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A Model-based Approach Towards Real-time
Analytics in NFV Infrastructures
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Abstract—Network Functions Virtualization (NFV) has
recently gained much popularity in the research scene for
the flexibility and programmability that it will bring with the
software implementation of network functions on commercial off-
the-shelf (COTS) hardware. To substantiate its roll out, a number
of issues (e.g., COTS’ inherent performance and energy efficiency,
virtualization overhead, etc.) must be addressed, in a scalable and
sustainable manner. Numerous works in the scientific literature
manifest the strong correlation of network key performance
indicators (KPIs) with the burstiness of the traffic. This paper
proposes a novel model-based analytics approach for profiling
virtualized network function (VNF) workloads, towards real-time
estimation of network KPIs (specifically, power and latency),
based on an MX/G/1/SET queueing model that captures both the
workload burstiness and system setup times (caused by interrupt
coalescing and power management actions). Experimental results
show good estimation accuracies for both VNF workload profiling
and network KPI estimation, with respect to the input traffic
and actual measurements, respectively. This demonstrates that
the proposed approach can be a powerful tool for scalable and
sustainable network/service management and orchestration.

Index Terms—NFV, MX/G/1/SET queue, Real-time analytics,
Workload profiling, Power estimation, Latency estimation

I. INTRODUCTION

FEW years back, network softwarization has been deemed
fundamental towards sustaining the fifth generation

mobile radio network (5G) vision. By integrating networking
paradigms with state-of-the-art Information Technology (IT)
services (i.e., virtualization on top of commercial off-the-shelf
(COTS) hardware), it strives to overcome infrastructure
ossification.

Network Functions Virtualization (NFV) – an emerging
softwarization solution – explores the software implementation
of network functionalities that would run on COTS hardware
[1]. Such a paradigm grants customization and portability to
virtualized network functions (VNFs) that would accelerate
service innovation and facilitate seamless service support,
while minimizing capital expenditures (CAPEX). Despite
the numerous gains attainable with NFV, some operational
issues that stem from the underlying COTS hardware and
virtualization approach adopted need to be handled effectively
and efficiently; otherwise, the operational expenditures
(OPEX) that result in meeting future demands will prove to
become unsustainable.
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Contrary to the special-purpose hardware mostly deployed
within classical network infrastructures, lower performance
and energy efficiency are intrinsic to COTS hardware. While
the Advanced Configuration and Power Interface (ACPI)
specification [2] equips most – if not all – of it with power
management mechanisms (e.g., Low Power Idle (LPI) and
Adaptive Rate (AR)), power savings come in trade-off
with performance degradation [3]. Moreover, virtualization
typically adds extra layer(s) in the networking stack that result
in additional processing delays, further lowering the perfor-
mance. For a given amount of workload, VNFs may consume
even more energy than their physical counterparts [4].

Furthermore, given the highly modular and customizable
nature of the virtualized network architecture, coping with
the ensuing management complexity entails automated
configuration, provisioning and anomaly detection. The
ETSI NFV Management and Orchestration (NFV-MANO)
framework [5] designates these responsibilities to the virtual
infrastructure manager (VIM) of the NFV infrastructure
(NFVI). The VIM seeks to obtain performance and
anomaly information about virtualized resources based
on capacity/usage reports and event notifications, and then to
manage them accordingly – yet usually, measurable data do not
directly expose network key performance indicators (KPIs).

Starting from available and easily measurable performance
monitor counters (PMCs) in Linux host servers, this paper
tries to bridge this gap through a model-based analytics
approach for real-time VNF workload profiling and network
KPI (i.e., power and latency) estimation. Specifically, the
contribution of this work is two-fold:

• a complete analytical characterization of the power-
and performance-aware virtualized system, taking into
account the inherent workload burstiness, and;

• a novel model-based analytics approach for profiling
VNF workloads, towards the real-time estimation of the
ensuing power consumption and system latency.

An initial version of this work has been presented in
[6], in which various PMCs are evaluated for the black-box
estimation of key statistical features of the VNF workload,
considering a fairly general renewal model (MX/G/1/SET
queue [7]) that captures traffic burstiness and system setup
times. In this extended version, we provide a complete
analytical characterization of the MX/G/1/SET queue, which
includes power and latency models. This not only augments
the capabilities of the VIM, but is also suitable for state-of-
the-art dynamic resource and service provisioning approaches.
Moreover, we present a new and more thorough experimental
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analysis and validation of the models adopted.
The remainder of this paper is organized as follows. Firstly,

some technological background and related work are presented
in Section II. Section III then describes the system under
test (SUT), giving details on key power- and performance-
aware parameters foreseen to impact its behaviour. Section IV
provides the analytical characterization of the different aspects
of an MX/G/1/SET queue; then, the key model parameters
are exposed from available and easily measurable PMCs in
Section V. Experimental results are presented in Section VI,
and finally, conclusions are drawn in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, a brief background on the technological
scenario is presented, along with some related work.

A. The ACPI Specification

Most – if not all – of the COTS hardware in today’s market
is already equipped with power management mechanisms
through the ACPI specification. The ACPI exposes the
LPI and AR functionalities at the software level through
the power (Cx) and performance (Py) states, respectively.
The former comprise the active state C0 and the sleeping
states {C1, . . . , CX}, while the latter correspond to different
processing performances {P0, . . . , PY} at C0. Higher values
of x and y indexes indicate deeper sleeping states and lower
working frequencies and/or voltages, respectively. Sleeping
states, although resulting in lower power consumptions, incur
performance degradation due to the wakeup times, whereas
reduced processing capacity increases the service times. It
can be noted how LPI and AR have opposite effects on the
burstiness of the traffic (i.e., the former clusters packets into
bursts, while the latter smoothens the traffic profile). Joint
adoption of both mechanisms does not guarantee greater
savings [8] [9]; negative savings may even result with the
naı̈ve use of the ACPI [10]. The optimum configuration
largely depends on the burstiness of the incoming traffic.

