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Abstract—In this paper, the outage performance of downlink
non-orthogonal multiple access (NOMA) is investigated for the
case where each user feeds back only one bit of its channel
state information (CSI) to the base station. Conventionally,
opportunistic one-bit feedback has been used in fading broadcast
channels to select only one user for transmission. In contrast,
the considered NOMA scheme adopts superposition coding to
serve all users simultaneously in order to improve user fairness.
A closed-form expression for the common outage probability
(COP) is derived, along with the optimal diversity gains under
two types of power constraints. Particularly, it is demonstrated
that the diversity gain under a long-term power constraint is
twice as large as that under a short-term power constraint.
Furthermore, we study dynamic power allocation optimization
for minimizing the COP, based on one-bit CSI feedback. This
problem is challenging since the objective function is non-convex;
however, under the short-term power constraint, we demonstrate
that the original problem can be transformed into a set of
convex problems. Under the long-term power constraint, an
asymptotically optimal solution is obtained for high signal-to-
noise ratio.

Index Terms—Non-orthogonal multiple access, downlink trans-
mission, common outage probability, one-bit feedback, power
allocation.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been recog-
nized as an important multiple access (MA) technique in
future fifth generation (5G) networks since a balanced tradeoff
between spectral efficiency and user fairness can be real-
ized [1]–[9]. Unlike conventional MA, such as time-division
multiple access (TDMA), NOMA simultaneously transmits
messages to multiple users. The power domain is utilized
by NOMA such that different users are served at different
power levels. The basic idea of NOMA is motivated by the
optimal coding scheme for the broadcast channel (BC) [10],
which combines superposition coding at the transmitter with
successive interference cancellation (SIC) decoding at the
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receivers. However, compared to the conventional transmission
schemes for the BC, NOMA imposes an additional fairness
constraint on transmission, i.e., more power is always allocated
to the users with poorer channel conditions, which is different
from the conventional waterfilling power allocation scheme.
In this sense, NOMA can be viewed as a special case of the
superposition coding developed for the BC [11].

The capacity region of the degraded discrete memoryless
BC was first found by Cover based on superposition coding
[10]. The work in [12] then established the capacity region
of the Gaussian BC with single-antenna terminals. For the
multiple-input multiple-output (MIMO) Gaussian BC, the ca-
pacity region can be achieved by applying dirty paper coding
(DPC) [13]. Moreover, the ergodic capacity and the outage
capacity/probability of the fading BC with perfect channel
state information (CSI) at both the transmitter and receivers
were studied in [14] and [15], respectively. Compared to
ergodic capacity, the concept of outage assumes the transmis-
sion with a predefined rate, which is more appropriate for
applications with strict delay constraints. Two types of outage
probabilities were defined in [15], namely the common outage
probability (COP) and the individual outage probability (IOP).
For the COP, an outage event occurs if any of the users are
in outage. For the IOP, the outage events of individual users
are considered. For the case where CSI is not available at the
transmitter, the outage performance was analyzed in [16].

For the downlink MA scenario with K users, another key
performance evaluation criterion is multiuser diversity, where
serving the user with the best instantaneous channel gain
yields the optimal ergodic sum rate [17], [18]. However, user
selection requires a large amount of CSI feedback, which is
difficult to implement in practice. Motivated by this, a signif-
icant amount of existing work is dedicated to harvesting the
multiuser diversity with only quantized CSI at the transmitter
[19], [20]. One can refer to the survey in [21] for more
details. One of the most spectrally efficient approaches is
to employ one-bit feedback for opportunistic user selection,
which was proposed for the fading BC in [22]–[27]. The
outage performance with one-bit feedback was investigated
in [24], [26], and the use of one-bit feedback has also been
applied to the MIMO case in [28], [29].

This paper investigates the block fading BC with one bit
feedback from the new perspective of NOMA. The traditional
one-bit feedback schemes in [22]–[27] opportunistically select
a single user for transmission within each fading block, and
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hence do not achieve short-term fairness1 in general. Com-
pared to these works, NOMA emphasizes short-term fairness,
which is achieved by having the base station transmit messages
to all K users simultaneously using superposition coding.
In comparison with the existing works on NOMA assuming
availability of perfect CSI at the transmitter (e.g., [3]–[6]),
the proposed NOMA scheme with one-bit feedback enjoys a
lower overhead, especially when the number of users is large.
It is worth pointing out that this one-bit feedback scheme is
aligned with how NOMA has been implemented in practice.
For example, multiuser superposition transmission (MUST), a
downlink two-user version of NOMA, has been included in 3rd
generation partnership project long-term evolution advanced
(3GPP-LTE-A) networks [30]. For MUST, the base station
needs to obtain partial CSI to determine the ordering of
the users, and in [30], CSI feedback has been particularly
highlighted as a potential enhancement to assist the base
station in performing user ordering. Most recently, in [7],
[8], the authors have investigated the outage performance of
NOMA with partial CSI knowledge. However, the works in
[7], [8] did not consider quantized CSI feedback and the
proposed schemes are fundamentally different from our work.

In this paper, a downlink NOMA system with one-bit feed-
back is investigated for delay-sensitive applications. Therefore,
the outage probability is used as the relevant performance
metric. Specifically, the COP is adopted as the performance
criterion, which is motivated by the fact that the COP captures
the event that outage occurs at any of the users and hence
emphasizes short-term fairness compared to the IOP. We derive
a closed-form expression for the COP by first defining (K+1)
feedback events with respect to the number of channel gains
exceeding a predefined threshold, and then analyzing the
conditional COP for each event. The optimal diversity gains
achieved by the considered NOMA scheme are derived under
short-term and long-term power constraints, respectively. Our
analysis shows that the diversity gain under the long-term
power constraint is twice as large as that under the short-term
power constraint.

Furthermore, in order to minimize the COP, we study a
dynamic power allocation policy based on CSI feedback, i.e.,
different power allocation schemes are developed for different
feedback states. The formulated power allocation problem
is challenging since the objective function for minimizing
the COP is non-convex. To make this problem tractable,
under the short-term power constraint, we first characterize
the properties of the optimal power allocation solution, which
can be used to transform the problem into a series of convex
problems. Under the long-term power constraint, we apply a
high signal-to-ratio (SNR) approximation and show that the
approximated problem is convex. Our analysis shows that, for
each feedback event, the optimal solution is in the form of
two increasing geometric progressions. An efficient iterative
search algorithm is proposed to determine the length of each
geometric progression. Numerical results reveal that one-bit
feedback significantly improves the outage performance of

1In this paper, short-term fairness means that user fairness is guaranteed
within any fading block, whereas long-term fairness means that user fairness
is guaranteed within a large number of fading blocks.

NOMA compared to the case without CSI feedback.
Throughout this paper, we use P(·) to denote the prob-

ability of an event, and E(·) denotes the expectation of
a random variable. In addition, {xi} denotes the sequence
formed by all the possible xi’s, and [1 : K] denotes the
set {1, · · · ,K}. Furthermore, log(·) denotes the logarithm
that is taken to base 2; ln(·) denotes the natural logarithm;
Cn

K , K!
n!(K−n)! , for n ≤ K; and [x]+ , max{x, 0}. Finally,

“ .
=” denotes exponential equality, i.e., f(P )

.
= P x implies

limP→∞
log f(P )
logP = x, and “≤̇” and “≥̇” are defined similarly.

II. SYSTEM MODEL

Consider a downlink NOMA scenario with one single-
antenna base station and K single-antenna users. Quasi-
static block fading is assumed, where the channel gains from
the base station to all users are constant during one fading
block consisting of T channel uses, but change independently
from one fading block to the next fading block. The base
station sends K messages to the users using the NOMA
scheme, i.e., it sends x(t, b) =

∑K
k=1 sk(t, b) at time instant t

within fading block b, where sk(t, b) is the transmitted signal
(containing the information-bearing message and the power
allocation coefficient) for user k and the signals for different
users are mutually independent. Accordingly, user i receives
the following

yk(t, b) = hk(b)
K∑
i=1

sk(t, b) + nk(t, b), t ∈ [1 : T ], (1)

at time instant t within fading block b. Here, the noise samples
nk(t, b) at user k are independent and identically distributed
complex Gaussian random variables with zero mean and unit
variance. hk(b) denotes the channel gain from the base station
to user k in block b, which is assumed to be a zero mean
circularly symmetric complex Gaussian random variable with
unit variance. Moreover, the users have mutually independent
channel gains. This paper exclusively considers the case where
all codewords span only a single fading block, and the base
station transmits one message to each user in each block with
the same fixed rate r0 bits per channel use (BPCU), in order
to guarantee fairness [4].

For the sake of brevity, the fading block index b will be
omitted in the rest of this paper whenever this does not cause
any confusion. Assume that all users have perfect CSI and
compare their fading gains to a predefined threshold, denoted
by α. Particularly, given hk, user k feeds back in each fading
block a single bit2 “Q(hk)” to the base station via a zero-delay
reliable link, where Q(hk) = 1 if |hk|2 ≥ α, and Q(hk) = 0,
otherwise.

