There is a newer version of this record available.

Thesis Open Access

The FMB algorithm

Pascal Baillehache


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3702529</identifier>
  <creators>
    <creator>
      <creatorName>Pascal Baillehache</creatorName>
      <affiliation>None</affiliation>
    </creator>
  </creators>
  <titles>
    <title>The FMB algorithm</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>intersection</subject>
    <subject>detection</subject>
    <subject>collision</subject>
    <subject>Fourier-Motzkin</subject>
    <subject>FMB</subject>
    <subject>SAT</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-02-05</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Thesis</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3702529</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3702528</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This thesis introduces the FMB algorithm and its C implementation, which can be used to perform intersection detection of pairs of static/dynamic cuboid/tetrahedron in 2D/3D by using the Fourier-Motzkin elimination method. Results show that the FMB algorithm can be in average up to 4.8 times faster than the SAT algorithm.&lt;/p&gt;</description>
  </descriptions>
</resource>
92
62
views
downloads
All versions This version
Views 9267
Downloads 6241
Data volume 93.3 MB56.5 MB
Unique views 7361
Unique downloads 5340

Share

Cite as