B. Performance vs Flexibility in NFV

Basically, the NFVI can employ various virtualization layer
solutions towards the deployment of VNFs. This involves
selection among (or mixing of) different virtualization
techonologies, as well as their corresponding platforms and
I/O technologies, which govern the overall performance and
flexibility of the implementation [11]–[13].

In more detail, the performance yardstick in NFV is a set
of network KPIs (e.g., power consumption, latency, response
time, maximum throughput, isolation, mobility management
complexity, instantiation time, etc.); this set varies (or at least
the weight of each component does) with the application.
Nonetheless, the overall performance is closely linked to the
level of abstraction, and hence, to the virtualization overhead
introduced in the chosen implementation. For instance, as
described in [11], typical hypervisor-based solutions create
isolated virtual machines (VMs) that are highly abstracted
and flexible but with relatively high overhead, while
container-based solutions create isolated guests (referred to
as containers) that directly share the host operating system

(OS), thus avoiding much of the overhead, but with a number
of flexibility limitations (e.g., consolidation of heterogeneous
VNFs, mobility support, etc.).

Other ways for reducing the virtualization overhead regard
the handling of network I/O. A number of works in the
scientific literature (e.g., [14]–[16], among others) consider
technologies like Single Root I/O Virtualization (SR-IOV)
and Intel’s Data Plane Development Kit (DPDK), which
bypass the OS network stack. However, this entails building
a specialized network stack on applications that require one,
and the device cannot be shared with other applications [13].

In this work, we focus on the power consumption
and latency as network KPIs, and consider a traditional
VM-based VNF implementation in order to minimize the
dependence of the proposed approach on the virtualization
and I/O technologies. Nevertheless, it can also be applied to
container-based and bypass VNF implementations.

C. Modeling and Analytics of Network KPIs in NFV

A large part of the state-of-the-art software-level modeling
approaches use machine learning (ML) techniques also based
on measurable PMCs. For instance, numerous PMC-based
power models have already been proposed at the VM and
core levels [17] [18], while [19] explores correlations between
application-level quality of service (QoS) parameters like
throughput and response time with the power readings from
Intel’s Running Average Power Limit (RAPL) interface [20].
High levels of accuracies can be obtained with ML-based
approaches, provided that the appropriate set of PMCs is
considered and an extensive dataset is available for training.

Another well-known approach for modeling and analyzing
telecommunications systems is the application of queueing
theory principles and, more recently, it is being adopted
in the context of NFV as well. Most of the works in the
literature regard estimating the system or queueing latencies
towards efficient (QoS-aware) network service provisioning,
considering networks of queues to model interactions among
service chain/virtual system/VNF components, with each
component modeled as a (unique) queueing system [21]–[24].
Delving deeper into the infrastructure level, [25] takes
into account the impact of interrupt coalescing (IC) in the
Network Interface Card (NIC) on VNF performance (in terms
of latency and packet loss), while [26] considers the burstiness
of the VNF workloads (both incoming and aggregated) in the
power modeling.

In this work, we adopt the queueing model considered in
[26], analytically characterizing the different aspects of the
system; starting from there, a model-based analytics approach
that uses – and adds value to – available PMCs is proposed
towards real-time VNF workload profiling, as well as power
and latency estimation.

III. SYSTEM DESCRIPTION

Considering that the system behaviour highly depends on
the ACPI configuration of the host, as well as the virtualization
and I/O technologies used in the VNF implementation, more
details on these aspects are provided in the following
sub-sections.
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A. ACPI Configuration

For a given (Cx, Py) pair, a number of power- and
performance-aware parameters can be defined.

1) Power requirements: The instantaneous power
requirements vary with the core’s state. Specific values of idle
(Φi) and active (Φa) power consumptions are associated with
each available power and performance state, respectively.

Moreover, transitions between C0 and Cx are not
instantaneous; hence, the power consumed in these periods
must also be taken into account. Since the average power
consumption during sleeping transitions (C0 → Cx)
approximates Φi, we only consider the wakeup transitions
(Cx → C0) in this work. Particularly, the power spike in the
latter is associated with a wakeup power consumption Φw
that is approximately 2.5Φa, as pointed out in [27].

2) System latencies: The total delay experienced by
packets can be broken down into contributions of different
system operations. As packets arrive at the RX queue, NICs
may wait either for some time interval (i.e., time-based
IC) or some number of arrival events (i.e., frame-based IC)
before raising interrupts to notify the core of pending work.
Generally, such service requests can occur while the core is
in idle or active mode; in the former, there is an additional
setup period due to the wakeup and reconfiguration operations
before the actual packet processing begins.

At the NIC level, we consider the time-based IC, for which
we define the period τic. At the core level, we consider two
setup contributions (i.e., due to wakeup and due to reconfigu-
ration), for which we define the periods τp and τr, respectively.
For the Sandy Bridge EP platform, core wakeup latencies
are in the order of nano/microseconds [28], yet power spikes
during the wakeup transitions can last a bit longer [27]; in any
case, the value of τp depends on the core’s power state Cx.
Once in active mode, the core then performs some reconfigu-
ration operations; the value of τr depends on the core’s perfor-
mance state Py. In the context of power and latency modeling,
τp and τl = τic + τp + τr will be considered, respectively.

After the completion of the setup period, backlogged
packets are suppose to be served exhaustively (considering
that packets have been already transferred in the main
memory via the standard Direct Memory Access (DMA))
with an average processing capacity µ, which corresponds to
the operating energy point of the performance state Py.