A. User Ordering for NOMA

Denote the channel feedback sequence as {Q(hk)} ,
{Q(h1), · · · , Q(hK)}. Obviously, {Q(hk)} has 2K possible

2The one-bit feedback scheme considered in this paper is the simplest form
of a quantized feedback scheme, and its overhead is negligible when the length
of each fading block is moderate to large. However, this work can be viewed
as a benchmark for future studies of NOMA systems employing multiple-bit
feedback.
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realizations in each of which the elements are 0 or 1. Based on
these feedbacks, the base station will perform power allocation
for the K users. Thereby, the base station focuses only on
(K + 1) categories for the realizations of {Q(hk)}, and a
corresponding random variable is defined in the following.

Definition 1: Define a random variable N with respect
to the K-dimensional random binary feedback sequence
{Q(hk)} as N , K−

∑K
k=1 Q(hk). Obviously, N has (K+1)

possible realizations, and event N = n represents the case
where n users send “0” and the other K − n users send “1”,
n ∈ [0 : K].

For event N = n, the base station uses three steps to
determine the user ordering: (i) divide the users into two
groups corresponding to feedbacks “0” and “1”, denoted as
G0|n and G1|n, respectively; (ii) allocate the ordering indices
{1, · · · , n} to the users in G0|n, and the ordering indices
{n + 1, · · · ,K} to the users in G1|n; (iii) randomly index
(order) the users in the same group since the base station
cannot distinguish their fading gains.

Denote the channel gains for the ordered users by
{|hπ1 |2, |hπ2 |2, · · · , |hπK

|2}, where πk ∈ [1 : K], and πi ̸= πj

if i ̸= j. Hence, for event N = n, Q(hπk
) = 0 if 1 ≤ k ≤ n,

and Q(hπk
) = 1 if n + 1 ≤ k ≤ K. Then, the base station

broadcasts the superimposed message
∑K

k=1 sπk
(t) based on

the power allocation policy discussed in the next subsection,
where sπk

(t) is the signal for user πk in the t-th channel use
of a fading block.

Remark 1: According to the applied user ordering principle,
all channels hπk

are mutually independent if conditioned on
event N = n. This is because the two groups G0|n and G1|n
are determined by event N = n, and all users in the same
group are randomly ordered.

B. Successive Interference Cancellation (SIC)

The users employ SIC to decode their messages, based on
the user ordering determined by the base station. As explained
in the previous subsection, the ordering of the channels is
denoted as {|hπ1

|2, |hπ2
|2, · · · , |hπK

|2}. In the SIC process,
user πk will sequentially decode the messages of users πl,
l ∈ [1 : k]. Specifically, user πk will successively detect the
message of users πl, l < k, and then remove these messages
from its observation, such that the interference terms generated
from user π1 to user πl have been canceled when detecting
the message of user πl+1.

C. Power Constraint

For any block, the power allocated for user πk, whose
ordering index in the SIC process is k, is denoted as
Pk({Q(hk)}).While there are 2K possible feedback se-
quences, the power allocation policy used at the base station
will depend only on which of the K + 1 events N = n
happens, i.e., the power allocation policy for all sequences
corresponding to the same event are identical. Therefore,
the power allocated to user πk is denoted by Pk,n, i.e.,
Pk({Q(hk)}) = Pk,n, for event N = n.

We consider two different types of power constraints. In
particular, the short-term power constraint ensures that the sum

power of all users within any block is constrained. Specifically,
the short-term power constraint requires that the total power
allocated to all users within any block cannot exceed P , i.e.,

K∑
k=1

Pk,n ≤ P, ∀n ∈ [0 : K]. (2)

In contrast, the considered long-term power constraint ensures
that the average total transmission power is constrained, i.e.,

E

[
K∑

k=1

Pk({Q(hk)})

]
=

K∑
k=1

E [Pk({Q(hk)})] ≤ P, (3)

where the expectation of Pk({Q(hk)}) can be calculated as

E [Pk({Q(hk)})]
(a)
=
∑
q∈Q

p(q)Pk(q)
(b)
=

K∑
n=0

∑
q∈Qn

p(q)Pk(q)

(c)
=

K∑
n=0

Pk,n

∑
q∈Qn

p(q)

 (d)
=

K∑
n=0

[Pk,nP(N = n)] , (4)

where (a) follows from the definitions Q ,
{q = (q1, · · · , qK) : qk ∈ {0, 1},∀k ∈ [1 : K]} and
p(q) , P({Q(hk)} = q); (b) follows from the definition
Qn ,

{
q = (q1, · · · , qK) ∈ Q : K −

∑K
k=1 qk = n

}
,

∀n ∈ [0 : K]; (c) holds since Pk(q) = Pk,n if q ∈ Qn as
shown at the beginning of this subsection; (d) holds since
P(N = n) =

∑
q∈Qn

p(q) according to Definition 1. Thus,
the long-term power constraint in (3) can be rewritten as

K∑
k=1

E [Pk({Q(hk)})] =
K∑

k=1

K∑
n=0

[Pk,nP(N = n)]

=
K∑

n=0

[
P(N = n)

K∑
k=1

Pk,n

]
≤ P. (5)

Remark 2: Both types of power constraints are widely used
in the related literature, e.g., [23], [25], [26], [31]. The short-
term power constraint is appropriate for applications with
strict peak power constraints, whereas the long-term power
constraint is appropriate for applications with average power
constraints.

III. OUTAGE PROBABILITY

In this section, the outage probability of the NOMA system
considered in Section II will be analyzed. However, first, some
useful preliminary results are provided in the next subsection.

A. Preliminary Results

We first analyze of the conditional probability P(|hπk
|2 <

xk|N = n) for xk > 0, k ∈ [1 : K], where random variable
N is defined in Definition 1. Based on the user ordering in
Section II, we know that, for event N = n, |hπk

|2 < α if
k ∈ [1 : n], and |hπk

|2 ≥ α otherwise. In addition, all channels
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hπk
are mutually independent if conditioned on event N = n,

as explained in Remark 1. Thus, we have 3

P(|hπk
|2 < xk

∣∣ N = n)=P
(
|hπk

|2 ≤ xk

∣∣ |hπk
|2 < α

)
=

P
(
|hπk

|2 ≤ xk, |hπk
|2 < α

)
P (|hπk

|2 < α)

= min

{
1− e−xk

1− e−α
, 1

}
, xk ≥ 0, k ∈ [1 : n]. (6)

Similarly, we have

P(|hπk
|2 < xk

∣∣ N = n) =
[
1− e−(xk−α)

]+
,

xk ≥ 0, k ∈ [n+ 1 : K]. (7)

Next, the expressions for the signal-to-interference-plus-
noise ratios (SINRs) at the receivers will be developed. As
explained in Section II-B, SIC is adopted in the decoding
process and the ordering of the channels is denoted as
{|hπ1 |2, |hπ2 |2, · · · , |hπK

|2}. Thus, the SINR for user πk to
decode the message of user πl is given by [10]

SINRl→k =
Pl,n|hπk

|2

|hπk
|2
∑K

m=l+1 Pm,n + 1
, l ∈ [1 : k]. (8)

B. Outage Probability

This paper adopts the COP [15] as performance criterion
for the considered NOMA system since short-term fairness
can be guaranteed with this criterion. The COP is provided in
the following theorem.
Theorem 1: The COP of the considered one-bit NOMA

scheme can be expressed as

PCommon(α, {Pk,n})=
K∑

n=0

Pn(α)

[
1−

K∏
k=1

(1−PIndiv
k,n (α,Pn))

]
,

(9)

where Pn , {P1,n, · · · , PK,n} is the power allocation se-
quence for event N = n; Pn(α) and PIndiv

k,n (α,Pn) are defined
as:

Pn(α) , Cn
K(1− e−α)ne−α(K−n), (10)

PIndiv
k,n (α,Pn) ,

 min
{

1−e−ζ̂k,n

1−e−α , 1
}
, k ∈ [1 : n],[

1− e−(ζ̂k,n−α)
]+

, k ∈ [n+ 1 : K],

(11)

with the definition ζ̂k,n , max{ζ1,n, · · · , ζk,n}, and

ζk,n =
r̂0

Pk,n − r̂0
∑K

m=k+1 Pm,n

,∀k ∈ [1 : K],

where r̂0 , 2r0 − 1. (12)

Proof: Please refer to Appendix A.

3Note that, when n = 0 (i.e., event N = 0), the probabilities in (6) do not
exist; when n = K (i.e., event N = K), the probabilities in (7) do not exist.

Note that in (12), we have implicitly assumed that ζk,n ≥ 0,
i.e.,

Pk,n ≥ r̂0

K∑
m=k+1

Pm,n, ∀k ∈ [1 : K − 1], n ∈ [0 : K].

