Table V.iii: MRR results obtained when coding with the ap-
proach SAX and using Smith-Waterman for the similar-
ity /alignment.

Table V.iv shows the results for the Top-X hit rate measure using the
previously commented subsets.

Evaluation Subset | Top-X hit rate (%)

13 5 10
10x100 20 30 30 40
118x481 254 4.24 698 9.32
118x2133 508 9.32 11.02 15.25

Table V.iv: Top-X hit rate results obtained when coding
with the approach SAX and using Smith-Waterman for
the similarity/alignment.

b) Semitone discretization with fixed time divisions
In this case there is only one parameter to set, also having a ‘Trial and
error’ behavior. This parameters received the following values:

e Time discretization: 0.3, 0.5, 0.8, 1 and 2 seconds.

Table V.v shows, as in the case before, the results obtained for the MRR
measure using the same subsets 2 to 4 described in Chapter IV together
with the settings used for obtaining them.
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Evaluation Time Smith-Waterman
subset MRR discretization configuration
()
10x100 0.1774 0.3 CONF 3
118x481 0.0649 0.3 CONF 1
118x2133 | 0.0705 0.3 CONF 1

Table V.v: MRR results obtained when coding with the
approach Semitone discretization with fixed time
divisions and using Smith-Waterman for the similar-
ity /alignment.

Table V.vi shows the results for the Top-X hit rate measure.

Evaluation Subset ‘ Top-X hit rate (%)
|1 3 5 10

10x100 10 20 30 40
118x481 2.54 593 10.17 16.10
118x2133 339 593 9.32 13.56

Table V.vi: Top-X hit rate results obtained when coding
with the approach Semitone discretization with fixed
time divisions and using Smith-Waterman for the simi-
larity /alignment.

c) Semitone discretization with pitch-change transitions
This approach, as commented in Chapter 11, also has two parameters to
be set, which are given the following values:

e Signal smoothing filter: 70, 140, 218 and 290 seconds.
e Glitches removal filter: 70, 140, 218 and 290 seconds.

Table V.vii shows the results obtained for the MRR measure using the
same subsets 2 to 4 described in Chapter IV together with the values of
the parameters used for obtaining them.
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Evaluation Signal Glitches  Smith-Waterman
subset MRR smoothing removal configuration
filter (ms) filter (ms)
10x100 0.4019 290 140 CONF 4
118x481 0.1077 140 70 CONF 1
118x2133 | 0.1490 218 70 CONF 1

Table V.vii: MRR results obtained when coding with the
approach Semitone discretization with pitch-change
transitions and using Smith-Waterman for the similar-
ity /alignment.

Table V.viii shows the results obtained for the Top-X hit rate measure.

Evaluation Subset ‘ Top-X hit rate (%)

|1 3 5 10

10x100 30 50 50 60
118x481 6.78 11.86 15.25 18.64
118x2133 11.86 1441 16.10 25.42

Table V.viii: Top-X hit rate results obtained when coding
with the approach Semitone discretization with pitch-
change transitions and using Smith-Waterman for the
similarity /alignment.

Automatic transcription

As it has been commented in Chapters II and 11, automatic transcription
tends to be the most used approach in the QBH task, reason why a basic
implementation is carried out in the present Thesis in order to check results
with the other commented approaches.

This approach also uses Smith-Waterman for the similarity/alignment
measure and the different possible configurations are the same as the ones
used previously (Table V.ii). The results obtained can be checked in Table
V.ix.
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Evaluation | MRR Smith-Waterman
subset configuration
10x100 0.1412 CONF 3
118x481 0.0380 CONF 1

118x2133 | 0.0499 CONF 4

Table V.ix: MRR results obtained when coding with Auto-
matic transcription and using Smith-Waterman for the
similarity /alignment.

Table V.x introduces the results obtained for the Top-X hit rate measure
to the reader.