B. VNF Implementation

With the current ubiquity of Linux servers and x86
hardware with virtualization extensions, Kernel-based Virtual
Machine (KVM) [29] – being the default virtualization
infrastracture of Linux that is already integrated in the kernel
– offers simplicity in the VNF deployment and mobility
management. In this respect, we consider a KVM-based VNF
running on a Linux host in this work, but the approach is
also applicable to (or easily adaptable for) other platforms.

Particularly, as a full virtualization solution, KVM is able
to run VMs with unmodified guest OSs. Guest networking
is implemented by the user space process Quick Emulator
(QEMU), as detailed in [30]. VM processes are allocated
a certain number of vCPUs, each one seen as a physical

Fig. 1: Traditional KVM-based VNFs.

CPU by the guest OS. Then, VNFs run as guest user space
processes in the corresponding VMs. Fig. 1 illustrates the
traditional KVM architecture for VNF implementation.

For simplicity, but without loss of generality, we suppose
a one-to-one correspondence between the VM and the core
to match the core workload, utilization, power consumption
and latency with those of the VNF. More complex VNFs
may consist of multiple VMs – each one running a VNF
component (VNFC), but the overall performance can be
derived from the individual performances of the components.

We note that with such a traditional VM-based implementa-
tion, switching between VNF and interrupt handler codes can
be rather costly. To reduce this overhead, the interrupt and VM
process affinities are set to different cores in this work. Like
a pipeline model of some sorts, the core tasked with interrupt
handling then notifies the one running the VM process via an
inter-processor interrupt (IPI) for backlogged packets. More-
over, as also illustrated in [31], setting affinities or core pinning
in such fashion improves the energy efficiency of the system.

Using the ethtool command [32], a number of
parameters can be tuned in the NIC. In order to preserve
as much as possible the shapes of the incoming/outgoing
traffic of the VNF, we look into the IC and RX/TX ring
parameter settings. For the former, we decided to keep the
default settings since they are more or less equivalent with
respect to the generated input traffic – specifically, options for
adaptive IC (i.e., adaptive-rx and adaptive-tx) are
off, the parameters for frame-based IC (i.e., rx-frames and
tx-frames) are set to 0, and the parameters for time-based
IC (i.e., rx-usecs and tx-usecs) are set to 3 µs and 0,
respectively. On the other hand, the RX/TX ring buffer sizes
are again set to the pre-set maximums (i.e., 4096) in order to
maximize the NIC’s ability to handle burst arrivals.

IV. ANALYTICAL MODEL

The energy-aware core hosting the VNF (or VNFC) is
modeled as an MX/G/1/SET queue, as in [6] [8] [9]. This
model generalizes the well-known MX/G/1 queue [33] for
burst arrivals, by also covering the cases in which an additional
setup period SET is necessary before service can be resumed.

In more detail, batches of packets arrive at the system at
exponentially distributed inter-arrival times with a random
batch size X . If the system is empty at the arrival instant,
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TABLE I: Model notation.

Symbol Description

λ batch arrival rate

βj probability that an incoming batch is composed of j packets

X(z) Probability Generating Function (PGF) of the batch size,
X(z) =

∑∞
j=1 βjz

j

β(k) k-th factorial moment of the batch size,
β(k) = E

{
X!

(X−k)!
}
= limz→1

d(k)X(z)

dz(k)

τ(t) probability density of the setup time

τ∗(θ) Laplace transform of τ(t)

τ(i) i-th moment of the setup time, τ(i) = (−1)i
d(i)τ∗(θ)
dθ(i)

∣∣
θ=0

s(t) probability density of the packet service time

s∗(θ) Laplace transform of s(t)

s(i) i-th moment of the packet service time,
s(i) = (−1)i

d(i)s∗(θ)
dθ(i)

∣∣
θ=0

µ average packet service rate, µ = 1/s(1)

ρ server utilization, ρ =
λβ(1)
µ

B∗(θ) Laplace transform of the busy period density

B(i) i-th moment of the busy period,
B(i) = (−1)i

d(i)B∗(θ)
dθ(i)

∣∣
θ=0

P (z) PGF of the number of packets in the system at a random
epoch

W average waiting time in the queue

SET is initiated; service only begins after the completion
of SET . Packets are queued as they arrive and served
individually with generally-distributed service times S.
Moreover, we approximate the loss probability in a queue
with finite buffer N by the stationary probability that the
number n of customers in the infinite-buffer queue at a
generic time t be greater than N (Pr{n > N}). Therefore,
hereinafter, we will consider the infinite buffer case.

More details on the different model components are
presented in this section – from the arrival, setup and service
processes, to key networking KPIs. The model notation is
given in Table I.

A. Traffic Model
In telecommunications networks, where burst packet

arrivals are more representative of the traffic behaviour rather
than single arrivals, effectively capturing the burstiness is
essential. The Batch Markov Arrival Process (BMAP) has
long been established in this respect [34] [35]; BMAP allows
for dependent and non-exponentially distributed packet inter-
arrival times, while keeping the tractability of the Poisson
process [36]. Starting from this, we suppose that packets
arrive according to a BMAP with batch arrival rate λ.

To characterize the random batch size X , let βj be the
probability that an incoming batch is composed of j packets

(j = 1, 2, . . .). Then, the Probability Generating Function
(PGF) of X is given by

X(z) =

∞∑
j=1

βjz
j (1)

from which we obtain the first (β(1) =
∑∞
j=1 jβj) and second

(β(2) =
∑∞
j=1 j

2βj − jβj) factorial moments of the batch
size. The offered load in packets per second (pps) is then
obtained as OL = λβ(1).