(13)

Such a constraint on power allocation is typical for NOMA
systems [3], [4], [6], where a user with poorer channel con-
ditions has to be allocated more power in order to guarantee
fairness. In addition, in order to facilitate the use of different
power constraints in the following discussions, we express
{Pk,n} as a function of {ζk,n} as follows:

Pk,n =
r̂0
ζk,n

+ r̂0

K∑
m=k+1

(r̂0 + 1)m−k−1 r̂0
ζm,n

,

∀k ∈ [1 : K], n ∈ [0 : K], (14)

which is obtained from (12) by applying mathematical induc-
tion. Thus, the sum power for event N = n can be expressed
as

K∑
k=1

Pk,n =

K∑
k=1

(
r̂0
ζk,n

+ r̂0

K∑
m=k+1

(r̂0 + 1)m−k−1 r̂0
ζm,n

)

=

K∑
k=1

(
r̂0
ζk,n

+
r̂20
ζk,n

k−2∑
i=0

(r̂0 + 1)i−2

)

=
K∑

k=1

(r̂0 + 1)k−1r̂0
ζk,n

. (15)

C. Diversity Gain

In order to provide some insight into the outage perfor-
mance, in this subsection, we analyze the diversity gains of
the COP in (9) under the short-term and long-term power
constraints. The diversity gain is defined as follows.

Definition 2: The diversity gain based on the COP is de-
fined as

d = − lim
P→∞

logPCommon

logP
. (16)

In addition, the diversity gain in (16) can be also expressed
as PCommon .

= P−d.
Then, the following two lemmas provide the diversity

gains of the COP under the short-term and long-term power
constraints.

Lemma 1: Under the short-term power constraint in (2), the
maximum achievable diversity gain of the considered NOMA
scheme is 1.

Proof: We consider a specific power allocation scheme
such that the values of the ζk,n’s in (12) are identical. Based
on this power allocation scheme, we will show that a diversity
gain of 1 can be achieved. The feedback threshold is set as
α = ln(2) for simplicity. Note that one can also choose any
other value of α to achieve a diversity gain of 1, which means
that the maximum diversity gain can be achieved for any α.
Then, a lower bound on the COP is derived to prove that a
diversity gain of 1 is optimal for all possible power allocation
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schemes and all possible choices of threshold α. Details of
the proof are provided in Appendix B.

Lemma 2: Under the long-term power constraint in (5), the
maximum achievable diversity gain of the considered NOMA
scheme is 2, which is achieved only if α satisfies α

.
= P−1.

Proof: We consider a specific power allocation scheme
such that the ζk,n’s in (12) have the same value for a given
n. We also choose a threshold α such that outages are not
occurring for event N = 0 (i.e., all the users feed back “1”).
Then, a lower bound on the COP is derived to prove that a
diversity gain of 2 is optimal for all possible power allocation
schemes and all possible choices of threshold α, under the
long-term power constraint. Details of the proof are provided
in Appendix C.

IV. POWER ALLOCATION

Existing works have demonstrated that power allocation has
significant impact on the outage performance in conventional
multiple access scenarios [15], [32], [33]. Motivated by this,
in this section, we formulate a power allocation problem to
minimize the COP PCommon in (9), under short-term and long-
term power constraints.

A. Problem Formulation

The optimization problem for the short-term power con-
straint can be formulated as follows:

min
α,{Pk,n}

K∑
n=0

Pn(α)

[
1−

K∏
k=1

(1− PIndiv
k,n (α,Pn))

]
(17a)

s.t. (2) and (13), Pk,n ≥ 0, ∀k ∈ [1 : K], n ∈ [0 : K].
(17b)

Similarly, the optimization problem for the long-term power
constraint can be formulated as follows:

min
α,{Pk,n}

K∑
n=0

Pn(α)

[
1−

K∏
k=1

(1− PIndiv
k,n (α,Pn))

]
(18a)

s.t. (5) and (13), Pk,n ≥ 0, ∀k ∈ [1 : K], n ∈ [0 : K].
(18b)

To simplify the above two problems, variable transformation
according to (12) is applied, and the problem in (17) is
transformed into the following equivalent form:

(P1) min
α,{ζk,n}

K∑
n=0

Pn(α)

[
1−

K∏
k=1

(1− PIndiv
k,n (α, ζn))

]
(19a)

s.t.
K∑

k=1

(r̂0 + 1)k−1r̂0
ζk,n

≤ P, n ∈ [0 : K]; (19b)

ζk,n ≥ 0, ∀k ∈ [1 : K], n ∈ [0 : K]. (19c)

where ζn = {ζ1,n, · · · , ζK,n} and PIndiv
k,n becomes a function

of ζn; (19b) is based on (2) and (15). Note that, according
to (14), the optimal power allocation scheme can be found
once the optimal values of {ζk,n} are obtained. Similarly,

the problem in (18) can be transformed into the following
equivalent form:

(P2) min
α,{ζk,n}

K∑
n=0

Pn(α)

[
1−

K∏
k=1

(1− PIndiv
k,n (α, ζn))

]
(20a)

s.t.
K∑

n=0

P(α)
K∑

k=1

(r̂0 + 1)k−1r̂0
ζk,n

≤ P ; (20b)

ζk,n ≥ 0, ∀k ∈ [1 : K], n ∈ [0 : K]. (20c)

The benefit of using the transformed problems in (19) and (20)
is that the number of constraints has been reduced. However,
problems (P1) and (P2) still involve the non-convex objective
function and are difficult to solve. There are (K(K +1)+ 1)
optimization variables in total, including K(K + 1) power
variables ζk,n and one threshold variable α. In the subsequent
subsections, we first address the power allocation problem for
a fixed threshold α, and then utilize a one-dimensional search
to find the optimal α.

B. Short-Term Power Constraint

For a fixed α, Pn(α) is also fixed, and therefore, the
objective in (19a) is additive with respect to subfunctions
Pn(α)

[
1−

∏K
k=1(1− PIndiv

k,n (α, ζn))
]
, where the n-th sub-

function depends on variable vector ζn, 0 ≤ n ≤ K.
Moreover, the constraints in (19b) and (19c) are uncoupled
with respect to the (K + 1) variable vectors ζn, 0 ≤ n ≤ K.
Hence, the joint optimization problem (P1) can be decomposed
into (K+1) decoupled subproblems without loss of optimality,
where the n-th subproblem has the following form:

max
ζn

f1,n(α, ζn) ,
K∏

k=1

(1− PIndiv
k,n (α, ζn)) (21a)

s.t.
K∑

k=1

(r̂0 + 1)k−1r̂0
ζk,n

≤ P, ζk,n ≥ 0, ∀k ∈ [1 : K]. (21b)

As shown in (11), PIndiv
k,n is a non-convex function. The

following proposition shows how to simplify PIndiv
k,n for k ∈

[n+ 1 : K].
Proposition 1: The optimal solution of problem (21) satis-

fies ζ̂k,n ≥ α, ∀k ∈ [n+ 1 : K], n ∈ [0 : K − 1].
Proof: From (11), we have PIndiv

k,n = 0 when ζ̂k,n ≤ α,
∀k ∈ [n + 1 : K], which means that, once ζ̂k,n ≤ α,
further decreasing ζ̂k,n cannot decrease PIndiv

k,n nor increase f1,n
in (21a). Thus, once ζ̂k,n ≤ α, we only need to consider
the case of ζ̂k,n = α, since this leads to a lower power
consumption for user k (i.e., Pk,n) than the case of ζ̂k,n < α,
as is oblivious from (12). In summary, the case of ζ̂k,n < α
can be ignored and the optimal solution of the considered
optimization problem satisfies ζ̂k,n ≥ α.

We can also simplify the functions PIndiv
k,n for k ∈ [1 : n]

by considering ζ̂k,n ≤ α only as explained in the following.
As shown in (11), if ζ̂k,n > α, ∀k ∈ [1 : n], we have
PIndiv
k,n = 1, and the objective function in (21a) has the worst

value (i.e., f1,n = 0) among the possible values between 0
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and 1. Exploiting the above considerations, the problem in
(21) can be simplified as follows:

max
ζn

f1,n(α, ζn) =
n∏

k=1

e−ζ̂k,n − e−α

1− e−α

K∏
k=n+1

e−(ζ̂k,n−α)

(22a)

s.t. (21b); and ζ̂k,n ≤ α, ∀k ∈ [1 : n]; (22b)

ζ̂k,n ≥ α, ∀k ∈ [n+ 1 : K]. (22c)

Remark 3: The constraint in (22b) requires P ≥ (r̂0+1)n−1
α

to satisfy ζ̂k,n ≤ α, ∀k ∈ [1 : n], as is oblivious from (14).
Note that if this requirement on the transmit power is not satis-
fied, i.e., P < (r̂0+1)n−1

α , PCommon
n = 1−

∏K
k=1(1−PIndiv

k,n ) = 1
for any power allocation, i.e., the COP for event N = n must
be 1 in this case.

To further simplify this problem, we introduce another
proposition which allows the elimination of ζ̂k,n.

Proposition 2: The optimal solution of problem (22) satis-
fies ζk,n ≤ ζk+1,n, ∀k ∈ [1 : K − 1].