Evaluation Subset ‘ Top-X hit rate (%)
| 1 3 5 10

10x100 10 10 10 20
118x481 1.69 3.39 593 7.63
118x2133 3.39 5.08 6.78 11.02

Table V.x: Top-X hit rate results obtained when coding with
the approach Automatic transcription and using Smith-
Waterman for the similarity/alignment.

Results summary

For a better comprehension and later comparison, Table V.xi summarizes the
MRR results obtained using the different approaches applied. It is important
to point out that these results only make reference to the scores obtained
using the Smith-Waterman similarity/alignment algorithm and not to the
ones obtained as a result of using the SAX similarity measure due to the low
scores obtained and computational cost involved.

Evaluation | SAX Semitones + Semitones + Automatic
subset Fixed Time Transitions Transcription
10x100 0.2613 0.1774 0.4019 0.1412

118x481 0.0398 0.0649 0.1077 0.0380

118x2133 | 0.0890 0.0705 0.1409 0.0499

Table V.xi: Summary of the MRR results obtained.
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Table V.xii summarizes the different scores obtained, just as Table V. .xi,
but using the Top-X hit rate measure instead of the MRR.

Top-X hit rate (%)

Approach ‘ Evaluation Subset H

| | 1 3 5 10

10x100 20 30 30 40

SAX 118x481 2.54 424 698 9.32
118x2133 5.08 9.32 11.02 15.25

Semitones + 10x100 10 20 30 40
Fixed Time 118x481 2.54 593 10.17 16.10
118x2133 3.39 593 932 13.56

Semitones + 10x100 30 50 50 60
Transitions 118x481 6.78 11.86 15.25 18.64
118x2133 11.86 14.41 16.10 25.42

Automatic 10x100 10 10 10 20
Transcription 118x481 1.69 339 593 7.63
118x2133 3.39 508 6.78 11.02

Table V.xii: Summary of the Top-X hit rate results obtained.

Results discussion

Once all the results for the different approaches have been obtained, it is
time to discuss them by comparing to results obtained in related work and
finding out the reason why the results in the present Thesis may be better or
worse than others by analyzing the performance of the selected approaches
with the proposed dataset.

Results comparison

As introduced in Chapter II, Salamon et al. in 2012 [SSG12], using the same
dataset as the one used for the present Thesis, scored an MRR of 0.45 for the
case of the whole query corpus against the canonical song collection (subset
118x481) and an MRR of 0.56 for the whole dataset (subset 118x2133).

These results are quite better than the ones obtained by any approach
in the present Thesis for the same subsets: as it can be seen in Table V .xi,
for the subset with the canonical collection, the best result is 0.1077 and,
in the case of the whole collection, it turns out to be 0.1409 so, taking into
consideration that the dataset is the same, it seems reasonable to think that
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the selected approach/es might be the main issue for the low scores.

On the other hand, and as commented in Chapter II, Duda et al. in 2007
[DNSO07] also used SAX for QBH, obtaining the results shown in Table V xiii.

Query Size of Size of MRR
production Query corpus Music collection | score
Humming 150 200 0.0362

Singing 130 200 0.0585
Table V.xiii: MRR results obtained by Duda et al. in 2007
[DNSO07].

Despite the results shown in Table V .xiii may not be directly compared to
the results obtained in the present Thesis (summarized in Table V.xi) since
datasets are not the same, qualitatively it can be said that no significant
difference can be pointed out.

Results analysis

Before analyzing in depth the actual results, it may be interesting guessing,
in a broad sense, why some approaches obtained better results than others.
From now on and until specified, this explanation only refers to the differ-
ent time-series coding approaches not based on music transcription, which
requires an explanation apart from the others.

Checking the results in Tables V.xi and V .xii, it can be clearly seen that
scores, in general, improve with each extension performed to the initial SAX
algorithm”.