Given λ, β(1) and β(2), the burstiness of the traffic can
already be well estimated. However, a common difficulty
stems from the fact that the discrete probability distribution
{βj , j = 1, 2, . . .} may not be given, and typically requires
detailed analysis of packet-level traces [8]. As an alternative
approach, we propose to estimate the factorial moments from
easily measurable parameters (e.g., VNF workload, idle and
busy times), which will be discussed in Section V.

B. Setup Model

With the deterministic nature of the setup period due to
core wakeup transitions and reconfigurations considered in
this work, the Laplace transform of the probability density
τ(t) can be reduced to

τ∗(θ) = e−τθ (2)

From this, the first and second moments of the setup time are
simply given by τ(1) = τ and τ(2) = τ2, respectively, with

τ =

{
τp in the context of power consumption, and
τl in the context of latency.

(3)

C. Service Model

Once setup is completed, the core starts to serve backlogged
packets and remains busy until the system becomes empty.
We suppose that the VNF (or VNFC) running on the core
has deterministic service times.

1) Service process: Generally, multiple VMs may be
consolidated on the same core, and the service process
can be captured by a discrete set of service rates µm with
corresponding probabilities πm, m ∈ {1, . . . ,M}, where
M is the number of VMs sharing the core. The Laplace
transform of the probability density s(t) is then obtained as

s∗(θ) =
∑
m

πme
− θ
µm (4)

However, in the special case of one-to-one correspondence
between cores and VMs, Eq. (4) reduces to s∗(θ) = e−

θ
µ ,

giving the first and second moments of the service time as
s(1) = 1/µ and s(2) = 1/µ2, respectively. Note that the core
utilization due to actual packet processing is obtained as
ρ = OL/µ (< 1 for system stability).
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Fig. 2: A generic renewal cycle in a MX/G/1/SET system.

2) Busy period distribution: From the derivations presented
in Appendix A, the Laplace transform of the busy period
density B(t), specialized for deterministic setup and service
times, is given by

B∗(θ) = e−λτ(1−B
∗
X(θ))X

(
e−

θ+λ−λB∗
X (θ)

µ

)
(5)

from which we obtain the first (B(1) =
(β(1)/µ)+ρτ

1−ρ ) and

second (B(2) =
(β(1)+β(2))(1+λτ)

µ2(1−ρ)3 +
ρβ(1)(2τ+λτ

2)

µ(1−ρ)2 ) moments
of the busy periods. It is important to note that these
expressions are particularly useful for estimating the power
consumption and system latency, as we shall see further on.

D. Power Model

We adopt the power consumption model proposed in
[26] for an energy-aware core running VMs. The model
works according to a renewal process, where the idle (I)
and delay busy (SET + B) periods constitute independent
and identically distributed (iid) “cycles” (R), as illustrated
in Fig. 2. A delay busy period, as defined in [7], starts with
the arrival of the batch initiating the setup, and ends with the
depature of the last packet in the system.

Based on classical renewal theory principles, the steady-
state behavior of the stochastic process can be studied by look-
ing at a representative cycle [33]. With this in mind, the aver-
age power consumption of the core is expressed as a sum of the
average contributions incurred during the idle, setup (due to
wakeups) and busy periods, Φ =

I(1)
R(1)

Φi +
τ(1)
R(1)

Φw +
B(1)

R(1)
Φa,

where R(1) = I(1) + τ(1) +B(1) is the average length
of a renewal cycle, and I(1) is the average length of
an idle period. Specializing these to the case of BMAP
arrivals (i.e., I(1) = 1

λ ), and deterministic setup and service
times (i.e., τ(1) = τ and B(1) =

(β(1)/µ)+ρτ

1−ρ ), we obtain
R(1) = 1+λτ

λ(1−ρ) ; then, with τ = τp

Φ =
1− ρ

1 + λτp
Φi +

λτp(1− ρ)

1 + λτp
Φw + ρΦa (6)

E. Latency Model

The system latency D is derived as the sum of the average
waiting time W of a packet in the queue and its average
service time (i.e., s(1) = 1/µ).

In more detail, Little’s law defines the former as:
W = L/λβ(1), where L is the average length of the queue
that can be derived from the PGF P (z) of the number of
packets in the MX/G/1/SET system at a random epoch, as
L = dP (z)

dz

∣∣
z=1
− ρ. By specializing the general expression

for P (z) presented in Appendix B to the case of deterministic
setup and service times, we obtain

P (z) =
1−X(z)e−λτ(1−X(z))

(1 + λτ)
(
1−X(z)

) (1− ρ)(1− z)e−
λ(1−X(z))

µ

e−
λ(1−X(z))

µ − z
(7)

whence,

W =
ρβ(1) + β(2)

2β(1)µ(1− ρ)
+

2τ + λτ2

2β(1)(1 + λτ)
(8)

and with τ = τl

D =
ρβ(1) + β(2)

2β(1)µ(1− ρ)
+

2τl + λτ2l
2β(1)(1 + λτl)

+
1

µ
(9)

It is interesting to note that Eq. (8) can also be derived
starting from the Laplace transform of the waiting time
density, as in [37].

V. EXPOSING MODEL PARAMETERS

With the MX/G/1/SET queue as a basis, here we expose
the key model parameters starting from available and easily
measurable PMCs in the Linux host, in effect profiling the
VNF workloads. Starting from this, the corresponding power
consumption and system latency can then be readily derived
from Eqs. (6) and (9), respectively.

A. Performance Monitor Counters

Linux has different utilities for performance monitoring
– among them, the PMCs described in the following are
considered in this work; other PMCs used in [6] did not
work well with the BMAP emulation. Note that in the syntax
of these utilities, the term ‘CPU’ refers to a core (or logical
core, in the case of hyperthreading).

