Journal article Open Access

A shallow cross-flow fluidized-bed solar reactor for continuous calcination processes

Thibaut Esence; Hadrien Benoit; Damien Poncin; Michael Tessonneaud; Gilles Flamant


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Solar heat in industrial process</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Calcination</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Cross-flow fluidized bed</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Experiment</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Modelling</subfield>
  </datafield>
  <controlfield tag="005">20200311202016.0</controlfield>
  <controlfield tag="001">3703370</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CNRS PROMES</subfield>
    <subfield code="a">Hadrien Benoit</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CNRS PROMES</subfield>
    <subfield code="a">Damien Poncin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CNRS PROMES</subfield>
    <subfield code="a">Michael Tessonneaud</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CNRS PROMES</subfield>
    <subfield code="a">Gilles Flamant</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1907850</subfield>
    <subfield code="z">md5:d14c90ba3a9becf31ca0ebeeef478d65</subfield>
    <subfield code="u">https://zenodo.org/record/3703370/files/1-s2.0-S0038092X19312435-main.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-12-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-solpart</subfield>
    <subfield code="o">oai:zenodo.org:3703370</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CNRS PROMES</subfield>
    <subfield code="a">Thibaut Esence</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A shallow cross-flow fluidized-bed solar reactor for continuous calcination processes</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-solpart</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">654663</subfield>
    <subfield code="a">High Temperature Solar-Heated Reactors for Industrial Production of Reactive Particulates</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A laboratory-scale solar reactor prototype dedicated to calcination processes of non-metallic mineral particles is&lt;br&gt;
tested and characterized. The prototype consists of an indirect heating shallow cross-flow fluidized-bed reactorreceiver.&lt;br&gt;
It is composed of 4 compartments in series in which the particles are thermally treated with solar power&lt;br&gt;
in order to drive the endothermic calcination reaction. The particles are fluidized in the reactor with preheated&lt;br&gt;
air and are heated up to 800 &amp;deg;C through the front wall of the reactor receiving the concentrated solar flux (about&lt;br&gt;
200 kW/m2). The tests are carried out at the 1-MW Odeillo&amp;rsquo;s solar furnace (France). The thermal decomposition&lt;br&gt;
of a continuous stream of 9.4 kg/h of dolomite (CaMg(CO3)2) is investigated in this paper. The half decomposition&lt;br&gt;
of dolomite (CaMg(CO3)2 &amp;rarr; CaCO3 + MgO + CO2) is performed with a degree of conversion of 100%.&lt;br&gt;
The complete decomposition of dolomite (CaMg(CO3)2 &amp;rarr; CaO + MgO + 2CO2) is not reached because, with&lt;br&gt;
respect to the CO2 partial pressure in the reactor, the temperature of particles is not high enough to decompose&lt;br&gt;
the calcium carbonate. The calculated thermochemical efficiency (i.e. the energy absorbed by the endothermic&lt;br&gt;
calcination reaction compared to the solar energy provided to the system) is 6.6%. This low efficiency is neither&lt;br&gt;
surprising nor critical since the reactor design was not optimised with respect to energy efficiency but designed&lt;br&gt;
to the control of particle flow and front wall solar flux distribution. A numerical model considering the 4&lt;br&gt;
compartments of the reactor as 4 ideal continuous stirred tank reactors in series is developed. The model accounts&lt;br&gt;
for the mass and the energy balances, as well as the reaction kinetics of the half decomposition of&lt;br&gt;
dolomite. The model gives consistent results compared to the experimental data. These results are a proof of&lt;br&gt;
concept of continuous calcination reaction using concentrated solar energy in a cross-flow fluidized-bed reactor.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.solener.2019.12.029</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
114
124
views
downloads
Views 114
Downloads 124
Data volume 236.6 MB
Unique views 107
Unique downloads 115

Share

Cite as