Poster Open Access

EMD and Gradient Boosting Regression for NILM (Energy Disaggregation)

Timplalexis, Christos; Krinidis, Stelios; Ioannidis, Dimosthenis; Tzovaras, Dimitrios


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200311202023.0</controlfield>
  <controlfield tag="001">3706433</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute/ The Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Krinidis, Stelios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute/ The Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Ioannidis, Dimosthenis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute/ The Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Tzovaras, Dimitrios</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1443742</subfield>
    <subfield code="z">md5:6c3dc313ae431de14d418b7ccda032fe</subfield>
    <subfield code="u">https://zenodo.org/record/3706433/files/AI_CON_poster_presentation_CERTH.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-10-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3706433</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute/ The Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Timplalexis, Christos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">EMD and Gradient Boosting Regression for NILM (Energy Disaggregation)</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">773960</subfield>
    <subfield code="a">Future tamper-proof Demand rEsponse framework through seLf-configured, self-opTimized and collAborative virtual distributed energy nodes</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Abstract: In this study a novel appliance load estimation in a non-intrusive way is presented. The proposed algorithm includes signal processing techniques such as filtering and Empirical Mode Decomposition (EMD) which is used to decompose random noise from the power consumption data collected from the smart meter. Lag features that capture the variance of the data across time are utilized. Experimental results which showcase the effectiveness of the suggested method are also presented.&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3706432</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3706433</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
21
18
views
downloads
All versions This version
Views 2121
Downloads 1818
Data volume 26.0 MB26.0 MB
Unique views 1919
Unique downloads 1616

Share

Cite as