1) Idlestat: As a tool for CPU power/performance state
analysis, the idlestat command [38] in trace mode is able
to monitor and capture the C− and P− state transitions of
CPUs over a user-defined interval. To run it in trace mode,
the --trace option is used together with the <filename>
and <time> parameters to specify the trace output filename
and the capture interval in seconds, respectively. With the -c
and -p options, C− (including the POLL state, in which
the CPU is idle but did not yet enter a power state) and P−
states statistics are reported in terms of the time spent in each
state per CPU.

2) VnStat: As a network traffic monitoring tool, the
vnstat command [39] is able to report how much traffic
(in terms of average rates) goes through a specific interface
over a user-defined interval. This is done by using the -tr
option together with the <time> parameter to specify the
monitoring interval in seconds, and the -i option together
with the <interface> parameter to specify the interface.

B. Estimation with PMCs

In this sub-section, we seek to expose the model parameters
from the considered PMCs, for a given (Cx, Py) pair.
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1) Offered load and utilization: Measuring OL with the
vnstat command is straightforward, as it corresponds to
the rate of incoming traffic on the network interface bound
to the VM process.

On the other hand, the utilization measurable with the
idlestat command as

ρ̃ =
T̃Py

T̃Py
+ T̃Cx

+ T̃POLL
(10)

where T̃Py
, T̃Cx

and T̃POLL are the measured average
times spent in the corresponding states, encompasses all
operations (including reconfigurations, context switching,
sleep transition, etc.) performed by the active core. While this
gives indications on the utilization overheads incurred in this
VNF implementation, we prefer to estimate the utilization
due to actual packet processing, for which we consider

ρ̂ = ÕL/µ (11)

where ÕL is the offered load measured with the vnstat
command.

2) Batch arrival rate: By considering exponentially
distributed inter-arrival times, λ can be estimated from the
average idle times measurable with the idlestat command.
Theoretically, Ĩ(1) ≈ T̃Cx

+ T̃POLL; however, with the high
variance observed on T̃POLL, we propose to consider only
T̃Cx

for stable estimates. Linear regression is then used to
compensate for the discrepancy, giving

λ̂ =
α1

T̃Cx

+ α0 (12)

where α1 and α0 are the computed regression coefficients.
3) Factorial moments of the batch size: Given ÕL and λ̂,

β(1) (or the average batch size) can be directly estimated by
definition as

β̂(1) =
ÕL

λ̂
(13)

While estimating β(2) is a bit more involved, it is essential
for estimating D. In this regard, we propose to start from the
expression of the second moment of the busy times B(2) (see
Sub-section IV-C2), and consider

β̂(2) = max

(
0,

(
µ2

1 + λ̂τl

)(
B̂(2)(1− ρ̂)3 −

β̂(1)(1 + λ̂τl)

µ2

−
ρ̂(1− ρ̂)β̂(1)(2τl + λ̂τ2l )

µ

))
(14)

with the max function ensuring β̂(2) ≥ 0. Now we are left
with how to obtain B̂(2), for which we adopt the well-known
theorems in statistics regarding the mean and variance of
sample means.

In more detail, let {B1
(1), B

2
(1), . . . , B

η
(1)} be a random

sample of size η obtained from a busy period distribution with
mean B(1) = E{B} and variance var(B) = B(2) − (B(1))

2.
Supposing that Bn

(1), n = 1, . . . , η, are iid, we consider
the standard estimators B̂(1) = 1

η

∑η
n=1B

n
(1) and

vâr(B(1)) = 1
η−1

∑η
n=1 (Bn

(1) − B̂(1))
2
, and estimate

the variance of the busy times as vâr(B) = ∆tvâr(B(1))

Fig. 3: Experimental testbed.

starting from sample means [40], where ∆t is the observation
period over which each sample of Bn

(1) is obtained. Then, we
can estimate the second moment of the busy times as

B̂(2) = ∆tvâr(B(1)) + (B̂(1))
2 (15)

In this work, we consider B̃(1) ≈ T̃Py
− ∆T , where ∆T

is the busy overhead due to operations other than actual
packet processing (which includes τr, context switching,
sleep transitions, etc.). Eq. 15 is then applied on the set of
samples {B̃n

(1), n = 1, . . . , η} to obtain an estimate of B(2).

VI. EXPERIMENTAL RESULTS

The proposed approach is evaluated considering a SUT
equipped with two Intel R© Xeon R© E5-2643 v3 3.40GHz
processor packages, running an OpenWrt [41] virtual firewall
(VF). The latter is pinned (or with affinity set) to a single
core and the interrupt request (IRQ) handling to another one.
The SUT is connected via RX/TX Gigabit Ethernet links to
an Ixia NX2 traffic generator, as shown in Fig. 3. The setup
creates a controlled environment that allows monitoring of
the SUT’s PMCs, power consumption and system latency, as
the burstiness of incoming traffic is varied.

The ACPI configuration of the pinned core is set to
(C1E , P0T ) to maximize the system throughput, where the
power state C1E corresponds to the Enhanced Halt – the
lightest sleeping state with improved power requirements, and
the performance state P0T to the maximum turbo frequency;
while the rest of the cores are put to deep power saving state
C6. Under this configuration, we approximate the values of the
following model parameters as: µ ≈ 199628 pps, τic ≈ 3 µs,
τp ≈ 10 µs, τr ≈ 10 µs, Φi ≈ 8.33 W, Φa ≈ 53.38 W and
Φw ≈ 133.45 W.

In more detail, the processing capacity is estimated
as the maximum system throughput measured from the
user interface of the traffic generator. Setup components are
derived from the IC configuration, wake-up latencies specified
in the kernel’s cpuidle sysfs and the results of [42].
Power related parameters are estimated starting from actual
package-level (i.e., core part) measurements obtained with
the turbostat command [43] – one of the many tools that
expose power measurements from Intel’s RAPL interfaces;
[44] confirms from extensive tests that RAPL exposes true
averages that are updated at fine-grained intervals.