Proof: We first consider the case that ζ2,n ≤ ζ1,n for
a fixed ζ1,n. From the definition of ζ̂k,n in Theorem 1 (i.e.,
ζ̂k,n = max{ζ1,n, · · · , ζk,n}), we have PIndiv

2,n = P(|h̃2|2 ≤
ζ̂2,n) = P(|h̃2|2 ≤ max{ζ1,n, ζ2,n}) = P(|h̃2|2 ≤ ζ1,n) if
ζ2,n ≤ ζ1,n, which means that, once ζ2,n ≤ ζ1,n, decreasing
ζ2,n cannot further decrease PIndiv

2,n nor increase f1,n in (22a).
In this case, we should set ζ2,n = ζ1,n, which requires less
power for user 2 (i.e., Pn,2) compared to the choice ζ2,n <
ζ1,n, as is oblivious in (12). Therefore, we can ignore the case
ζ2,n < ζ1,n and only consider the case ζ2,n ≥ ζ1,n without
loss of optimality. Carrying out the above steps iteratively, the
proposition is proved. 4

Using Proposition 2, the problem in (22) can be transformed
into

max
ζn

f2,n(α, ζn) ,
n∏

k=1

(
e−ζk,n − e−α

) K∏
k=n+1

e−ζk,n (23a)

s.t. (21b); ζk,n ≤ α, ∀k ∈ [1 : n]; (23b)
ζk,n ≥ α, ∀k ∈ [n+ 1 : K]; (23c)
ζk,n ≤ ζk+1,n, ∀k ∈ [1 : K − 1]. (23d)

The objective function f2,n is still non-convex. However,
by using the natural logarithm of f2,n, the problem in (22)
(i.e., the n-th suboptimal problem of problem (P1) in (19) for
a fixed α) can be transformed into the following equivalent
convex problem:

(P1.n) max
ζn

n∑
k=1

ln
(
e−ζk,n − e−α

)
−

K∑
k=n+1

ζk,n (24a)

s.t.
K∑

k=1

(r̂0 + 1)k−1r̂0
ζk,n

≤ P ; (24b)

ζ1,n ≥ 0; ζn,n ≤ α; ζn+1,n ≥ α; (24c)
ζk,n ≤ ζk+1,n, ∀k ∈ [1 : K − 1]. (24d)

4Note that a similar proposition has been provided in [4] to solve a different
optimization problem. However, the proof used here is different from the one
in [4].

One can calculate the Hessian matrix of the objective function
and the constraint in (24b) to verify that this problem is
convex. This convex optimization problem will be solved later
in Section V using corresponding numerical solvers, since a
closed-form expression for the optimal solution of problem
(P1.n) is difficult to obtain.

Furthermore, the optimal value of α in problem of (P1) in
(19) can be found by applying a one-dimensional search. It is
worth pointing out that the optimal α has a finite value. This
is because the probability that all users feed back the message
“0” goes to 1 (i.e., PK(α) → 1) if α is sufficiently large,
which is equivalent to the case without CSI feedback.

C. Long-Term Power Constraint

1) Approximation for High SNR: Compared to problem
(P1), problem (P2) in (20) is more challenging, since the
decoupling approach used to solve problem (P1) is not ap-
plicable. Here, in this subsection, we will focus on the high
SNR approximation of the objective function (i.e., PCommon)
in order to simplify the problem. Specifically, the objective
function is first simplified for high SNR, the optimal solution
of this approximated problem is then obtained for a fixed
α, and finally a one-dimensional search is used to find the
optimal value for α.

Based on Propositions 1 and 2, problem (P2) can be
simplified as:

(P3) min
{ζk,n}

K∑
n=0

Pn(α)f3,n(α, ζn) (25a)

s.t. (20b) and ζk,n ≥ 0, k ∈ [1 : n], n ∈ [1 : K]; (25b)
ζk,n ≥ α, ∀k ∈ [n+ 1 : K], n ∈ [0 : K − 1]; (25c)
ζk,n ≤ ζk+1,n, ∀k ∈ [1 : K − 1], n ∈ [0 : K], (25d)

where

f3,n(α, ζn) , 1−
n∏

k=1

[
e−ζk,n − e−α

]+
1− e−α

K∏
k=n+1

e−(ζk,n−α).

The following proposition shows that problem (P3) can be
approximately transformed into a convex problem at high
SNR.

Proposition 3: At high SNR, problem (P3) in (25) can be
approximately transformed into convex problem (P4), which
is defined as follows:

(P4) min
{ζk,n}

K∑
n=0

Pn(α)

[
n∑

k=1

ζk,n
1− e−α

+
K∑

k=n+1

(ζk,n − α)

]
(26a)

s.t. (20b) and ζk,n ≥ 0, k ∈ [1 : n], n ∈ [1 : K]; (26b)
ζk,n ≥ α, k ∈ [n+ 1 : K], n ∈ [0 : K − 1]; (26c)
ζk,n ≤ ζk+1,n, k ∈ [1 : K − 1], n ∈ [0 : K]. (26d)

Proof: Please refer to Appendix D.
Remark 4: Although the approximation in Proposition 3 is

obtained for high SNR, even in the moderate SNR regime,
the resulting suboptimal solution can still provide a significant
performance gain compared to benchmark schemes, as shown
later in Section V,
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2) Optimal Solution of Problem (P4): Problem (P4) is a
convex optimization problem for a given α. To further simplify
this problem, we define a new problem as follows.

Definition 3: A new convex optimization problem, denoted
by (P5), is obtained by removing the last constraint in (26d)
of problem (P4).

We will show in Proposition 4 that problems (P4) and (P5)
are exactly equivalent, i.e., the optimal solution of problem
(P5) automatically satisfies constraint (26d). The Lagrangian
function of the optimal solution for problem (P5) is given by

L({ζk,n}, w, {λk,n})

, Pn(α)

[
n∑

k=1

ζk,n
1− e−α

+
K∑

k=n+1

(ζk,n − α)

]

+ ω

(
K∑

n=0

Pn(α)

K∑
k=1

(r̂0 + 1)k−1r̂0
ζk,n

− P

)

−
K∑

n=1

n∑
k=1

λk,nζk,n −
K−1∑
n=0

K∑
k=n+1

λk,n(ζk,n−α), (27)

where λk,n, ω ≥ 0 are Lagrange multipliers. The Karush-
Kuhn Tucker (KKT) conditions are given by

∂L
∂ζk,n

=


P(α)

1−e−α − ωP(α)(r̂0+1)k−1r̂0
ζ2
k,n

−λk,n = 0,

if k ∈ [1 : n], n ∈ [1 : K];

P(α)− ωP(α)(r̂0+1)k−1r̂0
ζ2
k,n

−λk,n = 0,

if k ∈ [n+1 : K], n ∈ [0 : K−1].

(28)

The complementary slackness conditions can be expressed as
follows:

ω

(
K∑

n=0

Pn(α)
K∑

k=1

(r̂0 + 1)k−1r̂0
ζk,n

− P

)
= 0 (29a)

λk,nζk,n = 0 if k ∈ [1 : n], n ∈ [1 : K]; (29b)
λk,n(ζk,n−α) = 0 if k ∈ [n+ 1 : K], n ∈ [0 : K − 1].

(29c)

From (28) and (29a)-(29c), we have ω > 0, λk,n = 0, for
k ∈ [1 : n], n ∈ [1 : K], and the optimal ζk,n can be expressed
as follows:

ζk,n =


√

ω(r̂0 + 1)k−1r̂0(1− e−α),
if k ∈ [1 : n], n ∈ [1 : K];√

ωP(α)(r̂0+1)k−1r̂0
P(α)−λk,n

,

if k ∈ [n+ 1 : K], n ∈ [0 : K − 1].

(30)

The Lagrange multipliers are difficult to obtain directly. Hence,
we first study the properties of the optimal power allocation.
The following proposition will demonstrate that the constraint
in (26d) is always satisfied.

Proposition 4: The optimal solution of problem (P5) in (30)
satisfies ζk,n ≤ ζk+1,n, ∀k ∈ [1 : K − 1], n ∈ [0 : K], i.e.,
problems (P4) and (P5) are equivalent.

Proof: Please refer to Appendix E.
By using this proposition and also constraint (26c), one can

observe that, if ζk,n = α for a given k ∈ [n + 1 : K] and
n ∈ [0 : K − 1], ζl,n = α also holds ∀l ∈ [n+ 1 : k]. Hence,

we can define a series of integers representing the number of
ζk,n’s that are equal to α as follows.

Definition 4: For each n, denote in ∈ [0 : K − n] as the
number of ζk,n’s whose values are equal to α, i.e., ζk,n = α,
for k ∈ [n+1 : n+ in] and ζk,n > α for k ∈ [n+ in+1 : K].

Once all in’s are given, the optimal solution of the ζk,n’s
can be easily obtained as follows.

Theorem 2: If all integers in ∈ [0 : K − n] defined in
Definition 4 are known, the optimal solution of problems (P4)
and (P5) can be expressed as follows:

ζk,n=


√

ω(r̂0+1)k−1r̂0(1−e−α), if k ∈ [1 : n],
α, if k ∈ [n+1 : n+ in],√

ω(r̂0 + 1)k−1r̂0, if k ∈ [n+ in+1 : K],
(31)

for each n ∈ [0 : K], where

√
w =

∑K
n=0 Pn(α)An(in)

P −
∑K

n=0 Pn(α)Bn(in)
, (32)

and

An(in) ,
n∑

k=1

√
(r̂0 + 1)k−1r̂0

1− e−α
+

K∑
k=n+in+1

√
(r̂0 + 1)k−1r̂0,

(33)

Bn(in) ,
n+in∑
k=n+1

(r̂0 + 1)k−1r̂0
α

. (34)

Note that A0(i0) , 0 if i0 = K − n, and Bn(in) , 0 if
in = 0, ∀n ∈ [0 : K].