On the other hand, analyzing theoretically the two extensions performed
to the SAX initial algorithm, it may be easy to infer that, somehow, a re-
ally basic transcription algorithm is being implemented: from the initial
approach (SAX), in which the coding is based on statistical properties, a
first approach based on a constant time segmentation and an equal-tempered
scale for the pitch axis is implemented for then moving to a second and last
approach based on dynamic temporal segmentation whenever there is a pitch
change.

"There is only one exception in the 10x100 subset where SAX obtains a better MRR
result than the semitone discretization with fixed time divisions approach extension.
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Therefore, from what has been commented, it seems that the more the
approach tends to music transcription the better the results get, which might
justify the general tendency in QBH to work with automatic transcription
approaches [WLLT06, SBY02], as it has been commented in Chapter II.

However, why is it like that? It turns quite difficult to give a general an-
swer for all other authors’ work but it is possible to clarify why this happens
in the scope of the present Thesis.

It is easy to see that in SAX, the temporal discretization might smooth
too much, or even remove, parts of the sequence since, in the end, what it
is being done, is taking an excerpt of the signal and averaging it. But also,
considering the vertical discretization, typically SAX codes sequences using
a small amount of possible values, being 20 the highest amount used in the
present Thesis. Therefore, a SAX symbol might not only represent a huge
amount of data in a temporal scope, but also when referring to the vertical
axis.

Pitch sequences may, and usually do, cover a huge range of octaves,
therefore coding with a small amount of levels with SAX makes the coded
sequence too generic: for instance, a pitch contour that ranges 5 octaves
comprises, theoretically, 80 different notes but, using the maximum amount
of levels in SAX, which as commented before is 20 for the present Thesis,
makes that each SAX level represents up to 4 notes.

Following the same idea, if an excerpt of the pitch contour evolves in 4
consecutive notes for a long time, never stable but varying through those
4, SAX will only output one symbol, which is the same coded sequence it
would be obtained with an excerpt that keeps for the same amount of time
one of those 4 notes without changing pitch. Therefore, it is possible that
sequences that are different among them before being coded with SAX pro-
duce the same SAX sequence when coded.

The described ambiguity does not seem appropriate for QBH: many se-
quences of the song collection might have a similar SAX code and, therefore,
when compared to a certain query, all of them might be possible candidates.

The two extensions proposed to SAX in Chapter III try to somehow
solve this issue: the first extension tries to avoid that SAX represents much
pitch information in one single level and the second extension, keeping the
improvement of the first one, deals with the temporal information loss. The
reason why these two approaches improve results is because, and as said
before, these sequences are more unique in the sense that it is more diffi-
cult to obtain the same codification starting from different pitch contours,
something that could not be asserted before, and therefore there are more
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chances that a query resembles to just one element of the music collection
rather than to many of them.

The following example describes this fact: using the first extension to
SAX as the coding approach, Query 1, which represents Mother Nature’s
Son (The Beatles), is confronted against the whole canonical song collection.
The result is that the correct equivalent is ranked in the 18th position, with
a Smith-Waterman similarity matrix shown in Figure V.5.

Matrix Query q1 VS Database 1118

O—-N-4WO—WHOWN-A-ONOO00-ONW-HO—-+00NO O~

Figure V.5: Smith-Waterman similarity matrix of Query 1 (Mother Nature’s
Son - The Beatles) and Song 1118 (Mother Nature’s Son - The Beatles) from
the canonical dataset.

It can be clearly seen in the similarity matrix in Figure V.5 that the
chosen approach is able to find a clear correspondency (actually, several of
them) between the query and the song. However, if there is such a clear
alignment, what is it happening with the song that finished the first in the
rank? Figure V.6 shows its similarity matrix.