Input traffic (composed of 64-byte Ethernet frames) is
generated from the Ixia traffic generator by considering
1/λ ∈ {0.5, 0.75, 1, 1.5, 2} ms and β(1) ∈ {1, 6, 12} packets;
details on the BMAP emulation approach are described in
the following sub-section.
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(a) 1/λ ≈ 0.5 ms (b) 1/λ ≈ 0.75 ms (c) 1/λ ≈ 1 ms

(d) 1/λ ≈ 1.5 ms (e) 1/λ ≈ 2 ms

Fig. 4: Distributions of the input batch inter-arrival times.

(a) β(1) ≈ 1 packet (b) β(1) ≈ 6 packets (c) β(1) ≈ 12 packets

Fig. 5: Distributions of the input batch sizes.

Lastly, the results obtained with the model-based approach
are validated with respect to the inputs (for the workload
profiling) and actual measurements (for the network KPI
estimation); for each test point, 100 samples are collected,
from which the 99% confidence intervals are obtained and
indicated with error bars.

A. Emulating BMAP Arrivals

Rather than simply tuning deterministic parameters in
the Ixia NX2 traffic generator, as in [6], incoming traffic
is more accurately generated to emulate BMAP arrivals
in this extended version. Tcl scripts are used to specify
batch inter-arrival times and batch sizes. Realizations of
the batch inter-arrival times are drawn from exponential
distributions (setting the desired mean value), while those of
batch sizes from truncated generalized Pareto distributions
(with default shape parameter, and varying the scale and
location parameters to approximate the desired mean value).
The resulting pdfs of the inter-arrival times and batch sizes
are illustrated in Figs. 4 and 5, respectively.

In the Tcl scripts, BMAP is emulated by assigning each
batch (of X packets) to a stream, as well as an inter-stream
gap (ISG) that approximates the inter-arrival time in the model.
Starting from the first stream/batch, the next one is generated
after the specified ISG, and so on. Then, the system loops back
to the first stream/batch after the ISG of the last one, as shown
in Fig. 6. Since the traffic generator allows up to 4096 streams
when using Gigabit ports, and only 512 streams when using
10 Gigabit ports, we use the former to achieve better approx-
imations of the batch size and inter-arrival time distributions.

B. Validation of Workload Profiling

As initially motivated in [6], the proposed approach
seeks to profile VNF workloads beyond offered loads and

Fig. 6: Emulating BMAP arrivals.

Fig. 7: Core utilization for varying VNF workload burstiness.

utilization – specifically, to capture the workload burstiness,
as characterized by the model parameters λ, β(1) and β(2).

1) Offered load and utilization: Using the vnstat
command, we obtain ÕL with maximum and mean absolute
percent error of 5.69% and 2.15%, respectively. Looking at
Eq. (11), the same accuracy is expected for ρ̂ with a constant
value for µ.

Fig. 7 shows a comparison between the measured (ρ̃) and
estimated (ρ̂) utilization values, with values computed from
the input model parameters (ρin – the utilization due to actual
packet processing). It can be observed how ρ̂ fits with the
model, while ρ̃ exhibits an overhead that seems to be highly
correlated with the batch size; this further motivates the need
to capture the traffic burstiness.

2) Burstiness: In this work, it was observed that with
BMAP emulation the idlestat command gave reliable
estimates for λ, which also comply with the theory of Poisson
processes, while the software PMCs initially considered in
[6] failed. Fig. 8a shows the estimates obtained based on
Eq. (12), with α1 = 0.910651 and α0 = −60.418339. Tight
confidence intervals and low absolute errors are achieved,
even with varying values of β(1) aggregated in each test point.

A similar level of accuracy is expected with the β(1)
estimates as they are solely based on ÕL and λ̂, as indicated
in Eq. (13); the obtained estimates are shown in Fig. 8b. On
the other hand, Fig. 8c shows the β(2) estimates obtained
based on Eq. (14). Although the input and estimated values
follow the same trend, a relatively higher variance (and hence,
errors) are observed in β̂(2) stemming from the fact that the
starting point was the busy times (i.e., Eq. (15)), which also
depend on other model parameters.

C. Validation of Network KPI Estimation

In this sub-section, we apply the results obtained from the
workload profiling to the real-time estimation of networking
KPIs – specifically, the VNF power consumption and system
latency. Then, the estimates obtained from the power (i.e.,
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(a) batch arrival rate (b) 1st factorial moment of X (c) 2nd factorial moment of X

Fig. 8: Estimating key statistical features of the workload burstiness.

Eq. (6)) and latency (i.e., Eq. (9)) models are compared with
actual measurements.

As regards the power consumption, we suppose that the
core power consumption due to the VNF can be obtained as
Φ̃ = Φ̃cpkg−∆Φ, where Φ̃cpkg is the power consumed by the
core part of the package (measurable with the turbostat
command), and ∆Φ is the overhead due to the other cores
in the package. Recalling that the VNF is pinned to a core
under (C1E , P0T ), and the rest of the cores are in state C6,
we consider ∆Φ ≈ 15.93 W in this work.

On the other hand, we suppose that the VNF latency
can be obtained as D̃ = D̃ixia − ∆D, where D̃ixia is the
store-and-forward latency measurable from the user interface
of the traffic generator, and ∆D is the overhead due to the
2-way transmission on a Gigabit link (i.e., ≈ 2β/1488095)
plus the busy overhead ∆T ≈ 90 µs (that includes τr, context
switching (i.e., for which [25] proposed a rule of thumb of
30 µs), sleep transitions, etc.).