Proof: Since ζk,n > α if k ∈ [n+ in + 1 : K] as shown
in Definition 4, we have λk,n = 0 for k ∈ [n + in + 1 : K]
as shown in (29c). Hence, from (30), the expression for ζk,n
in (31) can be obtained. Moreover, since ω > 0 in (29a), we
have

K∑
n=0

Pn(α)
K∑

k=1

(r̂0 + 1)k−1r̂0
ζk,n

= P. (35)

Substituting the ζk,n in (31) into the above equality, we obtain
ω as shown in (32).

Remark 5: Theorem 2 shows that the optimal solution of
{ζ1,n, · · · , ζK,n} is in the form of two increasing geometric
progressions and some constant α between them. Interestingly,
parameter n which represents the feedback event N = n only
affects the lengths of the two geometric progressions, but does
not affect the value of the elements.

3) Search Algorithm for {i∗n}: The work left is to determine
the unique integer sequence, denoted by {i∗n}, such that all
complementary slackness conditions are satisfied. We know
that λk,n = 0 for k ∈ [1 : n], so we only need to choose {i∗n}
such that

λk,n ≥ 0 for k ∈ [n+ 1 : n+ i∗n]

and ζk,n > α for k ∈ [n+ i∗n + 1 : K]. (36)
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Algorithm I: Proposed search for {in} defined in Definition 4.

1) Initialize t = 1, i
(1)
n = 0 for n ∈ [0 : K], and λ

(1)
k,n = 0 for

k ∈ [n+ 1 : K], n ∈ [0 : K].
2) The t-th iteration:

a) Update ω(t), λ(t)
k,n, and ζ

(t)
k,n in (32), (37), and (31), respectively.

b) If i
(t)
n = K − n or ζ

(t)

n+i
(t)
n +1,n

> α, ∀n ∈ [0 : K], break the

loop and the algorithm ends.
c) Else, for each n satisfying ζ

(t)

n+i
(t)
n +1,n

≤ α, set i(t+1)
n as

i
(t+1)
n = arg max

i∈
[
i
(t)
n +1:K−n

]{i : ζ(t)n+i,n ≤ α},

whereas, for each n satisfying ζ
(t)

n+i
(t)
n +1

> α, set i
(t+1)
n as

i
(t+1)
n = i

(t)
n .

3) Update t = t+ 1 and repeat Step 2) until {i∗n} is found.

Note that, given {in}, since ζ
(t)
k,n = α for k ∈ [n+1 : n+ in]

in (30), λk,n can be obtained as

λk,n = Pn(α)

(
1− ω(r̂0 + 1)k−1r̂0

α2

)
, k ∈ [n+ 1 : n+ in].

(37)

Unfortunately, a closed-form solution for the i∗n does not
exist. Hence, we design an efficient iterative algorithm to find
{i∗n}, as summarized in Algorithm I. Specifically, the search
starts from i

(1)
n = 0, ∀n ∈ [0 : K], and the main idea is to

narrow down the search range of a certain number of i∗n’s in
each iteration, by enlarging the lower bounds on these i∗n’s.

The following theorem ensures that the unique sequence
{i∗n} can be found by the proposed algorithm, i.e., Algorithm
I converges.
Theorem 3: The strategy proposed in Algorithm I, up-

dating each i
(t)
n satisfying ζ

(t)

n+i
(t)
n +1,n

≤ α as i
(t+1)
n =

argmax
i∈

[
i
(t)
n :K−n

]{i : ζ(t)n+i ≤ α}, guarantees that {i∗n} must

be found.
Proof: Please refer to Appendix F.

According to (31), ζ
(t)
k,0 = ζ

(t)
k,n, ∀k ∈ [n + 1], n ∈ [0 :

K−1]. Thus, according to Step 2-c in Algorithm I, we obtain
i
(t)
n = i

(t)
0 − n if n ∈ [0 : i

(t)
0 − 1] and i

(t)
n = 0, otherwise.

Since i
(t)
0 ∈ [0 : K], at most K + 1 iterations are required

to find {i∗n}, which means that the proposed algorithm enjoys
low complexity compared to an exhaustive search which would
have complexity O((K + 1)!).

V. NUMERICAL RESULTS

In this section, computer simulation results are provided
to evaluate the outage performance of the considered NOMA
scheme with one-bit feedback.

A. Benchmark Schemes

Some benchmark transmission and power allocation
schemes are considered as explained in the following.

1) TDMA Scheme: The first benchmark scheme is TDMA
transmission with one-bit feedback since it is equivalent to
any orthogonal multiple access scheme [34, Sec. 6.1.3]. For
TDMA transmission, assume that each fading block is equally
divided into K time slots, and user k is served during the k-th
time slot. The power allocated to user k is denoted by PT

k,n for
each event N = n, where N = n is defined in Definition 1
based on the feedback sequence. The short-term and long-
term power constraints in TDMA are 1

K

∑K
k=1 P

T
k,n ≤ P

and 1
K

∑K
n=0 P(N = n)

∑K
k=1 P

T
k,n ≤ P , respectively. Fur-

thermore, redefine {ζk,n} in (12) as ζk,n = 2Kr0−1
P . The

short-term and long-term power constraints can be rewritten
as follows:

2Kr0 − 1

K

K∑
k=1

1

ζk,n
≤ P, ∀n ∈ [0 : K]; (38)

2Kr0 − 1

K

K∑
n=0

Pn(α)
K∑

k=1

1

ζk,n
≤ P, (39)

respectively. Now, similar to problems (P1) an (P2) in (19) and
(20), one can formulate two power allocation problems for
TDMA transmission under short-term and long-term power
constraints as shown in (38) and (39), respectively. We can
solve the two new problems using similar approaches as
in Section IV. The details are omitted here due to space
limitations.

2) Fixed NOMA: In order to show the benefits of the
proposed power allocation schemes, NOMA with fixed power
allocation using one-bit feedback is used as the second bench-
mark scheme. Due to its simplicity, fixed NOMA has been
adopted in many relevant works (e.g., [3], [5]). Specifically,
we also utilize the NOMA transmission scheme in Section II,
but fix the power allocation as follows: under the short-term
power constraint, we let ζk,n = (r̂0+1)K−1

P , ∀k ∈ [1 : K],
n ∈ [0 : K]; under the long-term power constraint we let
ζk,n = [(r̂0+1)K−1](K+1)Pn(α)

P , ∀k ∈ [1 : K], n ∈ [0 : K].
Note that such power allocation schemes have been utilized
in Appendices B and C to prove Lemmas 1 and 2, respectively.
The optimal α is also obtained via a one-dimensional search,
for fairness of comparison.

3) NOMA without Feedback: In order to show the benefits
of using one-bit feedback, the third benchmark scheme is
NOMA without CSI feedback, i.e., the base station only
has the average CSI information, but does not have the
instantaneous CSI nor the ordering information [8]. In this
case, the base station randomly orders the users; the long-term
power constraint reduces to the short-term power constraint
and utilizes only one power allocation within each fading
block. Note that NOMA without CSI is a special case of the
considered NOMA with one-bit feedback when we set α = 0
or α = ∞.

4) NOMA with Perfect CSI: Finally, NOMA with perfect
CSI is considered as a lower bound on the COP. With perfect
CSI, the base station informs the users of the optimal ordering
of all channel gains, and knows the required power threshold
for the users within any block for correct decoding. In this
case, we only consider the short-term power constraint, where



9

5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

SNR (dB)

C
om

m
on

 o
ut

ag
e 

pr
ob

ab
ili

ty

 

 

Fixed NOMA
NOMA without feedback
TDMA scheme
NOMA with proposed optimal PA
NOMA with perfect CSI

Fig. 1. COP versus SNR under the short-term power constraint, where
K = 3, the target rate is r0 = 1 BPCU for each user, and “PA” stands for
“power allocation”.
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Fig. 2. COP versus transmission rate under the short-term power constraint,
where K = 3, and the SNR is 20 dB.

an outage event occurs if the required power threshold is larger
than P [35]. For the long-term power constraint, an outage
probability of zero can be achieved when P is sufficiently
large, as shown in [15], which will not be considered in this
section.