Figure V.6 corresponds to Scarborough Fair (Simon & Garfunkel) and
the approach is finding an important ‘similar’ section where it should not.
The same can be said for the element ranked second, whose similarity ma-
trix is shown in Figure V.7, and for all the other songs until the 18th position.
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Matrix Query q1 VS Database 1438

O—-NAWO—-WHOWN-A-ONOO00-ONW—-HO-+00NOO~,

Figure V.6: Smith-Waterman similarity matrix of Query 1 (Mother Nature’s
Son - The Beatles) and Song 1438 (Scarborough Fair - Simon & Garfunkel)
from the canonical dataset.

Matrix Query q1 VS Database 186

=N WO—WHOWN-A-ONOO00-ONW—-HO—-+00NO O~

Figure V.7: Smith-Waterman similarity matrix of Query 1 (Mother Nature’s
Son - The Beatles) and Song 186 (Black Bird - The Beatles) from the canon-
ical dataset.
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Therefore, the idea to keep from what has been exposed is that the low
scores obtained are due to the fact that SAX creates too generic sequences,
at least for a QBH task, and a different representation able to deal with that
problem would, presumably, improve results.

Before finishing with SAX it is also important to say why the SAX sim-
ilarity measures are discarded in favor of Smith-Waterman: the fact that
SAX implements a sliding window approach for comparing sequences that
differ significantly in length might be useful for QBH but, as commented
previously, this method has two important drawbacks:

a) Low scoring: Results obtained showed a very low MRR score, especially
considering that the size of the dataset consisted of only 9 elements.

b) Computational cost: The computation time the algorithm requires is
quite high and that is not suitable for QBH.

Finally, and to end up with this Discussion section, it is time to think
about the results of the automatic music transcription approach.

The first point to mention is that the results obtained might contradict
what has just been exposed: the results for the automatic music transcrip-
tion approach (Tables V.ix and V.x) are considerably low compared to the
other approaches (Tables V.xi and V.xii), especially taking into considera-
tion what has just been explained.

The idea is that the work in the present Thesis, as commented in Chapter
I, focuses on non-transcription approaches for QBH, reason why the tran-
scription approach is more a proof of concept rather than an actual research
task in this work, leading then to the implementation of a very simple ap-
proach.

With the aim of implementing this simple approach, a very basic coding
algorithm for the automatically transcribed sequence was used (described in
Chapter III) and, because of that, the issue found here is the same as in the
previous cases: the sequences obtained are too generic (for instance, only
5 different values are used for coding rhythmic information) and, therefore,
the system gets confused.
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‘We can only see a short distance ahead, but we can see
plenty there that needs to be done.’

Alan Mathison Turing

Conclusions and Future work

This last Chapter acts as the closure unit for the work presented during the
development of the present Thesis, first of all summarizing the outcomes
and conclusions obtained and later proposing some possible future work to
be carried out.

Conclusions

Despite the conclusions that can be extracted from the present Thesis have
already been commented, in a subtle way, in Chapter V, especially in the
Discussion section (Section V.4) from the commented Chapter, it is im-
portant to remark them in a formal format, not only for a proper closure of
the work done but also to give a clear idea of the reach of the present Thesis.

The first outcome is an important difference with the work by Duda et al.
in 2007 in [DNS07] and the statistical distribution used for the SAX
coding approach: in the mentioned work, it was said that an Exponential
distribution could describe the statistical distribution of the pitch contours
of their dataset, but in the present Thesis it has been proved that an Expo-
nential distribution is not able to represent our dataset, being for instance
a Gaussian distribution a better option.

A second conclusion to be commented is the fact that the SAX simi-

larity methods, both the one for sequences with a similar length and the
one based on sliding window, do not seem to be valid for the present work:
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i) The SAX similarity method for sequences with a similar length
did not seem to be appropriate from the first moment due to the fact
that, in QBH, the sequences to be compared differ significantly in length.
However, and as commented in Chapter V, it was implemented and eval-
uated, corroborating the initial idea with the low MRR results obtained.

ii) On the other hand, the SAX similarity method based on slid-
ing window seemed more promising since it was already conceived for
sequences differing in length. However, its implementation and later
evaluation, despite improving the MRR scores compared to the previ-
ous approach, the results obtained were still low and, moreover, the
algorithm turned out to be really slow, and therefore not suitable for

QBH.