1) Power: Fig. 9a illustrates the behaviour of the power
model for varying traffic burstiness. Intuitively, by looking
at Eq. (6), the average core power consumption is linearly
dependent on both λ and β(1) (embedded in ρ), although a
stronger correlation is observed with the former.

Results on the model-based power estimation, and its
comparison with the actual measurements (in terms of
absolute error) are shown in Fig. 9b. As before, tight
confidence intervals and low absolute errors are achieved,
even with varying values of β(1) aggregated in each test point.

2) Latency: Fig. 10a illustrates the behaviour of the
latency model for varying traffic burstiness. Contrary to the
power consumption, the average VNF latency incurred is
more strongly linked to β(1) (and β(2)) than to λ.

Results on the model-based latency estimation, and
its comparison with the actual measurements (in terms
of absolute error) are shown in Fig. 10b. Tight confidence
intervals and low absolute errors are also achieved in this case,
even with varying values of λ aggregated in each test point.

D. Validation on Facebook’s Dataset

Finally, to further support our assumptions and exhaustive
validation results with the wide range of (λ, β), we sample
Facebook’s web server cluster dataset [45] [46]. The
timestamps corresponding to each (source) IP address are
analyzed to derive the batch inter-arrival times and sizes.

(a) Power model

(b) Model-based estimates vs measurements

Fig. 9: Estimating the power consumption.

Looking at the top 500 addresses in the trace files (in terms
of occurrences), Fig. 11a and 11b show the average batch
inter-arrival times and sizes, respectively. A sort of steady-state
phase can be observed from the 185th address (marked by the
red dotted lines) – intuitively, this means that addresses in this
subset have similar traffic burstiness and hence, comparable
system behaviors. With this in mind, 5 IP addresses are ran-
domly chosen from the said subset for the detailed validation.

In the following, the considered batch inter-arrival times
and sizes are first fitted to exponential and generalized Pareto
distributions, respectively. Then, considering the traffic of
each address as input to the SUT, the network KPI values
obtained with the proposed model-based estimation are
compared with actual measurements.

1) Distribution fitting: Using Matlab’s fitdist function,
we obtain the distribution parameters resulting from fitting
the input distributions with the considered models. The
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(a) Latency model

(b) Model-based estimates vs measurements

Fig. 10: Estimating the system latency.

(a) Inter-arrival times (b) Batch sizes

Fig. 11: Average inter-arrival times and batch sizes for the top
500 IP addresses by occurrence.

goodness of fit is then measured in terms of the coefficients
of correlation (R) and determination (R2).

Figs. 12 and 13 show how well the distributions fit for
the 5 IP addresses. Particularly, it can be observed in Fig. 12
that the input batch inter-arrival times have R > 95% and
R2 > 90% with the exponential distribution, while the batch
sizes in Fig. 13 have R and R2 values over 99% with the
generalized Pareto distribution. Such high values of R and R2

confirm that the samples considered from Facebook’s dataset
are well-represented by the models.

2) Network KPI testing: The traffic of each address is fed as
input to the SUT in order to evaluate the corresponding power
consumptions and latencies. As in Sub-section VI-C, the
values obtained with the proposed model-based estimation and
actual measurements are compared in terms of absolute errors.

Fig. 14a shows the average power consumption for the 5
IP addresses, while Fig. 14b the average system latencies.
Tight confidence intervals and low absolute errors (i.e., ≈ 3%
for power and ≈ 6% for latency) can be observed for both

(a) <IP1> (b) <IP2>

(c) <IP3> (d) <IP4>

(e) <IP5>

Fig. 12: Fitting batch inter-arrival times to exponential distri-
butions, Exp(<mean>).

KPIs across all cases. Such accuracies for real-time network
KPI estimation demonstrate how the proposed approach can
be a powerful tool towards achieving the required scalability
and sustainability levels in next-generation network/service
management and orchestration.

VII. CONCLUSION

NFV is an emerging softwarization solution that brings
flexibility and programmability through the software
implementation of network functions (i.e., as VNFs) on COTS
hardware. A number of issues surround the performance and
energy efficiency of such virtual implementations, with respect
to their physical counterparts. This work seeks to facilitate
scalable and sustainable network/service management and
orchestration mechanisms, through a novel model-based
analytics approach for profiling VNF workloads, towards
real-time estimation of network KPIs.

Particularly, the MX/G/1/SET core model is considered
to capture both the workload burstiness and system setup
times. A complete analytical characterization of the system
is presented, based on which the model-based analytics
approach is built upon. Key model parameters are exposed
from available and easily measurable PMCs in Linux host
servers. In terms of generalizability, the proposed approach
goes beyond current trends in ML-based analytics, where
models are tightly coupled with the training data.
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(a) <IP1> (b) <IP2>

(c) <IP3> (d) <IP4>

(e) <IP5>

Fig. 13: Fitting batch sizes to generalized Pareto distributions,
GenPareto(<shape>,<scale>,<location>).

Experimental evaluations have been performed on a
SUT equipped with Intel R© Xeon R© E5-2643 v3 3.40GHz
processors, with input traffic generated to emulate BMAP
arrivals through scripting in an Ixia NX2 traffic generator,
as well as some samples from Facebook’s web server cluster
traces. Results show good estimation accuracies for both VNF
workload profiling and network KPI estimation, with respect
to the input traffic and actual measurements, respectively.
This demonstrates how the proposed approach can be a
powerful tool, not only for augmenting the capabilities of an
NFVI’s VIM, but also in the development of next-generation
resource/service provisioning solutions.

APPENDIX A
BUSY PERIOD ANALYSIS

We adopt the approach presented in [47], decomposing the
busy period B of an MX/G/1/SET queue into two components:
(a) the initial busy period Bτ – in which all the customers
that arrived during the setup SET are served, and (b) the
ordinary busy period BX that corresponds to the busy period
of an MX/G/1 queue – in which the batch initiating the setup
and the rest that arrived while the core is busy are served.