B. Short-Term Power Constraint

This subsection focuses on the outage performance of
NOMA with one-bit feedback under the short-term power
constraint in (17). Figs. 1, 2, and 3 compare the outage per-
formance of NOMA employing the optimal power allocation
scheme proposed in Section IV-B with the benchmark schemes
defined in the previous subsection as a function of the SNR, the
transmission rate r0, and the number of users K, respectively.
These figures demonstrate that NOMA with optimal power
allocation outperforms the TDMA scheme, fixed NOMA, and
NOMA without feedback. As can be observed in Fig. 1, all
the curves have almost the same slope at high SNR, but a
constant gap exists between the proposed scheme and each
benchmark scheme. This is because all the schemes achieve
the same diversity gain of 1 (Lemma 1) under the short-
term power constraint. In addition, the performance of the
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Fig. 3. COP versus the number of users under the short-term power
constraint, where the target transmission rate is r0 = 1 BPCU for each user,
and the SNR is 30 dB.
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Fig. 4. COP versus SNR under the long-term power constraint, where the
number of users is K = 3, and the target transmission rate is r0 = 1 BPCU
for each user.

proposed NOMA scheme with one-bit feedback approaches
that of NOMA with perfect CSI at high SNR, which means
that the one-bit feedback is effectively used by the proposed
scheme to improve the outage performance. Fig. 2 reveals
that NOMA with the proposed optimal power allocation has
almost the same COP as the TDMA scheme when r0 = 0.1,
but outperforms the latter as r0 increases. For example, when
r0 = 1.3, these two schemes have COPs of approximately 0.15
and 0.23, respectively. Finally, as shown in Fig. 3, the COPs of
all schemes increase with the number of the users. Particularly,
the gap between the proposed NOMA scheme and the TDMA
scheme is enlarged as K increases. This is because, compared
to the orthogonal TDMA scheme, NOMA is more spectrally
efficient in the sense that all users are served simultaneously.

C. Long-Term Power Constraint

This subsection focuses on the outage performance of
NOMA with one-bit feedback under the long-term power
constraint in (18). Figs. 4, 5, and 6 compare the outage
performance of NOMA with the asymptotically optimal power
allocation scheme proposed in Section IV-C with the bench-
mark schemes in Section V-A and NOMA under the short-term
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Fig. 6. COP versus the number of users under the long-term power constraint,
where the target transmission rate is r0 = 1 BPCU for each user, and the
SNR is 30 dB.

power constraint as a function of the SNR, the transmission
rate r0, and the number of users K, respectively. As can
be seen in Fig. 4, under the long-term power constraint, the
COPs of NOMA with the proposed power allocation, the
TDMA scheme, and fixed NOMA have the same slope at
high SNR, which is due to the fact that all these schemes
achieve a diversity gain of 2 (Lemma 2). However, fixed
NOMA suffers from a poor performance, especially at high
SNR. This implies that the power allocation scheme proposed
in Section IV-C plays an important role for improving the
outage performance. Note that, although the power allocation
scheme proposed in Section IV-C is based on the high-SNR
approximation, it also performs well at low SNR compared
to NOMA under the short-term power constraint. As can
be observed in Fig. 5, the fixed NOMA scheme also does
not perform well especially for large transmission rates r0.
NOMA with the proposed asymptotically optimal long-term
power allocation scheme has the best outage performance
among the considered schemes. When r0 = 1.3, NOMA with
the proposed power allocation scheme achieves a COP of
approximate 0.07, whereas the TDMA scheme achieves only
a COP of approximate 0.15. Finally, as shown in Fig. 6, the
gap between the proposed NOMA scheme and the TDMA
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Fig. 7. Optimal threshold versus the number of the users, where the target
transmission rate is r0 = 1 BPCU for each user, and the SNR is 20 dB or
22 dB.

scheme increases as K increases. The TDMA scheme with
long-term power constraint has a COP even higher than that of
the NOMA scheme with short-term power constraint, which
means that the TDMA scheme is not suitable for scenarios
with large numbers of users due to its poor spectral efficiency.

Fig. 7 illustrates the optimal threshold α∗ versus the number
of users, K, where the target transmission rate is r0 = 1
BPCU for each user, and the SNR is either 20 dB or 22
dB. As can be observed in this figure, the optimal threshold
increases significantly with the number of users and decreases
with the SNR. The optimal threshold decreases with the SNR
for the following reason. Recall that compared to the case of
perfect CSI, the disadvantage of using one-bit feedback is that
a user with a poor channel may be categorized as a user with
a strong channel and hence given less transmit power. A good
choice of α should avoid this problem as much as possible. For
example, consider a scenario with two users, where the users’
channels are ordered as |h1|2 ≤ |h2|2. When the transmit
power approaches infinity, one type of outage event is due to
the situation where users have very poor channel conditions,
i.e., |hi|2 → 0, i ∈ {1, 2}. In this case, a good choice of α
is |h1|2 ≤ α ≤ |h2|2, which means α → 0. This intuition
can also be confirmed by the analytical results developed for
the case with the long-term power constraint. In particular,
Lemma 2 demonstrates that the maximum diversity gain can
be achieved only when threshold α satisfies α .

= P−1, i.e., the
optimal threshold (denoted as α∗) decreases with P when P
is large. Similarly, we can intuitively explain why the optimal
threshold increases with the number of users K. Specifically,
a small threshold α may result in a user k with feedback “1”
having a poor channel, and thus, user k with a poor channel
may be mistakenly allocated with a large order index since
the base station cannot distinguish the channel gains with
feedback “1” as discussed in Section II-A. Note that, when
K becomes large, the power allocated to a user with a large
order index will become particularly small, according to the
NOMA principle as discussed in (13). In this case, user k with
a poor channel will be given a very small amount of power,
and thus an outage event is prone to happen. Therefore, α has



11

to increase as K increases, in order to avoid this problem.

VI. CONCLUSIONS

This paper has investigated the outage performance of
downlink NOMA with one-bit CSI feedback. We have de-
rived a closed-form expression for the COP, as well as the
optimal diversity gains under short-term and long-term power
constraints. The diversity gain under the long-term power
constraint was shown to be two whereas that under the short-
term power constraint is only one. In order to minimize
the COP, a dynamic power allocation policy based on the
feedback state has also been proposed. For the short-term
power constraint, we demonstrated that the original non-
convex problem can be transformed into a series of convex
problems. For the long-term power constraint, we have applied
high-SNR approximations to obtain an asymptotically optimal
solution. Simulation results have been provided to demonstrate
that the proposed NOMA schemes with one-bit feedback
can outperform various existing multiple access schemes and
achieve an outage performance close to the optimal one in
many cases. An interesting topic for future research is to
extend the one-bit feedback scheme for NOMA to multi-bit
feedback. Moreover, the extension of the analysis of the one-
bit feedback scheme to asymmetric scenarios with different
distances and different rates for different users is also of
interest.

APPENDIX A
PROOF OF THEOREM 1

We first analyze the probability of event N = n defined
in Definition 1, denoted by Pn(α), which is a function of
threshold α. Specifically, since all unordered channel gains are
identically and independent distributed and P(Q(hk) = 0) =
P(|hk|2 < α) = 1 − e−α, ∀k ∈ [1 : K], the random variable
N defined in Definition 1 is binomially distributed, i.e., N ∼
B(K, 1 − e−α). Thus, Pn(α) = Cn

K(1 − e−α)ne−α(K−n) as
shown in (10).

We then calculate the outage probability of individual users
for event N = n, which is denoted by PIndiv

k,n for user πk. Note
that an outage event at user πk occurs if it fails to decode the
message for any user πl, l ∈ [1 : k]. Therefore, the outage
probability can be expressed as follows:

PIndiv
k,n (α,Pn)

= 1−P
{
log(1 + SINRl→k, n) ≥ r0, ∀l ∈ [1 : k]

∣∣ N = n
}

= 1− P
{
|hπk

|2 ≥ ζl,n, ∀l ∈ [1 : k]
∣∣ N = n

}
= P(|hπk

|2 ≤ ζ̂k,n
∣∣ N = n). (40)

Furthermore, based on (6) and (7), PIndiv
k,n can be calculated as

shown in (11).
Moreover, the COP conditioned on event N = n, denoted

as PCommon
n , can be obtained as follows:

PCommon
n (α,Pn)

= 1− P

 ∩
k∈[1:K]

{SINRl→k ≥ r̂0,∀l ∈ [1 : k]}
∣∣ N = n


(a)
= 1−

K∏
k=1

P
{

SINRl→k ≥ r̂0,∀l ∈ [1 : k]
∣∣ N = n

}
= 1−

K∏
k=1

(1− PIndiv
k,n (α,Pn)), (41)

where (a) is due to the fact that, conditioned on event N = n,
the hπk

’s are mutually independent as explained in Remark 1,
and SINRl→k is a function of hπk

as shown in (8).
Now, the overall COP averaged over all (K+1) events can

be expressed as

PCommon(α, {Pk,n}) =
K∑

n=0

Pn(α)PCommon
n (α,Pn). (42)

This completes the proof.

APPENDIX B
PROOF OF LEMMA 1

A. Proof of Achievability

We will verify that a diversity gain of 1 can be achieved
based on a simple achievable power allocation scheme. In
particular, we set ζk,n = µ1

P in (12), ∀k ∈ [1 : K], n ∈ [0 : K],
where µ1 = (r̂0 + 1)K − 1. Therefore, for any n, Pk,n =
r̂0(r̂0+1)K−kP
(r̂0+1)K−1

as shown in (14), and
∑K

k=1 Pk,n = P , i.e.,
the short-term power constraint is satisfied. Using this power
allocation, the outage probability in (11) can be expressed as:

PIndiv
k,n =


min

{
1−e−

µ1
P

1−e−α ≈ µ1

P (1−e−α) , 1

}
, 1 ≤ k ≤ n;[

1− e−(
µ1
P −α)

]+
, n+1 ≤k ≤K,

(43)

for a given α. Now, let α = ln 2, i.e., e−α = 1
2 for simplicity.