As commented, the SAX similarity tools do not seem to be valid in
the scope of the present Thesis, but it may be too early to say that SAX
might not be suitable for QBH since this assertion requires a deeper study.

A third idea to get from the work carried out is that the time-series
representations used are too generic: when comparing a query to the
whole music collection, as shown in Chapter V, the alignment/similarity
method finds many ‘clear’ correspondences not only among different elements
of the collection but also inside each element. Clearly, the more unique the
representation turns to be (from SAX, way generic, to its first and second
extension, which give more ‘unique’ sequences), the better the score gets,
as previously shown. However, still the results are quite poor, reflecting the
fact that the representations used do not produce sequences different enough
from each other, at least for QBH.

Future work

Considering both the Discussion section (Section V.4) in Chapter V and the
Conclusions explained in the previous section, some future work lines may
be proposed not only to solve the limitations, or at least some of them, found
during the development of the Thesis but also to expand the reach of this
work.

An initial point to take into consideration is the statistical distribu-
tion used for coding sequences with SAX: it was shown that, for the dataset
described in Chapter IV, the best statistical distribution that described those
sequences is not a Gaussian distribution, despite scoring a pretty good
adjustment parameter. A Cosine distribution seems to get a better ad-
justment score, so it could be a proper option to try. Also, a Gaussian
Mixture Model (GMM) might describe the sequences since each lobe of
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the GMM would represent a certain note sung/hummed in the query.

Another possibility to research on is to consider other time-series rep-
resentations different to SAX since, as it has been already commented, the
sequences created with this approach do not seem to be unique enough for
this case. Other representations that do not require the automatic music
transcription step such as the ones introduced in Chapter II might be used
with the dataset used in this work to check whether there is an improvement
on the results.

Related to time-series representation, more complex representations
for automatic music transcription than the one used in the present
work might improve the overall score. The work by Urbano et al. in
2012 [ULMSC12] obtained the best results in MIREX 2012 by represent-
ing melodic contours, which were obtained directly from score information,
as spline curves. Also, the use of perception models based on the studies
by Narmour and the Implication/Realization model, which has already been
used in QBH [GAdAMO5], might improve the performance in the similarity
task.

Despite the Smith-Waterman algorithm seems to be a proper algo-
rithm for QBH for both performing subsequence matching and dealing with
time warps, other approaches as the ones introduces in Chapter II might
be implemented for checking whether the overall QBH performance can be
improved by changing the similarity /alignment method.

Speed issues, not considered in the present Thesis unless the execu-
tion time turned out to be excessive, are quite important in QBH since this
task is thought for real-time interaction with a user. Indexing structures
might be an important point to develop in the future so that a query is not
compared to every single element in the music collection but only to possi-
ble candidates. Hashing, as in the work by Ryynénen and Klapuri in 2008
[RKO08], might be a possibility to take into consideration.

Leaving apart all the mechanisms for time-series coding and compari-
son, it seems also interesting to study the way queries are produced by
people and its influence on the QBH system performance, which
is something that has not been considered in the present work either. In
the work by Duda et al. in 2007 [DNSO07] it can be seen a clear distinction
between queries produced by humming and singing and the difference in
performance between the two. Also, the work by Salamon et al. in 2012
[SSG12] includes a study of the influence of the tuning of the queries on the
system performance, study that has been extended by Filippo Morelli in his
Master Thesis developed in parallel to the present work.
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CHAPTER VI. CONCLUSIONS AND FUTURE WORK

Finally, a last proposal is to extend the presented work for more datasets
to check the behavior of the approach independently of the data to process.
For instance, a proper candidate might be the dataset by Duda et al. in
2007 [DNSO7] so that results could be compared not only qualitatively as
done in Chapter V but also quantitatively.
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