Considering that the busy period density B(t) is given by
the convolution of the probability densities Bτ (t) and BX(t),
then its Laplace transform is simply obtained as the product
B∗(θ) = B∗τ (θ)B∗X(θ).

(a) power

(b) latency

Fig. 14: Estimating network KPIs with Facebook’s dataset.

Let the random variable ητ denote the number of batch
arrivals during SET . Given that SET = t and ητ = m,
then Bτ is distributed as the sum of the lengths of m
independent ordinary busy periods BX1, . . . , BXm [33]. By
first conditioning on SET and ητ , and then averaging out,
we obtain the Laplace transform of Bτ (t) as:

B∗τ (θ) =

∫ ∞
0

∞∑
m=1

e−λt
(λt)m

m!
E
{
e−θ[BX1+...+BXm]

}
τ(t) dt

= τ∗
(
λ− λB∗X(θ)

)
(A.1)

Similarly, let the random variables SX1 , X1 and η1 denote
the service time of the initiating batch, the number of
customers in this batch, and the number of batch arrivals
during SX1

, respectively. Given that SX1
= t, X1 = j and

η1 = n, then in the same way as before, BX is distributed as
the sum of the lengths of t and n independent ordinary busy
periods. By conditioning on SX1 , X1 and η1, and proceeding
as before, we obtain the Laplace transform of BX(t) as:

B∗X(θ) =

∞∑
j=1

βj

∫ ∞
0

∞∑
n=1

e−λt
(λt)n

n!
E
{
e−θ[t+BX1+...+BXn]

}
· s1(t) ∗ · · · ∗ sj(t) dt

=

∞∑
j=1

βjs
∗(θ + λ− λB∗X(θ)

)j
= X

(
s∗
(
θ + λ− λB∗X(θ)

))
(A.2)

APPENDIX B
SYSTEM STATE PROBABILITIES

The Probability Generating Function (PGF) P (z) of
the number of customers in an MX/G/1/SET queueing
system at a random epoch can be expressed as the product
P (z) = Pτ (z)PX(z), with Pτ (z) being the PGF of the
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number of customer arrivals during the residual life of the
vacation period (i.e., I + SET ) and

PX(z) =
(1− ρ)(1− z)s∗

(
λ− λX(z)

)
s∗
(
λ− λX(z)

)
− z

(B.1)

the well-known PGF of the number of customers in the
ordinary MX/G/1 system.

Let ϕ(z) = X(z)τ∗
(
λ− λX(z)

)
be the PGF of the

number of customer arrivals during a generic vacation period,
from which we obtain the average number of customers by
the end of SET as ϕ(1) = dϕ(z)

dz |z=1 = β(1)(1 + λτ(1)). By
simplifying the general expression found in [48], we arrive to

Pτ (z) =
1−X(z)τ∗

(
λ− λX(z)

)
(1 + λτ(1))

(
1−X(z)

) (B.2)
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[17] C. Möbius, W. Dargie, and A. Schill, “Power Consumption Estimation
Models for Processors, Virtual Machines, and Servers,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 6, pp. 1600–1614, Jun. 2014.

[18] M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Consumption
Modeling: A Survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp.
732–794, 1Q 2016.

[19] M. Dimitrov, K. Doshi, R. Khanna, K. Kumar, and C. Le, “Coordinated
Optimization: Dynamic Energy Allocation in Enterprise Workload,”
Intel R© Technol. J., vol. 16, no. 2, pp. 32–51, 2012.

[20] “Volume 3B: System Programming Guide, Part 2,” Intel R© 64 and IA-32
Architectures Software Developer’s Manual, 2016. [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/documents/manu-
als/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf

[21] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Latency Evaluation of a Virtualized
MME,” in Proc. 2015 Wireless Days (WD), Toulouse, France, Mar. 2016.

[22] W. Chiang and J. Wen, “Design and Experiment of NFV-Based Vir-
tualized IP Multimedia Subsystem,” in Proc. 3rd Int. Conf. Comput.
Commun. Syst. (ICCCS), Nagoya, Japan, Apr. 2018, pp. 397–401.

[23] M. S. Yoon and A. E. Kamal, “NFV Resource Allocation Using Mixed
Queuing Network Model,” in Proc. 2016 IEEE Global Commun. Conf.
(GLOBECOM), Washington, DC, USA, Dec. 2016.

[24] F. C. Chua, J. Ward, Y. Zhang, P. Sharma, and B. A. Huberman,
“Stringer: Balancing Latency and Resource Usage in Service Function
Chain Provisioning,” IEEE Internet Comput., vol. 20, no. 6, pp. 22–31,
Nov. 2016.

[25] S. Gebert, T. Zinner, S. Lange, C. Schwartz, and P. Tran-Gia, “Per-
formance Modeling of Softwarized Network Functions Using Discrete-
Time Analysis,” in Proc. 28th Int. Teletraffic Congr. (ITC28), vol. 1,
Würzburg, Germany, Sep. 2016, pp. 234–242.

[26] R. Bruschi, F. Davoli, P. Lago, and J. F. Pajo, “Joint Power Scaling of
Processing Resources and Consolidation of Virtual Network Functions,”
in Proc. 5th IEEE Int. Conf. Cloud Netw. (CloudNet), Pisa, Italy, Oct.
2016, pp. 70–75.

[27] R. Bolla, R. Bruschi, and P. Lago, “The Hidden Cost of Network Low
Power Idle,” in Proc. 2013 IEEE Int. Conf. Commun. (ICC), Budapest,
Hungary, Jun. 2013, pp. 4148–4153.
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