Then, from (10), Pn =
Cn

K

2K
. From (43), we have PIndiv

k,n = 0
for k ∈ [n+1 : K] for a sufficiently large P . So from (41) and
(43), PCommon

n ≈ 1 −
(
1− µ1

P (1−e−α)

)n
≈ 2nµ1

P for n ∈ [1 :

K], and PCommon
0 = 0. Thus, PCommon =

∑K
n=1 PnPCommon

n ≈∑K
n=1

2nCn
Kµ1

2KP

.
= P−1 is obtained.

B. Proof of Optimality

Now, we derive a lower bound on COP to verify that the
diversity gain of 1 is optimal for all possible power allocations
and all possible choices of threshold α. From (12) and for the
short-term power constraint, we have ζk,n ≥ r̂0

P , so PIndiv
k,n can

be lower bounded as:

PIndiv
k,n ≥


min

{
1−e−

r̂0
P

1−e−α , 1

}
, 1 ≤ k ≤ n;

max
[
1− e−(

r̂0
P −α)

]+
, n+ 1 ≤ k ≤ K.

(44)
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From (41), it can be observed that

PCommon
n ≥ PIndiv

k,n for ∀n ∈ [0 : K], k ∈ [1 : K]. (45)

Based on the above two relationships, in the following, we will
verify that PCommon≥̇P−1 for any α. Specifically, let α .

= P β .
First, if β > 0, from (10), we have PK ≈ 1. From (44)

and (45), PCommon
K ≥ 1−e−

r̂0
P

1−e−α ≈ r̂0
P

.
= P−1. As shown in (42),

PCommon ≥ PKPCommon
K ≥̇P−1.

Second, if −1 ≤ β ≤ 0, from (10), P1
.
= P β . From (44)

and (45), PCommon
1 ≥ 1−e−

r̂0
P

1−e−α ≈ r̂0
P (1−e−α)

.
= P−(1+β) since

1− e−α .
= P β . Thus, PCommon ≥ P1PCommon

1 ≥̇P−1.
Finally, if β < −1, from (10), we have P0 ≈ 1. From (44)

and (45), PCommon
0 ≥ e−α−e−

r̂0
P

e−α ≈ r̂0
P − α

.
= P−1. Thus,

PCommon ≥ P0PCommon
0 ≥̇P−1.

APPENDIX C
PROOF OF LEMMA 2

A. Proof of Achievability

We will verify that a diversity gain of 2 can be achieved. For
a given α, we consider a simple achievable power allocation
scheme, i.e., we set ζk,n = µ1(K+1)Pn

P in (12), ∀k ∈ [1 : K],
n ∈ [0 : K], where Pn is given in (10). This implies that
Pk,n = r̂0(r̂0+1)K−kP

((r̂0+1)K−1)(K+1)Pn
, k ∈ [1 : K], and

∑K
k=1 Pk,n =

P
(K+1)Pn

. The long-term power constraint in (5) is obviously
satisfied. Using such power allocation, the outage probability
in (11) can be expressed as:

PIndiv
k,n =



min

{
1−e−

µ1(K+1)Pn
P

1−e−α ≈ µ1(K+1)Pn

P (1−e−α) , 1

}
,

1 ≤ k ≤ n;[
1− e

−
(

µ1(K+1)Pn
P −α

)]+
,

n+ 1 ≤ k ≤ K.

(46)

Now, let α = µ1(K+1)
P

.
= P−1, so that µ1(K+1)Pn

P ≤ α. From
(10), Pn ≈ Cn

Kαn .
= P−n. From (46), PIndiv

k,n ≈ µ1(K+1)Pn

Pα =

Pn for k ∈ [1 : n] and PIndiv
k,n = 0 for k ∈ [n + 1 : K].

Hence, from (41), PCommon
n ≈ 1 − (1 − Pn)

n ≈ nPn for n ∈
[0 : K]. Furthermore, from (42), PCommon ≈

∑K
n=0 n(Pn)

2 .
=∑K

n=1 P
−2n, where P−2 is the dominant term when n = 1.

B. Proof of Optimality

Now, we derive a lower bound on COP to verify that a
diversity gain of 2 is optimal under the long-term power
constraint. From (12) and the long-term power constraint, we
have ζk,n ≥ r̂0Pn

P , so PIndiv
k,n can be lower bounded as:

PIndiv
k,n ≥


min

{
1−e−

r̂0Pn
P

1−e−α , 1

}
, 1 ≤ k ≤ n;

max

{
e−α−e−

r̂0Pn
P

e−α , 0

}
, n+ 1 ≤ k ≤ K.

(47)

Based on the above relationship and (45), we can prove that
PCommon≥̇P−2 for any α. Specifically, let α .

= P β .

First, if β > 0, from (10), we have PK ≈ 1. From (44) and

(45), PCommon
K ≥ 1−e−

r̂0PK
P

1−e−α ≈ r̂0
P

.
= P−1. As shown in (42),

PCommon ≥ PKPCommon
K ≥̇P−1.

Second, if −1 ≤ β ≤ 0, from (10), P1 = K(1 −
e−α)e−α(K−1) .

= P β . From (47) and (45), PCommon
1 ≥

1−e−
r̂0P1
P

1−e−α ≈ r̂0P1

P (1−e−α) = r̂0Ke−α(K−1)

P

.
= P−1. Thus,

PCommon ≥ P1PCommon
1 ≥̇P β−1≥̇P−2.

Finally, if β < −1, from (10), we have P0 ≈ 1. From (47)

and (45), PCommon
0 ≥ e−α−e−

δ2r̂0P0
P

e−α ≈ δ2r̂0
P −α

.
= P−1. Thus,

PCommon ≥ P0PCommon
0 ≥̇P−1.

Summarizing these three regions, the necessary condition to
achieve the optimal diversity gain of 2 is to set β = −1.

APPENDIX D
PROOF OF PROPOSITION 3

For optimization problem (P3) in (25), an asymptotically
optimal solution {ζk,n} at high SNR has the following prop-
erties:
(a) when n ≥ 3, (ζ1,n, · · · , ζK,n) can be any value s.t. (25c)

and (25d) and ζk,n>̇P−n;
(b) (ζ1,2, · · · , ζK,2) satisfy P−2<̇ζk,2<̇P−1 for k ∈ [1 : K],

ζk,2 − α<̇P 0 for k ∈ [3 : K];
(c) (ζ1,1, · · · , ζK,1) satisfy ζ1,1≤̇P−2, ζk,1 − α≤̇P−2, ∀k ∈

[2 : K];
(d) (ζ1,0, · · · , ζK,0) satisfy ζk,0 − α≤̇P−2, ∀k ∈ [1 : K].

Proof: From Lemma 2, we know that the optimal
threshold satisfies α

.
= P−1, and the optimal COP satisfies

PCommon .
= P−2. These properties can be verified as follows.

(a) From (10) and (42), we have Pn
.
= P−n for n ∈ [0 : K].

This implies that each term PnPCommon
n , n ≥ 3, affects

negligibly the optimal COP no matter what power allocation
scheme is used, and hence any power allocation scheme can
be adopted when n ≥ 3 as long as it consumes negligible
power, i.e., Pn

∑K
k=1

(r̂0+1)k−1r̂0
ζk,n

→ 0 as P → ∞. Let ζk,n
.
=

P γk,n , then Pn

∑K
k=1

(r̂0+1)k−1r̂0
ζk,n

.
= P−n−mink∈[1:K]{γk,n},

and hence mink∈[1:K]{γk,n} > −n. Combining this constraint
with (25c) and (25d), property (a) is verified.

(b) To verify property (b), we will show that
P2PCommon

2 <̇P−2 (i.e., P2PCommon
2 is negligible compared to

the optimal COP) can be achieved at negligible power cost
for the term P2

∑K
k=1

(r̂0+1)k−1r̂0
ζk,2

, only when {ζk,2} satisfies
the constraints in property (b). Let ζk,2

.
= P γ2,k , then, similar

to the proof of property (a), mink∈[1:K]{γk,2} > −2 should
be satisfied such that P2

∑K
k=1

(r̂0+1)k−1r̂0
ζk,2

→ 0 as P → ∞.
Moreover, to achieve P2PCommon

2 <̇P−2, PIndiv
k,2 <̇P 0 needs

to be satisfied according to (10) and (41), ∀k ∈ [1 : K].
Thus, according to (11), ζk,2<̇P−1 can be verified for
k ∈ [1 : 2], with the choice of α

.
= P−1; and ζk,2 − α<̇P 0

for k ∈ [3 : K].
(c) To achieve PCommon .

= P−2, P1PCommon
1 ≤̇P−2 has to be

satisfied. Thus, PIndiv
k,1 ≤̇P−1, ∀k ∈ [1 : K], needs to be satisfied

according to (10) and (41). Thus, with the choice α
.
= P−1,

property (c) can be verified based on (11).
(d) Similar to the proof of property (c), property (d) can be

verified. The details are omitted here for brevity.
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From property (a), we know that more than one asymptot-
ically optimal solution exists. To unify the expression of the
approximation, for n ≥ 3, we set ζk,n to satisfy ζk,n<̇P−1

and ζk,n−α<̇P 0 without loss of asymptotic optimality. Thus,
together with properties (b)-(d), ∀n ∈ [0 : K], we have
ζk,n

1−eα ≪ 1 for k ∈ [1 : n] and ζk,n−α ≪ 1 for k ∈ [n+1 : K].
Now, the following approximation can be obtained:

e−ζk,n − e−α

1− e−α
= 1− 1− e−ζk,n

1− e−α
≈ 1− ζk,n

1− e−α
≈ e

−
ζk,n

1−e−α .

