Journal article Open Access
Dzmitry V Yakimchuk; Egor Yu Kaniukov; Sergey Lepeshov; Victoria D Bundyukova; Sergey E Demyanov; Grigory M Arzumanyan; Nelya V Doroshkevich; Kahramon Z Mamatkulov; Arne Bochmann; Martin Presselt; Ondrej Stranik; Soslan A Khubezhov; Alex Krasnok; Andrea Alù; Vladimir A Sivakov
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3697207</identifier> <creators> <creator> <creatorName>Dzmitry V Yakimchuk</creatorName> <affiliation>Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, Minsk 220072, Belarus</affiliation> </creator> <creator> <creatorName>Egor Yu Kaniukov</creatorName> <affiliation>Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, 36 St. Francyska Skaryny 220141 Minsk, Belarus & Department of Electronics Materials Technology, National University of Science and Technology MISiS, 4 Leninskiy Prospekt, 119049 Moscow, Russian Federation</affiliation> </creator> <creator> <creatorName>Sergey Lepeshov</creatorName> <affiliation>Department of Physic, ITMO University, 49 Avenue Kronverksky 197101 St. Petersburg, Russian Federation</affiliation> </creator> <creator> <creatorName>Victoria D Bundyukova</creatorName> <affiliation>Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, Minsk 220072, Belarus</affiliation> </creator> <creator> <creatorName>Sergey E Demyanov</creatorName> <affiliation>Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, Minsk 220072, Belarus</affiliation> </creator> <creator> <creatorName>Grigory M Arzumanyan</creatorName> <affiliation>Joint Institute for Nuclear Research, 6 St. Joliot-Curie 141980 Dubna, Russian Federation & Dubna State University, 19 St. Universitetskaya 141982 Dubna, Russian Federation</affiliation> </creator> <creator> <creatorName>Nelya V Doroshkevich</creatorName> <affiliation>Dubna State University, 19 St. Universitetskaya 141982 Dubna, Russian Federation</affiliation> </creator> <creator> <creatorName>Kahramon Z Mamatkulov</creatorName> <affiliation>Dubna State University, 19 St. Universitetskaya 141982 Dubna, Russian Federation</affiliation> </creator> <creator> <creatorName>Arne Bochmann</creatorName> <affiliation>Ernst-Abbe-Hochschule Jena, 2 St. Carl-Zeiß-Promenade 07745 Jena, Germany</affiliation> </creator> <creator> <creatorName>Martin Presselt</creatorName> <affiliation>Leibniz Institute of Photonic Technology, 9 St. Albert-Einstein-Straße 07745 Jena, Germany</affiliation> </creator> <creator> <creatorName>Ondrej Stranik</creatorName> <affiliation>Leibniz Institute of Photonic Technology, 9 St. Albert-Einstein-Straße 07745 Jena, Germany</affiliation> </creator> <creator> <creatorName>Soslan A Khubezhov</creatorName> <affiliation>Department of Physic, North-Ossetian State University, 46 St. Vatutina, 362025 Vladikavkaz, Russian Federation</affiliation> </creator> <creator> <creatorName>Alex Krasnok</creatorName> <affiliation>Department of Physic, ITMO University, 49 Avenue Kronverksky 197101 St. Petersburg, Russian Federation & Photonics Initiative, Advanced Science Research Center, 85 St. Nicholas Terrace, 10031 New York, United States</affiliation> </creator> <creator> <creatorName>Andrea Alù</creatorName> <affiliation>Photonics Initiative, Advanced Science Research Center, 85 St. Nicholas Terrace, 10031 New York, United States & Physics Program, Graduate Center City University of New York, 85 St. Nicholas Terrace 10031 New York, United States & Department of Electrical Engineering, City College of New York, 85 St. Nicholas Terrace 10031 New York, United States</affiliation> </creator> <creator> <creatorName>Vladimir A Sivakov</creatorName> <affiliation>Leibniz Institute of Photonic Technology, 9 St. Albert-Einstein-Straße 07745 Jena, Germany</affiliation> </creator> </creators> <titles> <title>Self-organized spatially separated silver 3D dendrites as efficient plasmonic nanostructures for Surface-enhanced Raman spectroscopy applications</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-12-21</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3697207</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsPreviousVersionOf" resourceTypeGeneral="JournalArticle">10.1063/1.5129207</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3697206</relatedIdentifier> </relatedIdentifiers> <version>Author Accepted Manuscript</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Surface-enhanced Raman spectroscopy (SERS) is a promising optical method for analyzing molecular samples of various nature. Most SERS studies are of an applied nature indicating a serious potential for their application in analytical practice. Dendrite-like nanostructures have great potential for SERS, but the lack of a method for their predictable production significantly limits their implementation. In this paper, a method for controllable obtaining spatially separated, self-organized and highly-branched silver dendrites via template synthesis in pores of SiO2/Si is proposed. The dendritic branches have nanoscale roughness creating many plasmon-active &ldquo;hot spots&rdquo; required for SERS. The first held 3D modeling of the external electromagnetic wave interaction with such a dendrite, as well as experimental data, confirm this theory. Using the example of a reference biological analyte, which is usually used as a label for other biological molecules, the dendrites SERS-sensitivity up to 10&ndash;15 M was demonstrated with Enhancement factor of 108. The comparison of simulation results with SERS experiments allows distinguishing the presence of electromagnetic and chemical contributions, which have a different effect at various analyte concentrations.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/778308/">778308</awardNumber> <awardTitle>Physical principles of the creation of novel SPINtronic materials on the base of MULTIlayered metal-oxide FILMs for magnetic sensors and MRAM</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 37 | 37 |
Downloads | 134 | 134 |
Data volume | 149.0 MB | 149.0 MB |
Unique views | 34 | 34 |
Unique downloads | 129 | 129 |