(48)

Accordingly, using a Taylor series expansion, the approxima-
tion of function f3,n can be expressed as follows:

f3,n(α, ζn) ≈ 1−
n∏

k=1

e
−

ζk,n

1−e−α

K∏
k=n+1

e−(ζk,n−α)

= 1− e
−
(∑n

k=1

ζk,n

1−e−α +
∑K

k=n+1(ζk,n−α)
)

≈
n∑

k=1

ζk,n
1− e−α

+
K∑

k=n+1

(ζk,n − α). (49)

With this, problem (P3) in (25) has been approximately
transformed to (P4) in (26).

APPENDIX E
PROOF OF PROPOSITION 4

This proposition can be proved by using (29c) and (30). For
a given n and depending on the values of k, three cases need
to be considered. Firstly, when k ∈ [1 : n − 1], from (30),
ζk,n ≤ ζk+1,n holds since r̂0 > 0. Secondly, when k = n, we
have

ζn,n =
√
ω(r̂0 + 1)n−1r̂0(1− e−α) <

√
ω(r̂0 + 1)nr̂0

≤

√
ωPn(α)(r̂0 + 1)nr̂0
Pn(α)− λn+1,n

= ζn+1,n

since λn+1,n ≥ 0. Thirdly, when k ∈ [n + 1 : K − 1], two
subcases with respect to λk,n are considered. If λk,n > 0,
ζk,n = α can be obtained from (29c), so ζk,n ≤ ζk+1,n holds
since ζk+1,n ≥ α. If λk,n = 0, since λk+1,n ≥ 0, we have

ζk,n =
√

ω(r̂0 + 1)k−1r̂0 ≤

√
ωPn(α)(r̂0 + 1)kr̂0
Pn(α)− λk+1,n

= ζk+1,n.

This completes the proof.

APPENDIX F
PROOF OF THEOREM 3

During the t-th iteration, ω(t), λ(t)
k,n, and ζ

(t)
k,n are calculated

according to (32), (37), and (31), respectively. Assume that
i∗n ≥ i

(t)
n , ∀n ∈ [0 : K], and the constraints in (36) are not

satisfied, i.e., we have to further enlarge at least one i
(t)
n to

find {i∗n}. Now, divide {n} into two sets:

N (t)
1 , {n : ζ

(t)

n+i
(t)
n +1,n

> α}

and N (t)
2 , {n : ζ

(t)

n+i
(t)
n +1,n

≤ α}. (50)

According to the definitions in (50), we first present an
important proposition as follows.

Proposition 5: For the (t + 1)-th iteration, ω(t+1) > ω(t)

if we enlarge any i
(t)
n with n ∈ N (t)

1 ; ω(t+1) ≤ ω(t) if we
enlarge any i

(t)
n with n ∈ N (t)

2 .
Proof: This proposition can be proved based on (31) and

(32). For the t-th iteration, we first consider the case that
some i

(t)
n with n ∈ N (t)

1 is selected to be enlarged in the
next iteration, where N (t)

1 is defined in (50). Assume without
loss of generality that i

(t)
m with m ∈ N (t)

1 is enlarged, i.e.,
i
(t+1)
m = i

(t)
m + l, l ∈ [1 : K − n − i

(t)
n ], and the other i

(t)
n ’s

remain unchanged, i.e., i(t+1)
n = i

(t)
n , ∀n ̸= m. According to

(32), we have

1√
ω(t)

K∑
n=0

Pn(α)An(i
(t)
n ) = P −

K∑
n=0

Pn(α)Bn(i
(t)
n ). (51)

Let u2(k) , (r̂0 + 1)k−1r̂0. From (33) and (34), the above
equality can be rewritten as

1√
ω(t)

[
m∑

k=1

√
u2(k)

1− e−α
+

K∑
k=m+i

(t)
m +l+1

√
u2(k)

+

K∑
n=0,n ̸=m

Pn(α)An(i
(t)
n )

]

= P −
K∑

n=0

Pn(α)Bn(i
(t)
n )−

m+i(t)m +l∑
k=m+i

(t)
m +1

u2(k)√
w(t)u2(k)

. (52)

Similarly, for the (t+1)-th iteration, since only i
(t)
m is enlarged,

we obtain

1√
ω(t+1)

[
m∑

k=1

√
u2(k)

1− e−α
+

K∑
k=m+i

(t)
m +l+1

√
u2(k)

+
K∑

n=0,n ̸=m

Pn(α)An(i
(t)
n )

]

=P −
K∑

n=0

Pn(α)Bn(i
(t)
n )−

m+i(t)m +l∑
k=m+i

(t)
m +1

u2(k)

α
. (53)

Comparing the right hand side terms of (52) and (53), the
one in (52) is larger than the one in (53), since ζ

(t)
k,n =√

w(t)u2(k) > α, ∀k ∈ [m + i
(t)
m + 1 : m + i

(t)
m + l], which

can be obtained from (31) and the definition of N (t)
1 in (50).

Thus, 1√
w(t)

> 1√
w(t+1)

can be obtained by comparing the left
hand side terms of (52) and (53).

Now, we have proven that w(t+1) > w(t) if we enlarge any
i
(t)
n with n ∈ N (t)

1 . Following similar steps, we can show that
ω(t+1) ≤ ω(t) if we enlarge any i

(t)
n with n ∈ N (t)

2 .
Based on Proposition 5, another proposition is given in the

following.
Proposition 6: For the t-th iteration, at least one i

(t)
n ̸= i∗n

for n ∈ N (t)
2 must exist.

Proof: Reduction to absurdity is adopted. We first assume
that i(t)n = i∗n, ∀n ∈ N (t)

2 , and we need to find the other i∗n’s by
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enlarging at least one i
(t)
n with n ∈ N (t)

1 . According to (31),

ζ
(t)

n+i
(t)
n +1,n

=

√
w(t)(r̂0 + 1)i

(t)
n r̂0 > α when n ∈ N (t)

1 ; thus,

it is easy to obtain λ
n+i

(t+1)
n +1,n

< 0 if we enlarge any i
(t)
n

with n ∈ N (t)
1 , based on (37) and Proposition 5. In addition,

N (t+1)
1 = N (t)

1 obviously holds, i.e., the set N (t)
1 will not

change in the next iteration. By analogy, λ
n+i

(t′)
n +1,n

< 0,

∀t′ ≥ t+1 if we enlarge any i
(t)
n with n ∈ N (t)

1 . This implies
that the constraint in (36) would never be satisfied if i(t)n = i∗n,
∀n ∈ N (t)

2 .
According to Proposition 6, {i∗n} must be found using the
following update rule.

Rule 1: Enlarge at least one element i(t)n with n ∈ N (t)
2 in

the t-th iteration.
In order to improve the search efficiency, Rule 1 can be

further refined into another update rule. A proposition is first
given as follows.

Proposition 7: When Rule 1 is adopted for searching {i∗n},
i∗n ≥ v(t), ∀n ∈ N (t)

2 , where v(t) , argmax
i∈

[
i
(t)
n :K−n

]{i :
ζ
(t)
n+i ≤ α}.

Proof: Also using reduction to absurdity, we first assume
that there exists one i∗n ∈

[
i
(t)
n + 1 : v(t) − 1

]
with n ∈ N (t)

2 .

Then, ζ
(t)
n+i∗n+1,n =

√
w(t)(r̂0 + 1)i

(t)
n r̂0 ≤ α according to

(31) and (50); thus, it is easy to obtain ζ
(t+1)
n+i∗n+1,n ≤ α based on

Proposition 5 and Rule 1. By analogy, ζ(t
′)

n+i∗n+1,n ≤ α, ∀t′ ≥
t+ 1 when enlarging at least one element i(t)n with n ∈ N (t)

2

(i.e., Rule 1). This implies that the constraint in (36) would
never be satisfied if there existed any i∗n ∈

[
i
(t)
n + 1 : v(t) − 1

]
with n ∈ N (t)

2 .
Now, according to Proposition 7, Rule 1 can be refined into
Rule 2 to further improve search efficiency as follows.

Rule 2: Enlarge each i
(t)
n with i

(t)
n < K − n and n ∈ N (t)

2

as i
(t+1)
n = v(t).

Based on Propositions 6 and 7, {i∗n} must be found using
Rule 2. Note that Rule 2 has been adopted in Step 2-c of
Algorithm I (Section IV-C), and Theorem 3 is proved.

Remark 6: Using Rule 2 in Step 2-c of Algorithm I, we
can easily verify that the constraint λ(t)

k,n ≥ 0 always holds for
k ∈ [n+1 : n+ i

(t)
n ], according to (31), (37), and Proposition

5. Thus, it is not necessary to include this constraint in Step
2-b of Algorithm I.
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